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Abstract

This paper shows that in a private value setting in which one bidder

may at any time reÞne her assessment of her valuation at some posi-

tive cost, the ascending price auction induces higher expected welfare

than the sealed-bid second price auction does. When the number of

bidders is above a threshold, it generates higher revenue as well. In

the ascending price auction, a key feature of equilibrium behavior is

that as long as there are more than two bidders left, the bidder who

may reÞne her information (and has not done so yet) stays above her

expected current valuation. This is because she has the option to ac-

quire information when there are two bidders left, and drop out at no

cost if her realized valuation turns out to be low. In contrast, in the

sealed-bid format, there is no such option and that bidder will bid her

expected valuation.
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1 Introduction

Consider a single object auction. Each bidder has some private information

about how much he values the object. Bidders� valuations are not affected

by the information held by other bidders. That is, we are in the private

value setting.

The ascending price auction and the sealed-bid second price (or Vickrey

auction) both yield the same outcome in this setting. In both formats,

bidders have a (weakly) dominant strategy: drop out when the price reaches

the valuation in the ascending format, and bid the valuation in the Vickrey

format. They are thus equivalent auctions. Note that this true whether or

not bidders are ex ante symmetric.

Consider now a slight modiÞcation of the above setup. We still consider

the private value setting; that is, the private information held by a bidder

does not affect the valuation of other bidders. But, we now assume that one

bidder, say bidder 1, may acquire a better information about her valuation

at some cost c.

We show that the ascending price auction and the sealed-bid second

price auction are no longer equivalent formats despite the fact that we are

considering the private value setting. The expected welfare generated in the

ascending format is higher than that generated in the sealed-bid format.

And when the number of bidders is above a threshold, the expected revenue

generated is also higher in the ascending format.

The main reason for this result is as follows: the sealed-bid format forces

bidder 1 to decide whether or not to reÞne her assessment of her valuation

without having any information on how much the other bidders value the
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object. In contrast, in the ascending format, bidder 1 has the option to wait

and stay in until there are only two bidders left to acquire information (and

possibly learn that she values the object much more than the remaining

bidder does). As a result, bidder 1 decides on better grounds whether it is

worth acquiring further information on the valuation. Thus, the ascending

format permits a better information acquisition strategy, which results in

higher expected welfare.

When the number of bidders is too large, it is not optimal for bidder

1 to acquire information in the sealed-bid format, because the chance of

getting the object is very small. Bidder 1 therefore bids her initial expected

valuation. In contrast, in the ascending format, bidder 1 can wait until

there are only two bidders left to acquire information. So in the ascending

format bidder 1�s information acquisition strategy is independent of the total

number of bidders, and (to the extent that acquisition costs are not too large)

bidder 1 acquires information with positive probability, independently of the

number of bidders. Besides, when information acquisition costs are not too

large, it is worthwhile for bidder 1 to acquire information even if the current

price exceeds her initial expected valuation. So because bidder 1 waits until

there are only two bidders left to acquire information, it may well be that

bidder 1 stays in well above her initial expected valuation. And when the

number of bidders is large, it is actually most likely that in events where she

acquires information, bidder 1 stays in well above her initial expected value.1

As a result, in events where she acquires information, either she learns that

her valuation is small and drops out immediately, but this does not adversely

affect revenues compared to the second price auction (because the current

price is most likely to lie above bidder 1�s initial expected valuation); or she

1This is because as the number of bidders get larger, the price at which only two bidders

remain active tends to increase.
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learns that her valuation is higher than the current price, in which case the

effect on revenues is positive.

Related literature: Our paper is related to two strands of literature

in auction theory, i.e. the comparison of auction formats (and more pre-

cisely here the comparison of the second price and ascending price auction

formats), and the analysis of information acquisition in auctions. To the

best of our knowledge, this paper is the Þrst attempt to analyze the issue of

information acquisition in the ascending auction format.

The non-equivalence of the second price auction and the ascending price

auction has been noted in the affiliated value paradigm (see Milgrom-Weber

1982). There the two formats differ because the information conveyed about

others� signals are not the same in the two formats and therefore the assess-

ment of the valuation is not the same. Milgrom-Weber (1982) consider a

symmetric setup and show how, in the affiliated value paradigm, the ascend-

ing format may generate higher expected revenue. Our paper can be viewed

as providing a new explanation as to why the ascending format generates

higher expected revenue.

Maskin (1992) also considers an interdependent value setup and shows

in the two-bidder case that the ascending price auction generates an efficient

outcome even when bidders are not ex ante symmetric, as long as bidders

have one-dimensional signals and a single crossing condition holds.2 But,

with two bidders, the ascending format and the sealed-bid format yield the

same outcome, so they cannot be compared.3

2See Dasgupta-Maskin 1999, Ausubel 1999, Perry-Reny 2000 for extensions of this

kind of results and Jehiel-Moldovanu 2000 for limits of it in the multidimensional private

information case.
3See Krishna 2000 for an investigation of when the ascending price auction generates

an efficient outcome in this kind of contexts and Compte-Jehiel 2001 for illustrations

of the efficiency differences between the second price and ascending price auctions in
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Other comparisons between auction formats have been made under the

assumption that bidders are risk averse. Yet, the second price format and

the ascending format are still equivalent in the private value setting even

if bidders are risk averse. In the context of auctions with negative exter-

nalities (see Jehiel-Moldovanu 1996), Das Varma (1999) has shown that the

ascending format could (under some conditions) generate higher revenues

than that generated by the sealed-bid (Þrst-price) auction format, because

in the ascending format a bidder can stay longer to be able to combat a

harmful competitor if that is the remaining bidder.

The literature on information acquisition in auctions is restricted to

sealed-bid types of auction mechanisms. In a private value model, Hausch

and Li (1991) show that Þrst price and second price auctions are equivalent

in a symmetric setting (see also Tan 1992). Stegeman (1996) shows that

second price auction induces an ex ante efficient information acquisition in

the single unit independent private values case (see also Bergemann and

Valimaki 2000). However, as our paper shows, the ascending price auction

may induce an even greater level of expected welfare in this case.

Models of information acquisition in interdependent value contexts (in

static mechanisms) include Matthews (1977), (1984) who analyzes in a pure

common values context whether the value of the winning bid converges to

the true value of the object as the number of bidders gets large,4 Persico

(1999) who compares information acquisition incentives in the Þrst price and

second price auction in the affiliated value setting and Bergemann and Vali-

maki (2000) who investigate, in a general interdependent value context, the

impact of ex post efficiency on the ex ante incentive of information acquisiton

(however, even if ex ante and ex post efficiency is achieved in Bergemann-

interdependent valuation contexts with possibly multi-dimensional private information.
4See also Hausch and Li 1993 for an analysis of information acquisition in common

value settings.
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Valimaki�s sense this need not imply that the most efficient mechanism is

obtained, see the efficiency analysis in Section 3).

The rest of the paper is organized as follows. Section 2 describes the

model. Section 3 provides the analysis of the ascending price auction and the

second price auction as well as revenue and efficiency comparisons between

the two formats. Some discussion follows in Section 4.

2 The model

There is one object for sale. We consider n potential risk-neutral bidders

i ∈ N = {1, ..., n}. When a bidder does not get the object, he gets a payoff
normalized to zero.

Each bidder i = 1, ..., n has a valuation θi for the object. The valuations

θi , i = 1, ...n are realizations of the random variables eθi, i = 1, ...n, which
are assumed to be independently distributed from each other. Each random

variable eθi has a density denoted by gi(·), deÞned over h
θ, θ

i
. We will assume

that gi(θ) > 0 for all θ ∈
h
θ, θ

i
.

We assume that each bidder i = 2, ..., n knows his own valuation, whereas

bidder 1 is only imperfectly informed about θ1. More precisely, we assume

that bidder 1 observes the realization α of a signal that is imperfectly cor-

related with her valuation θ1, and independent of other bidders� valuations.

We denote by f(·, ·) the density over (θ1,α). We assume that f is deÞned

over
h
θ, θ

i
× [α,α] and that f(θ,α) > 0 for all (θ,α) ∈

h
θ, θ

i
× [α,α].

Also, for simplicity and in order to highlight comparative statics with

respect to the number n of bidders, we assume that the random variableseθi, i = 2, ...n are drawn from the same distribution. Accordingly, we denote

by g(·) the common density gi(·) of every bidder i = 2, ...n.
At any point in time, bidder 1 may decide to learn the realization of θ1.

This costs her c > 0.
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The information structure is assumed to be common knowledge among

all bidders.

Auction format: We will mostly consider the ascending price auction.

At some point we will make some comparisons with the sealed-bid second

price auction.

The ascending price auction is deÞned as follows.5 The price starts at

a low level, say 0, at which each bidder is present. The price gradually

increases. Each bidder may decide to quit at every moment. Bidder 1

may also decide to learn θ1 at every moment. When a bidder quits, this is

commonly observed by every bidder.6 The auction stops when there is only

one bidder left. The object is allocated to that bidder at the current price.

A strategy for bidder i = 2, ..n speciÞes for each current price p, private

information (valuation θi) and public information (who left and at what

price) whether or not to drop out.7

A strategy for bidder 1 speciÞes bidder 1�s behavior depending on whether

or not bidder 1 has acquired information about θ1. If bidder 1 has learned

θ1, her strategy is deÞned in the same way as for bidders 2, ...n. If bidder 1

has not yet learned θ1, her strategy speciÞes for each current price p, private

information (α) and public information (who left and at what price) whether

or not to drop out and whether or not to acquire information (about θ1).

5We present here the continuous time/price version of the ascending price auction.

This raises some technical difficulties regarding the deÞnition of equilibria in undominated

strategies. The equilibria we will refer to are the limits as ε > 0 tends to 0 of the equilibria

in undominated strategies of the corresponding game in which time is discrete and after

each round the price increases by the increment ε.
6 It is immaterial whether or not bidders i = 2, ...n observe whether or not bidder 1

learns θ1. However, it is clearly more realistic to assume that they do not.
7 In case all the remaining bidders quit at the same date, one of them is selected at

random with equal probability to get the object. He then pays the current price.
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The sealed-bid second price auction is deÞned as follows. Each bidder i

simultaneously sends a bid bi to the seller. The bidder with maximal bid, i.e.

i0 =argmax
i

bi gets the good and pays the second highest bid, i.e. max
i6=i0

bi

to the seller.8

In the sealed-bid format, bidder i (i = 2, ...n)�s strategy consists in sub-

mitting a bid bi as a function of θi. Bidder 1�s strategy speciÞes whether or

not to acquire information as a function of α, and given the information at

the bidding stage, which bid b1 to submit.

3 On the virtue of the ascending price auction

3.1 The ascending price auction

Consider the ascending price auction. We Þrst observe that bidders i =

2, ...n have a dominant strategy: drop out at their valuation θi.

The key issue is whether and when bidder 1 decides to reÞne her as-

sessment of her valuation. We need some preliminary deÞnitions. We Þrst

deÞne for each α ∈ [α,α]:

V (α) ≡ E(eθ1 | α) (1)

to be the expected valuation of bidder 1 given the realization α. This is

bidder 1�s expected valuation at the start of the game.

We next deÞne for each (p,α) ∈
h
θ, θ

i
× [α,α]:

H(p,α) ≡ E(max(eθ1, eθ2)− eθ2 | α and eθ2 ≥ p)− c.

and

K(p,α) = E(max(V (α), eθ2)− eθ2 | eθ2 ≥ p).
8 If there are several bidders with maximal bids, one of them is selected at random with

equal probability to get the good, and pays that bid to the seller.
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The value H(p,α) (respectively K(p,α)) corresponds to bidder 1�s expected

payoff when the current price is equal to p, only bidder 2 remains active

(and will remain active up to his valuation), and bidder 1 decides to acquire

information (respectively decides not to acquire information ever, and drop

out at min{p, V (α)}). For each α ∈ [α,α], we deÞne:

p∗(α) ≡ sup
p

n
p ∈

h
θ, θ

i
| H(p,α) ≥ K(p,α) or p = θ

o
. (2)

We also deÞne for each (p,α) ∈
h
θ, θ

i
× [α,α]:

G(p,α) ≡ E(max(p, eθ1)− eθ1 | α),

and we let

p∗∗(α) ≡ inf
p

n
p ∈

h
θ, θ

i
| G(p,α)− c ≥ 0 or p = θ

o
(3)

Finally, we denote by N(p) the total number of remaining bidders when

the current price is equal to p. Equilibrium behavior is characterized as

follows:

Theorem 1 Consider the ascending price auction. The strategies deÞned

below constitute the unique perfect Bayesian equilibrium in undominated

strategies. Bidder i = 2, ...n with valuation θi drops out when the price

reaches θi. Assume the current price is p and that bidder 1 has not acquired

information about θ1.

If N(p) = 3, bidder 1 does not acquire information; she stays in if p <

max{p∗(α), V (α)}, and she drops out otherwise.
If N(p) = 2, we distinguish two cases:

(i) p∗(α) ≤ p∗∗(α): then bidder 1 with initial private information α never

acquires information and drops out when the price reaches V (α).

(ii) p∗∗(α) < p∗(α): then bidder 1 acquires information only if p ∈ [p∗∗(α), p∗(α)),
she drops out at min(p, V (α)) if p ≥ p∗(α), and she stays in and acquires
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information at p∗∗(α) if p < p∗∗(α).

Finally, when bidder 1 has acquired information about θ1 and the current

price is p, bidder 1 drops out immediately whenever θ1 < p and stays in till

the price reaches θ1 otherwise.

The notable feature of the equilibrium is that p∗(α) may lie well above

V (α) and therefore, in many cases bidder 1 stays in much above her expected

initial valuation, even though she has not yet acquired information about

θ1.

The reason why she does so is that as long as there are more than

two bidders left, she still has the option of acquiring information about θ1

when there are two bidders left. Moreover when there are two bidders left,

and bidder 1 learns that her valuation θ1 is low (typically below the current

price), she does not suffer because she can still drop out before the remaining

bidder does.

An Example.

To illustrate the behavior of bidder 1 implied by Theorem 1, we provide

a simple example:

Example 1 Suppose θi, i = 2, ...n is uniformly distributed on
h
θ, θ

i
. Con-

ditional on α, θ1 is assumed to take value θ with probability α and θ with

probability 1− α so that V (α) = αθ + (1− α)θ. The variable α is assumed
to be uniformly distributed on [α,α] where 0 < α < α < 1 and c is assumed

to be sufficiently small (i.e., θ + c
1−α < V (α) < θ − 2c

α for all α ∈ [α,α]).

Under the assumptions above, we have G(p,α) = (1− α)(p− θ̄), which
implies

p∗∗(α) = θ +
c

1− α .

We also have H(p,α) = α
h
θ − θ+p

2

i
−c, which implies that H(V (α),α) > 0.
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So p∗(α) solves H(p,α) = 0, that is,

p∗(α) = θ − 2c
α
.

which implies that for all α ∈ [α,α]:

p∗∗(α) < V (α) < p∗(α).

By Theorem 1, the equilibrium behavior of bidder 1 with initial private

information α is thus determined as follows:

(i) As long there are no less than three bidders left, N ≥ 3, bidder 1 does
not acquire information on θ1, and she stays in till the price reaches

p∗(α) at which price she drops out.

(ii) As soon as there are two bidders left N = 2 (and thus the current price

p must lie below p∗(α) given the above behavior), bidder 1 acquires

information on θ1 if p > p∗∗(α) and stays in without acquiring infor-

mation (at p) if p < p∗∗(α); she drops out if she learns that θ1 = θ.

She stays in till the remaining other bidder drops out if θ1 = θ.

The argument.

Before starting the proof of Theorem 1, we gather preliminary observa-

tions in the following Lemma.

Lemma 1 For any α ∈ [α,α], we have:
(i) H(.,α) is decreasing (in p), p∗(α) < θ̄, and H(p∗(α),α) ≥ 0.
(ii) G(.,α) is increasing (in p).

(iii) H(p,α) ≤ G(p,α)− c+ V (α)− p
(iv) If p∗∗(α) < (≤)p∗(α), then p∗∗(α) < (≤)V (α)

Proof. DeÞne

φ(p,α) = E[max(eθ1, p)− p
¯̄̄
α] =

Z
θ1≥p

(θ1 − p)f(θ1 | α)dθ1.
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We have
∂φ

∂p
(p,α) = −Pr{eθ1 ≥ p | α} (4)

By deÞnition of H, we have:

H(p,α) =

R
θ2≥p φ(θ2,α)g(θ2)dθ2R

θ2≥p g(θ2)dθ2
− c

Since ∂φ
∂p < 0 when p ∈ (θ, θ̄), we obtain, for any p < θ̄,

H(p,α) < φ(p,α)− c. (5)

Besides, it is easy to check that

∂H

∂p
(p,α) =

g(p)R
θ2≥p g(θ2)dθ2

[H(p,α)− φ(p,α) + c].

which implies that H(.,α) is decreasing. Besides H(θ̄,α) = −c < 0 and

K(p,α) ≥ 0 for all p ∈ [θ, θ̄]. Hence by deÞnition of p∗(α), we have p∗(α) < θ̄
and H(p∗(α),α) ≥ 0, which concludes (i).

Now by deÞnition of G, we have

G(p,α) = p− V (α) + φ(p,α),

which implies (ii) (from Equation (4)), and (iii) (thanks to inequality (5)).

Then (iv) follows because if p∗∗(α) < p∗(α), then

H(p∗(α),α) < H(p∗∗(α),α) < G(p∗∗(α),α)− c+ V (α)− p∗∗(α)

and because H(p∗(α),α) ≥ 0 and G(p∗∗(α),α) = c.
We are now ready to start the proof of Theorem 1, which is made in sev-

eral steps articulated as 7 lemmas. The Þrst two lemmas are straightforward

and do not require any proof.

Lemma 2 Bidder i = 2, ...n has a (weakly) dominant strategy, i.e., drop

out when the price reaches his valuation θi.
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Lemma 3 Suppose the current price is p, bidder 1 is still in and she has

learned the realization of θ1. Then bidder 1 has a (weakly) dominant strategy:

she drops out immediately if θ1 < p, and she stays in till the price reaches

θ1 otherwise.

In what follows, we assume that bidders behave according to Lemma 2

and 3, and we derive the optimal behavior of bidder 1 in the event where

she has not yet acquired information.

Lemma 4 (key step) Suppose bidder 1 with private information α has not

learned θ1, the current price is p < max(p∗(α), V (α)) and there are N bid-

ders left where N > 2. Then it is not optimal for bidder 1 to drop out (at

p).

Proof. Clearly if p < V (α), bidder 1 does not drop out, since she strictly

prefers staying till the price reaches V (α) and then dropping out (with-

out ever acquiring information on θ1). (The strict preference derives from

the behavior of bidders i = 2, ...n, and the assumption that g(·) is strictly
positive on

h
θ, θ

i
.)

Suppose p∗(α) > V (α), let the current price p be such that V (α) < p <

p∗(α), and assume there are N > 2 bidders left. Assume (contrary to the

claim of the Lemma) that bidder 1 drops out at p.

Then we claim that she has a strictly better strategy: consider ε small

enough so that p+ ε < p∗(α), and assume that bidder 1 waits till the price

reaches p+ε or some price p0 ≤ p+ε at which N(p0) = 2.9 Then drop out if
N(p+ε) ≥ 3, or acquire information at p0 and behave as speciÞed in Lemma
2.

9The event under which the number of remaining bidders jump directly to 1 has 0

probability (because g has no mass point). [In the discrete jump game that approximates

the continuous time game, the probability of this event gets arbitrarily small as price

increments tend to 0.]
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When bidder 1 follows the above strategy (instead of dropping out) and

when the other bidders conform to the strategies speciÞed in Lemma 2, the

event where N(p0) = 2 with p0 ∈ (p, p+ ε] has positive probability (because
g is positive). In any such event, bidder 1 acquires information at p0 and

since N(p0) = 2, she obtains an expected payoff equal to H(p0,α). This

payoff is at least equal to H(p + ε,α) because H(·,α) is decreasing, and
H(p+ ε,α) is positive because p+ ε < p∗(α), because H(p∗(α),α) ≥ 0, and
because H(·,α) is decreasing (see Lemma 1). So this strategy is preferred
to dropping out.

Lemma 5 Suppose there are N, N > 2, bidders left. Then it is not optimal

for bidder 1 to acquire information (That is, she acquires information only

when there are two bidders left.).

Proof. It will be convenient to denote by θ(2) the second largest valuation

among bidders other than bidder 1, and by eθ(2)
the corresponding random

variable.

Suppose there are N > 2 bidders left and suppose bidder 1 chooses

to acquire information on θ1 and the price is p ≤ max(p∗(α), V (α)). (If

the price were larger, bidder 1 would have dropped earlier by the previous

Lemma.)

We show that it is a strictly better strategy for bidder 1 (i) to drop out

at price max(p∗(α), V (α)) if there are still three or more bidders left, and

(ii) otherwise to acquire information as soon as there are two bidders left.

Under the latter event (that is if θ(2) ≤ max(p∗(α), V (α))), the two

strategies yield the same payoff. Under the former event (which has positive

probability because p∗(α) < θ (by Lemma 1 (i) and because V (α) < θ),

bidder 1 obtains 0 when she drops out, and she obtains an expected payoff

equal to

E
h
H(θ(2),α)

¯̄̄
θ(2) ≥ max(p∗(α), V (α))

i
13



when she acquire information at p. And this payoff is negative because

for any p ≥ (>)max(p∗(α), V (α)), K(p,α) = 0 and H(p,α) ≤ (<)K(p,α)

(by deÞnition of p∗(α)), and because the event θ(2) > p∗(α) has positive

probability.

Lemma 6 Suppose there are N > 2 bidders left and the current price is

p ≥ max(p∗(α), V (α)). Then it is (strictly) optimal for bidder 1 to drop out.

Proof. Suppose that the current price is p ≥ max(p∗(α), V (α)) and that

bidder 1 does not drop out. Then either she will never acquire (in any

subgame) the information on θ1 in which case she would certainly be better

off by dropping out at p (since p ≥ V (α)). Or she will acquire information
at some price p0 > p. But the best she can hope to get in expectation by

acquiring information at price p0 is H(p0,α) (if there are more than two

bidders left at the price p0 at which bidder 1 acquires information, then

bidder 1 gets even less). This expected payoff however is negative because

(by deÞnition of p∗(α)) H(p0,α) < K(p0,α), and because for any p0 ≥ V (α),
K(p0,α) = 0.

Lemma 7 Whatever the number of bidders left, it is not optimal for bidder

1 with private information α to drop out at price p < V (α).

Proof. Dropping out at p < V (α) with no information acquisition is dom-

inated by waiting till V (α) without acquiring any information ever.

Lemma 8 When there are N = 2 bidders left, then:

(a) if p > p∗(α) or p < p∗∗(α), it is not optimal for bidder 1 with private

information α to acquire information.

(b) Otherwise, it is optimal for bidder 1 to acquire information.

Proof. Acquiring information at p yields H(p,α). If p > p∗(α), H(p,α) <

K(p,α), hence acquiring information is worse than dropping out atmin(p, V (α)).
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We show next that if p < p∗∗(α), bidder 1 would rather acquire informa-

tion at p+ ε than at p.

When bidder 1 acquires information at p+ ε (rather than p), bidder 1�s

expected payoff is unchanged when the other bidder (say 2)�s valuation is

above p+ε. In the event where {θ2 ∈ (p, p+ε)}, bidder 1 obtains the object
at a price at most equal to p+ ε. Hence her expected payoff, conditional on

this event, is at least equal to

V (α)− p− ε.

When she acquires at p, then conditional on that same event, she obtains

an expected payoff at most equal to

E(max(p, eθ1)− p− c | α) = G(p,α)− p+ V (α)− c.

When p < p∗∗(α), G(p,α) − c < 0, and since ε can be chosen very small,

bidder 1 strictly prefers to acquire information at p+ ε.

By a similar argument, one shows that if it is optimal for bidder 1 to

acquire information at some p0 > p∗∗(α), then it is optimal for bidder 1 to

acquire information at any p ∈ [p∗∗(α), p0].
To conclude, we show that if p = p∗(α), it is optimal for bidder 1 to

acquire information. If bidder 1 does not acquire information at p, then

(by (a)) it will never be optimal for bidder 1 to acquire information. So

it is optimal for bidder 1 to drop out at min{p, V (α)}, which gives her an
expected payoff equal to K(p,α). Since by deÞnition of p∗(α), K(p,α) =

H(p,α), it is also optimal for bidder 1 to acquire information.

3.2 Comparison with the second price auction

In what follows we make efficiency and revenue comparisons between the

ascending price and the second price auction. We start by characterizing

equilibrium behavior in the second price auction.

15



It will be convenient to denote by θ(1) (respectively θ(2)) the largest

(respectively second largest) valuation among bidders other than bidder 1,

and by eθ(1)
and eθ(2)

the corresponding random variables. Let α be bidder

1�s initial private information. Bidder 1�s expected payoff if she acquires

information on θ1 is:

E(max(eθ1, eθ(1)
)− eθ(1) | α)− c (6)

If she does not acquire information, her expected payoff is:

E(max(V (α), eθ(1)
)− eθ(1)

)) (7)

Bidder 1 with type α acquires information on θ1 whenever (6) is larger

than (7), and she does not otherwise.

Revenue.

Our main result here is to show that when the number of bidders is above

a threshold, the ascending price auction generates more revenues than the

second price auction.

The Þrst point to be noted is that the decision whether or not to acquire

information on θ1 depends on how likely bidder 1 believes ex ante that θ1

will be larger than θ(1). When there are sufficiently many bidders n, this

probability is sufficiently low (whatever α and c > 0), and therefore bidder

1 does not acquire information in the sealed-bid format (because the cost c

is borne whatever the realization).

In contrast, in the ascending price auction format, the total number

n of bidders is irrelevant for bidder 1�s decision whether or not to acquire

information on θ1 (see the expressions for p∗(α) and p∗∗(α)). This is because

bidder 1 can always (costlessly) wait till there are two bidders left, and then

decide whether or not to acquire the information. As a result, for c not too

large, bidder 1 will sometimes acquire information, even when the number

of bidders is large.
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Now assume that the number of bidders is large so that bidder 1 does

not acquire information in the sealed-bid format. In any event where bidder

1 does not acquire information in the ascending price auction, allocation

and revenues are independent of the auction format. We will show next

that under the event where bidder 1 acquires information in the ascending

price auction, and if the number of bidders is large, revenues are lower in

the second price auction.

In what follows, we choose c small enough so that

p∗(α) > V (α)

for all α ∈ [α, ᾱ].10 Let R(x, y, z) = min(max(x, y), z), and let Aα denote

the event where bidder 1 has private information α and acquires information

in the ascending price auction:

Aα = {α, eθ(1) ≥ p∗∗(α), eθ(2) ≤ p∗(α)}

It will also be convenient to consider the following two events:

Bα = {eθ(2) ≥ V (α)} and Cα,a = {eθ1 ≥ p∗(α) + a, eθ(1) ≥ p∗(α) + a}

Note that under Aα ∩ Cα,a, bidder 1 acquires information and the revenue
is at least equal to p∗(α) + a, hence it exceeds eθ(2)

by at least a. In what

follows we choose a > 0 such that p∗(α) + a < θ̄.11

In the second price auction, under the event Aα, expected revenue is

equal to

Rsecondα ≡ E
·
R(V (α), eθ(1)

, eθ(2)
)

¯̄̄̄
Aα

¸
.

In the ascending price auction, under the event Aα, expected revenue is

equal to

Rascendingα ≡ E
·
R(eθ1, eθ(1)

, eθ(2)
)

¯̄̄̄
Aα

¸
.

10Note that this condition implies that p∗∗(α) < V (α) < p∗(α), by Lemma 1.
11This is possible thanks to Lemma 1.
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Under Aα, the event Bα has a probability close to 1 when n is large. In what

follows, we Þx ε > 0 and choose n large enough so that Pr{Bα|Aα} ≥ 1−ε.
Since R(V (α), eθ(1)

, eθ(2)
) = eθ(2)

under Bα, and R(V (α), eθ(1)
, eθ(2)

) = V (α)

under the complement event, we obtain:

Rsecondα = Pr{Bα|Aα}E
·eθ(2)

¯̄̄̄
Bα, Aα

¸
+(1−Pr{Bα|Aα}V (α) ≤ E

·eθ(2)
¯̄̄̄
Bα, Aα

¸
We also obtain:

Rascendingα ≥ (1− ε)E
·
R(eθ1, eθ(1)

, eθ(2)
)

¯̄̄̄
Bα, Aα

¸
+ εθ

Under the event Cα,a, R(eθ1, eθ(1)
, eθ(2)

) exceeds eθ(2)
by at least a. And since

R(x, eθ(1)
, eθ(2)

) is no smaller than eθ(2)
for all x, we get:

Rascendingα ≥ Pr{Cα,a|Bα, Aα}a+E
·eθ(2)

¯̄̄̄
Bα, Aα

¸
− ε(θ̄ − θ)

Since a is Þxed, since the term Pr{Cα,a|Bα, Aα} does not vanish with n (it
actually increases with n), and since ε can be chosen arbitrarily small, the

revenue Rascendingα is strictly larger than Rsecondα . Thus we have proved:

Proposition 1 Choose c small enough so that p∗(α) > V (α) for all α ∈
[α, ᾱ]. Then there exists n such that if the number of bidders n is larger

than n, the revenue from the ascending price auction exceeds that obtained

from the second price auction.

Efficiency.

We have made revenue comparisons between the ascending and the

sealed-bid formats. Another question of interest is how the two formats

compare on efficiency grounds. In what follows, welfare is measured by the

valuation of the winner minus the information acquisition cost if bidder 1

has acquired information.
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A very nice implication of the private value setting is that the private

incentives of bidder 1 coincide with the social incentives both in the second

price sealed-bid auction and in the ascending price auction. However, the

decision is not made with the same information in the two formats. Since

there is more information available to bidder 1 (about θi, i = 2, ...n) in the

ascending price format when she has to make her decision (she knows that

θ(1) lies above the current price p and that θ(2) lies below the current price

p), it follows that the expected welfare is higher in the ascending format

than it is in the sealed-bid format (A formal proof is given next).

Proposition 2 Expected welfare is higher in the ascending price auction

than it is in the sealed-bid second price auction.

Proof. First note that in equilibrium, when she wins the object, bidder 1

pays θ(1) for the object, whether she has acquired information or not, and

whether the format is the ascending price or the second price auction. When

bidder 1 has acquired information, bidder 1�s gain (under the realizations

α, θ(1)) is equal to

E[max(eθ1, θ
(1))− θ(1) − c | α]

and when bidder 1 has not acquired information, bidder 1�s expected gain

(under the realizations α, θ(1)) is equal to

E[max(V (α), θ(1))− θ(1) | α].

It follows that, for any realization α, and for which ever format (ascending or

second price), the induced expected welfareW format
α and bidder 1�s expected

payoff Gformatα satisfy

Gformatα =W format
α −E[eθ(1)

] (8)

Since in the ascending price auction, bidder 1 has the option to either acquire

information immediately or to never acquire information, and since this
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option precisely corresponds to that available in the second price auction,

we have

Gsecond priceα ≤ Gascendingα ,

which, given (8), concludes the proof.

It is interesting to assess Proposition 2 in the light of the literature

on information acquisition in mechanism design (see Stegeman 1996 and

Bergemann-Valimaki 2000). The view there is that in a private value set-

ting (like the one considered here), the Vickrey auction (or second price

auction here) guarantees both ex ante (at the information acquisition stage)

and ex post (given the information of agents) efficiency (see Theorem 1 in

Bergemann-Valimaki). However, in our setting the Vickrey auction is not

the best mechanism from the viewpoint of efficiency: the ascending price

auction induces an expected welfare strictly higher than that induced by

the (static) Vickrey auction.

To summarize, in a private value setting, the Vickey auction is optimal in

the class of direct truthful mechanisms in which bidders get no information

about the private information held by other bidders. But mechanisms like

the ascending price auction - because they allow for a better information

transmission about the information held by others - appears to outperform

the Vickrey mechanism, at least when only one bidder may acquire informa-

tion. The analysis of the optimal unconstrained mechanism (in which any

kind of information transmission is allowed) is left for future research.

4 Discussion

We have assumed so far that (i) when bidder 1 decides to acquire infor-

mation, she instantaneously learns her valuation and (ii) only bidder 1 is

imperfectly informed about his valuation. These assumptions may seem un-

20



realistic and the purpose of this Section is to discuss the case where it takes

time for bidder 1 to acquire information about her valuation, as well as a

case where several bidders may reÞne their valuation.

Delayed information acquisition.

We start with the case where it takes time for bidder 1 to acquire infor-

mation and for the sake of illustration, we will assume that when bidder 1

decides to acquire information at t, she learns her valuation at t+ T0.

In the ascending price auction, bidder 1 still has the option of waiting

till there is one other bidder left and then acquiring information abour her

valuation. However, this is no longer such a great option (at least when T0

is not too small) because bidder 1 faces the additional risk of learning her

valuation too late to avoid buying the good at a price above her valuation.

A slight modiÞcation of the ascending format will permit though to ob-

tain conclusions similar to the ones obtained previously, thus showing the

superiority of dynamic mechanisms over static ones even in this modiÞed

formulation of information acquisition.

SpeciÞcally, consider the following modiÞcation of the ascending price

auction. The price starts at a low level, say 0, at which each bidder is

present. The price gradually increases (say by ∆ per unit of time). Each

bidder may decide to quit at every moment. Bidder 1 may also decide to ac-

quire information at every moment. When a bidder quits, this is commonly

observed by every bidder. As soon as there are 2 bidders left, the auction

stops for T units of time, and then resumes. The auction stops for good

when there is only one bidder left. The object is allocated to that bidder at

the current price.

If one choose T ≥ T0, then the modiÞed ascending auction in effect allows

bidder 1 to acquire information and learn her type as soon as there are two

bidders left. In the modiÞed ascending auction, the strategies described
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in Theorem 1 are still in equilibrium, and they yield the same outcome as

the one that would prevail in the ascending price auction with immediate

learning. Welfare and revenue comparisons with the second price auction

are therefore unchanged.

Our analysis thus provides a rationale for designing auctions with mul-

tiple stages.

Several poorly informed bidders

The case where several bidders are poorly informed and may devote

resources to acquire information requires extensive further research. A key

feature of our analysis is that the poorly informed bidder remains active

above her expected valuation. We wish to point out here that this conclusion

will carry over to the more general case where several bidders may decide

to acquire information.

For the sake of illustration, assume that there are now two poorly in-

formed bidders, say bidder 1 and 2, that they are ex ante symmetric and

that the signals initially received by bidders 1 and 2, e.g. α1 and α2, are

uninformative. In what follows we let V denote bidder 1 and 2�s common

expected valuation. We have shown that if bidder 2 were informed, it would

be optimal for bidder 1 to wait until there are only two bidders left to acquire

information, and otherwise to drop out at some price p∗.

When bidder 2 is poorly informed however, it may no longer be a good

strategy to wait until p∗ to drop out: if the poorly informed bidder 2 follows

that same strategy, both bidders 1 and 2 may end up being the two remaining

bidders and learning that their valuation is low, hence wanting to drop out

at the same price, and thereby getting the object at a loss with substantial

probability.

Nevertheless, as long as the current price p does not exceed V by a too

large amount, this loss will be small, and if the information acquisition cost
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is not too large, poorly informed bidders will still derive a positive expected

proÞt from staying in above V : staying in until the price reaches p∗ will no

longer be optimal, but staying in until the price recahes some intermediate

level bp ∈ (V, p∗) will.
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