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This paper provides a learning justification for limited forecast equilibria, i.e.,
Ž .strategy profiles such that 1 players choose their actions in order to maximize the

discounted average payoff over their horizon of foresight as given by their forecasts
Ž .and 2 forecasts are correct on and off the equilibrium path. The limited forecast

equilibria appear to be the stochastically stable outcomes of a simple learning
Ž .process involving vanishing trembles. Journal of Economic Literature Classifica-

tion Numbers: C72, D83. Q 1998 Academic Press

1. INTRODUCTION

Several approaches to bounded rationality in repeated games have been
considered so far. A first approach is concerned with the complexity of the

Žstrategies used by the players Neyman, 1985; Rubinstein, 1986; Kalai and
.Stanford, 1988 , and some authors suggest including complexity concerns

Žin the objective of the players Rubinstein, 1986; Abreu and Rubinstein,
.1988 . Another approach restricts the attention to strategies with bounded
Ž .recall for example, Lehrer, 1988 , or combines complexity ideas with

Ž .bounded recall ideas Kalai and Stanford, 1988 . Finally, some of the
Ž .learning or the evolutionary game literature assumes that the players are

Žmyopic even though they act in a long-run environment for example,
.Jordan, 1991 .

Ž .Jehiel 1995 considers an alternative approach to bounded rationality´
taking the view that when the horizon is too long individuals are unlikely
to be able to correctly forecast the entire future. Individuals are assumed
to form predictions about what will happen in a limited horizon future.
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They subsequently make their decisions on the basis of their limited
Ž .horizon forecast. Specifically, Jehiel 1995 considers two-player repeated´

alternate-move games with arbitrary finite action spaces A , i s 1, 2. Eachi
Ž .player i s 1, 2 repeatedly makes his choice of current action in A on thei

basis of his limited n length-forecasts.1 The limited forecast equilibrium isi
Ž .referred to as n , n -solution and defined as a strategy profile such that1 2

Ž .1 players choose their actions so as to maximize the discounted average
Ž .payoff over their horizon of foresight and 2 the limited horizon forecasts

formed by the players are correct on and off the equilibrium path. It can
Ž .be shown that there always exists at least one n , n -solution and that the1 2

Ž .period t limited horizon forecasts of any n , n -solution repeat cyclically1 2
as the time period t varies. The length of a cycle induced by any
Ž .n , n -solution can be bounded by K, where K depends on the lengths of1 2

Žforesight n and the cardinality of the action spaces A only see Jehiel,´i i
.1995 .

The objective of this paper is to provide a learning justification for the
correctness of equilibrium forecasts on and off the equilibrium path. We

Ž .follow Kalai and Lehrer 1993a in that the learning process takes place
within the play of the game. Initially each player i has a belief over several
possible forecasting rules, which are sequences of n -length forecasts onei
for each period where this player must move. At each period the player

Ž .who must move either 1 selects an action based on his belief so as to
Ž .maximize the discounted average payoff over the next n periods or 2i

trembles with a small probability, and may choose any action with positive
Ž .probability see Selten, 1975 . Player i subsequently observes the played

actions in the past periods, gathers them into n -length streams of actions,i
and compares the latter with the predictions associated with each of the
possible forecasting rules, which in turn allows him to update his belief.
Specifically, when the prediction of a forecasting rule does not coincide
with the observation, then some tremble must have occurred to explain the
observation with that forecasting rule. Such a forecasting rule becomes a
little less plausible relative to those forecasting rules whose prediction fits
with the observation. Besides, we assume that each player restricts himself

Ž . Žto a limited though arbitrarily large number of plausibility levels to be
.defined below . Also, when the player cannot discriminate which forecast-

ing rule is the most plausible one, we assume that with positive probability
he may change his state of belief resulting in a possibly new most plausible
forecasting rule. Finally, we assume that the supports of initial beliefs of
the players are finite and contain all cyclical forecasting rules with a length
of cycle less than or equal to K, which ensures that the forecasting rule of

1 Rational and myopic behavior correspond to an infinite and zero length of foresight,
respectively.
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Ž .at least one n , n -solution is contained in the initial support of each1 2
player.2

The main result of this paper is that, as the probability of trembling
converges to zero, the players eventually play almost surely as in a
Ž .n , n -solution. In other words, the stochastically stable outcomes of the1 2

Ž .process defined by the above learning story coincide with the n , n -1 2
solutions.

To the best of our knowledge, this is the first attempt to justify a
bounded rationality solution concept as a result of a two-player-learning
process where the learning takes place during the play of the game. This

Ž .should be contrasted, for example, with Binmore and Samuelson 1992 ,
Ž .who apply evolutionary ideas population learning to the finite automaton

Žframework and obtain results that differ from the solution concept pro-
.posed by Rubinstein, 1986, and Abreu and Rubinstein, 1988 .

Technically, the analysis borrows from the pioneering work of Foster
Ž .and Young 1990 which was further developed and applied by Kandori

Ž . Ž . Ž .et al. 1993 , Young 1993a, b , Fudenberg and Harris 1992 , Noldeke and¨
Ž . Ž . ŽSamuelson 1993 , Kandori and Rob 1995 , and others see Kandori, 1996,
.for a survey . Those works were primarily applied to evolutionary contexts,

and the noisy character of the process was interpreted as a probability of
mutation rather than a probability of tremble. It turns out that similar
techniques can be applied to our framework too. Intuitively, the stochasti-
cally stable outcomes correspond to the absorbing sets of the process
without trembles which are hardest to destabilize, i.e., from which it is
hardest to get out. In our framework, the absorbing sets of the process

Ž .without trembles correspond to the self-confirming n , n -solutions, i.e.,1 2
strategy profiles such that the associated n -length forecasts are correcti

Žonly on the equilibrium path see Fudenberg and Levine, 1993, and Kalai
and Lehrer, 1993b, for a similar concept in a framework with perfect

. Ž .rationality . We next observe that destabilizing a n , n -solution requires1 2
several non-isolated trembles, whereas isolated trembles are enough to

Ž . Ž Ž .destabilize a self-confirming n , n -solution that is not a n , n , solu-1 2 1 2
.tion . Since the former type of events is much more likely than the latter, it

follows that, in the limit as the probability of trembling converges to zero,
Ž .a n , n -solution is eventually played with probability 1.1 2
In Section 2 the model is described. The solution concept is defined in

Section 3. Sections 4 and 5, respectively, present and analyze the learning

2 It should be noted that in general there will be forecasting rules in the support of the
players’ belief such that the forecast at some period is inconsistent with the forecast at a later
period. That is, the consistency attached to the infinite horizon of the game is not required at
the individual level.
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process. A discussion follows in Section 6. Section 7 concludes. All proofs
are gathered in the Appendix.

2. THE MODEL

We consider discounted repeated alternate-mö e games with two players
i s 1, 2. Player i chooses actions a from a finite action space A . Playersi i
act in discrete time, and the horizon is infinite. Periods are indexed by t
Ž .t s 1, 2, 3, . . . . At time t, player i’s single period payoff is a function of
the current actions at of the two players i s 1, 2, but not of time:i

Ž t t .u s u a , a . Players move sequentially and player 1 moves first. At eachi i 1 2
Ž .odd period t s 2k y 1 t s 1, 3, 5, . . . , player 1 chooses an action that

remains the same for the two periods t and t q 1: a2 k s a2 ky1 for all k.1 1
Ž .Similarly, player 2 moves at each even period t s 2k t s 2, 4, 6, . . . and

a2 kq1 s a2 k. Each player i s 1, 2 discounts the future. The discount factor2 2
of player i is denoted by d .i

� t 4̀ � 2 ky1 2 k 4̀ 2 ky1A stream of action profiles q s q , q , where q g Ai ts1 1 2 ks1 1 1
and q2 k g A is referred to as a path and is denoted by Q. Since players2 2
may only change actions every other period, a move at period t affects

2 k Žpayoffs both at periods t and t q 1. In path Q, each action q resp.2
2 kq1. Ž .q of player 2 resp. 1 is thus combined both with the previous action1
2 ky1 Ž 2 k . 2 kq1 Ž 2 kq2 . Žq resp. q and the next action q resp. q of player 1 resp.1 2 1 2
.2 : At periods 2k and 2k q 1, the current payoffs to player i induced by

Ž 2 ky1 2 k . Ž 2 kq1 2 k . 3path Q are u q , q and u q , q , respectively. We first intro-i 1 2 i 1 2
duce some preliminary and standard notation.

Ž .Notation. 1 Let R denote an arbitrary n-length stream of alternaten
Ž .actions. n R denotes the discounted sum of the per period payoffs toi n

player i induced by R where each action of R is combined both with then n
Ž . Ž .previous except for the first one and the next except for the last one

Ž .action of R . For example the 4-length stream R s a , a , b , b , wheren 4 1 2 1 2
Ž . Ž . Ž . Ž .a , b g A induces: n R s n a a b b s u a , a q d u b , a qi i i i 4 i 1 2 1 2 i 1 2 i i 1 2

Ž .2 Ž .d u b , b .i i 1 2

Ž . w x � t 4̀2 Q denotes the truncation of path, Q s q , to the first nn i ts1
w x � t4n w xtY � t4 ts tY

X Xactions, i.e., Q s q , and Q s q is the associated stream ofn i ts1 t i tst
actions from period tX to period tY.

Ž . Ž X. � t4 tY X
X3 q, q denotes the concatenation of q s q with q si tst

� t4 tZ Ž X. � t4 tZ

Y Xq : q, q s q .i tst q1 i tst

3 Single period payoffs start at period 2.
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3. THE LIMITED FORECAST EQUILIBRIUM

Players are assumed to make limited predictions about the forthcoming
moves after their own move. Player i only considers the forthcoming ni
moves after his own move, and subsequently makes his choice of current

Ž .action on the sole basis of his predictions. Jehiel 1995 introduces a´
solution concept along this line where the predictions made by the players
may depend on the past N actions together with the currently played
action and the time period. The dependence on the past N actions can be

Žshown to play no role as far as the set of solutions is concerned Jehiel,´
. Ž .1995 , and the analysis of the learning process see below could trivially be

extended to that case. For notational convenience, we will therefore
assume that the limited predictions formed by player i depend only on the
action to be currently chosen by this player and the time period. We now
introduce some definitions and notation.

Definitions and Notation

Ž . Ž .1 A n -length pure prediction for player i is a stream of alternatei
Ž .actions of length n starting with an action in A j / i . The set ofi j

Ž .ni r2n -length predictions is denoted by P , where P s A = A if n isi n n j i ii i

Ž .Žniy1 .r2even and P s A = A = A if n is odd.n j i j ii

Ž .2 A n -length forecast for player i at a period t where this playeri
must move is denoted by f t. It maps the set of actions A to be currentlyi i
chosen into the set of predictions P . Formally, f t: A ª P wheren i i ni itŽ .f a g P is the prediction about the forthcoming n actions made byi i n ii

player i at period t if he currently chooses a .i
Ž . � t4 t3 f s f is a forecasting rule. It is a sequence of forecasts fi i t i

one for each period t where player i must move. The set of f is denotedi
Ž .FF . A forecasting rule profile f , f g FF = FF is denoted by f , and thei 1 2 1 2

set of f is denoted FF.
Ž .4 A pure strategy for player i is denoted by s . It is a sequence ofi

functions s t, one for each period t where player i must move. Thei
function at period t, s t, is the behavior strategy of player i at that period.i
It determines player i’s action at period t as a function of the last action
played by j. Formally, s t: A ª A .4 The set of player i’s strategies isi j i

Ž .denoted by S . A strategy profile s , s is denoted by s , and the set ofi 1 2
strategy protiles S = S is denoted S.1 2

4 s t may only depend on the last action because forecasts are assumed to be history-inde-i
pendent. Observe that the period 1 behavior strategy does not depend on the previous action
since there is no such action, and therefore s 1 g A .1 1
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Ž .Any strategy profile s g S generates a path denoted by Q s s
� tŽ .4 Ž . Ž . tq s , i s 1 resp. 2 if t is odd resp. even . Let HH denote the set ofi t
histories of alternate actions of length t. Let h be an arbitrary history of
length t y 1, i.e., h g HH ty1. The strategy profile and the path induced by s

< Ž < .on the subgame following h are denoted by s and Q s , respectively.h h

Given h g HH ty1 and the action a g A at period t, the continuation pathi i
Ž . Ž < .induced by s after h, a is thus Q s .hai i

The limited forecast solution concept requires two conditions. First,
players use the discounted average per period payoff over the length of
foresight as their criterion to select current actions:

DEFINITION 1. A strategy s g S is justified by the forecasting rulei i
� t4f s f g FF ifi i t i

; t , ;a g A s t a g Arg max n a a f t a ,Ž . Ž .Ž .j j i j i j i i i
ai

where a stands for the period t y 1 action of player j, j / i.j

Throughout the paper we will consider generic values of the payoffs in
the sense that for i s 1, 2 there is no a g A , a g A , aX / a g A ,j j i i i i i

X Ž . Ž X X.p g P , p / p g P such that n a a p s n a a p . Thus, in Defini-i n i i n i j i i i j i ii i

Ž tŽ .. tŽ .tion 1, Arg max n a a f a is a singleton, and s a sa i j i i i i ji
Ž tŽ ..Arg max n a a f a .a i j i i ii

The second requirement is that players’ equilibrium forecasts are re-
lated to equilibrium strategies by a consistency relationship, where consis-
tency means that forecasts are correct on and off the equilibrium path,

Ž . tŽ .i.e., for every h, a the period t forecast if player i chooses a , f a ,i i i i
coincides with the truncation to the first n actions of the continuationi

w Ž < .xpath induced by s , Q s .ha ni i

� t4DEFINITION 2. f s f g FF is consistent with s g S if for everyi i t i
ty1 tŽ .period t where player i must move: ;a g A , ;h g HH , f a si i i i

w Ž < .xQ s .ha ni i

Ž .To summarize, a n , n -solution is a strategy profile that can be1 2
justified by consistent forecasting rules for players 1 and 2:

Ž . Ž .DEFINITION 3 The Solution Concept . A strategy profile s s s , s1 2
Ž .g S is a n , n -solution if and only if there exists a forecasting rule1 2
Ž .profile f s f , f g FF such that, for i s 1, 2,1 2

Ž .1 s is justified by fi i

Ž .2 f is consistent with s .i
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The forecasting rule profile f appearing in Definition 3 is uniquely
defined given the strategy profile s ; we say that f is associated with s .

Ž . Ž .The properties of n , n -solutions are analyzed in Jehiel 1995 . In´1 2
Ž .particular, it is shown that n , n -solutions always exist and can be1 2

constructed backwards. Moreover, the forecasting rule f associated with ai
Ž . 5 tŽ . tqkŽ .n , n -solution is cyclical, e.g., 'k s.t. ; t, f ? s f ? . The minimal k1 2 i i
such that the latter property holds for the equilibrium forecasting rules of
both players is referred to as the length of the cycle induced by the
Ž .n , n -solution. It can be shown that the length of the cycle of any1 2
Ž . Ž .n , n -solution is no greater than an upper bound K n , n which1 2 1 2

Ždepends only on the lengths of foresight n and the cardinality of thei
< <. 6action spaces A .i

The consistency requirement introduced in Definition 2 assumes that
forecasts are correct on and off the equilibrium path. For the analysis of
the learning process it will be convenient to introduce an alternative
Ž . Ž .weaker notion of consistency termed subjectï e consistency for which
forecasts are correct on the equilibrium path but not necessarily off the

Žequilibrium path see Fudenberg and Levine, 1993, and Kalai and Lehrer,
.1993b . The weaker notion of consistency leads in turn to a weaker

Ž .solution concept that we call self-confirming n , n -solution. Formally,1 2

Ž . � t4DEFINITION 4 Subjective Consistency . f s f g FF is subjectï elyi i t i
consistent with s g S if, for every period t where player i must move,
Ž . w Ž .x tŽ . w Ž < .xh, a s Q s « f a s Q s ha .i t i i i n i

Ž .DEFINITION 5 Self-Confirming Limited Forecast Equilibrium . A strat-
Ž . Ž .egy profile s s s , s g S is a self-confirming n , n -solution if and1 2 1 2

Ž .only if there exists a forecasting rule profile f s f , f g FF such that, for1 2
i s 1, 2,

Ž .1 s is justified by fi i

Ž .2 f is subjectï ely consistent with s .i

Finally, for the following analysis it will be convenient to introduce the
tŽ t.following notation: Q f ; a will denote the stream of actions from periodi

t on induced by the period t action at and the forecasting rule profilei
Ž .f s f , f , where each player i selects in time the action that maximizes1 2

the discounted average payoff over the forthcoming n periods as given byi
7 U Ž . 1Ž 1.his forecasting rule f . Q f will denote the set of all paths Q f ; ai 1

Ž .generated by the forecasting rule profile f s f , f with arbitrary first1 2
period actions a1.1

5 Ž .Jehiel 1995 considers the case where there is no discounting. However, the mentioned´
properties trivially extend to the case with discounting.

6 Ž . Ž Ž < < < <.Ma xŽn1, n2.q1 Ž .Specifically, K n , n s Max A , A ; see Jehiel 1995 .´1 2 1 2
7 This path is uniquely defined because of the genericity assumption.
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4. LEARNING AND LIMITED FORECASTING

The objective of this paper is to provide a justification for why forecasts
should be correct as a result of learning. The basic view is that each player
i restricts his endeavor to trying to understand what the forthcoming ni
moves will be as a function of his current action. To this end, he forms a
belief over forecasting rules where forecasting rules specify how to make
n -length predictions in the dynamic environment of the game. At eachi

Ž .period the player who must move either 1 selects an action based on his
Ž .belief or 2 trembles, i.e., makes a mistake. The mistakes occur with a

small probability, and the player may then choose any action with positive
probability. When he does not tremble, player i selects an action which
maximizes the discounted average payoff over the next n periods accord-i

Ž .ing to his belief. The selection is typically based on that or those
forecasting rule which is currently the most plausible one. Player i subse-
quently observes the played actions in the past periods. As soon as a new
n -length prediction can be compared with a realized stream of actions,i
player i asks himself, for each possible forecasting rule f he may consider,i
whether the prediction associated with f is compatible with the observa-i
tion or whether some mistake is required to explain the observation with
f .8 A forecasting rule whose prediction does not fit with the observationi
becomes a little less plausible relative to a forecasting rule whose predic-
tion fits with the observation. Also, each player i is assumed to restrict

Ž .himself to a finite number of plausibility levels to be defined below , and
when there are several forecasting rules that are candidates for being the
most plausible one, the player may change his state of belief with positive
probability resulting in a possibly new most plausible forecasting rule.

The main result of the paper is that provided the support of the players’
initial belief is finite and contains all forecasting rules which have a cycle

Ž . Žof length no greater than K, where K ) K n , n so that the forecasting1 2
Ž .rules of n , n -solutions belong to the supports of initial beliefs, see the1 2

.end of Section 3 , we are sure that, as the probability of making a mistake
Ž .goes to zero, a n , n -solution is eventually played with probability 1.1 2

Before we describe the learning process, we wish to point out that the
above learning story does not require a great sophistication on the part of
the players. First, even though the set of all forecasting rules is quite large,
the support of player i’s initial belief is not required to contain infinitely
many of these.9 Specifically, it is required to be finite and contain all
cyclical forecasting rules of length no greater than K. The finiteness of the

8 ŽThe underlying idea is that when player i looks at the previously played actions including
.his own actions he does not know whether those result from trembling or not.

9 Ž .This should be contrasted with Kalai and Lehrer 1993a , who cannot a priori assume the
Ž .initial supports of the players to be finite; see also Nachbar 1997 .
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support of player i’s belief seems a desirable assumption given that a
boundedly rational player may not be able to keep track of the plausibility
of infinitely many forecasting rules. Also, because cyclical forecasting rules
of length no greater than K have a simple structure, they are more likely
to be considered in the support of belief of the players.

ŽSecond, it should be noted that some forecasting rules including cyclical
.ones are such that the n -length forecast of one period is not consistenti

with that of a future period.10 Each player i is allowed to assign positive
weight to such forecasting rules which are dynamically inconsistent, and
therefore we impose no restriction on the dynamic consistency of the
forecasting rules to be considered by the players. It turns out, however,
that inconsistent forecasting rules will eventually appear to be less plausi-
ble as a result of learning because they are less compatible with the
observations. Further comments about the learning process will be pre-
sented in Section 6.

4.1. The Learning Process

The Mistakes

At each period where he must move, player i may tremble with probabil-
Ž .ity « where « should be thought of as being small . The trembles at each

Žperiod are independent from each other and stationary i.e., independent
.of the history of plays . When he trembles, player i may choose any action

Ž .a g A with a positive probability assumed to be independent of « . Fori i
example, each action a g A may then be played with the same probabil-i i

< <ity 1r A . It should be pointed out, however, that the choice of a specifici
distribution is immaterial for the asymptotic results to be described below
as long as every action is played with a strictly positive probability.

State of Belief and Forecasting Rules

Each player i has a belief over a finite support of forecasting rules
denoted by F , where F is assumed to include the set of all cyclicali i

Ž . Žforecasting rules with a cycle length no greater than K, K ) K n , n see1 2
.above . For simplicity, we will present the argument for the case where the

support F consists only of cyclical forecasting rules, i.e., ; f g F , 'k, s.t.i i i
tqkŽ . tŽ .. Ž .; t, f ? s f ? , but we do not require the cycle of f g F i.e., k to bei i i i

Žnecessarily smaller than K. The analysis could easily be extended to the
case where F contains also forecasting rules that are cyclical only afteri

.some time period. The state of belief of player i is meant to represent the

10 tŽ . tq1 tq2 tq3 tq2Ž tq2 . X tq3 tq4 tq5For example, if n s 3, f a s a a a and f a s a a a withi i i j i j i i j i j
atq3 / aX tq3.j j
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plausibility of every forecasting rule f g F based on past observations.i i
We assume that player i restricts himself to k levels of plausibility wherei
k is assumed to be sufficiently large, i.e., no smaller than n q 1. Forecast-i i
ing rules which belong to level 1 are the most plausible ones, those in level
2 are the second most plausible ones, and so on till level k , which containsi
the least plausible forecasting rules. A state of belief for player i is
denoted by s . It maps the support of forecasting rules F into the seti i
� 4 � 4 Ž .1, . . . , k . Formally, s : F ª 1, . . . , k , where s f is the plausibilityi i i i i i

Ž . � Ž . 4level of forecasting rule f . We denote by S k s f g F rs f s k , andi i i i i i
Ž .by SS the set of all states of beliefs s such that S 1 has cardinality 1, i.e.,i i i

for which there is one and only one most plausible forecasting rule.

Beha¨ior and State of Belief

When player i does not tremble at period t his choice of action is
Ždetermined by his current or most recently formed, see below the timing

. ty1of updating state of belief s and the action a played by player j ati j
period t y 1. The state of belief s to be considered by player i will alwaysi

Ž . Ž .be such that S 1 has cardinality 1 see the discussion section below , andi
therefore s g SS . We let f U denote the most plausible forecasting rulei i i

Ž .according to s , i.e., the only forecasting rule f g F such that s f s 1.i i i i i
When he does not tremble, player i selects an action at so as to maximizei
the discounted average payoff over his horizon of forecast as given by his
currently most plausible forecasting rule f U. That is, he selectsi

at s Arg max n aty1a f U t aŽ .ž /i i j i i i
a gAi i

Ž .which is uniquely defined given the genericity assumption .

Updating the State of Belief

A the end of period t q n , where period t is a period where player ii
has moved, player i may check his period t forecast for every forecasting
rule f g F . A new state of belief can then be formed. Let s ty2 denote thei i i

Žstate of belief of player i that prevails immediately before period t q n iti
.has thus been formed in period t q n y 2 . Let a be the action played ati i

w xtqniperiod t, and let h be the stream of actions played from period t q 1tq1
to period t q n . Player i’s new state of belief is denoted by s t. It isi i

tŽ .updated by comparing the prediction f a of every forecasting rulei i
w xtqnif g F with the realized n -length stream h . Specifically, the new statei i i tq1

t tof belief s is derived from the function s defined byi i

tqnty2 t iw xs f if f a s hŽ . Ž . tq1i i i its f sŽ .i i tqnty2 t i½ w xs f q 1 if f a / hŽ . Ž . tq1i i i i
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Ž . tit adds one increment if the prediction is incorrect . The state of belief si
t tis determined on the basis of s , but s is required to be an element of SSi i i

so that some transformation is required. We let f U denote the mosti
ty2 ty2Ž U .plausible forecasting rule according to s g SS , i.e., s f s 1. Wei i i i

note that

U tf g Arg Min s f .Ž .i i i
f gFi i

U UtŽ Ž ..Case 1 f Is the Only Forecasting Rule Minimizing s ? . Then fi i i
t tŽ . Ž Ž .remains the most plausible forecasting rule, and s f s Min 1 q s f yi i i i

U UtŽ . .s f , k for all f g F . In other words, when f yields a correcti i i i i i
prediction, the plausibility level of f g F increases by one increment ifi i
the maximum level k has not been reached yet and the prediction of f isi
incorrect; it remains the same otherwise. When f U yields an incorrecti
prediction, the plausibility level of f g F decreases by one increment ifi i
the prediction of f is correct, and remains the same otherwise.i

tŽ Ž ..Case 2 There Are Se¨eral Forecasting Rules Minimizing s ? . Theni
player i’s state of belief switches to some new state of belief s t g SSi i
according to some distribution assumed to assign positive weight to every
state of belief s g SS . Note that the distribution from which s t is drawni i i

tmay in general depend on the function s . For example, with probabilityi
1 y « X the new most plausible forecasting rule may be one of the forecast-
ing rules

UU UUt tf g Arg Min s f i.e., s f s 1 ,Ž . Ž .Ž .i i i i i
f gFi i

the plausibility level of other forecasting rules being updated accordingly,
UUt t t tŽ . Ž . Ž . Ž Ž .i.e., s f s 2 if f g Arg Min s ? and f / f ; s f s Min 1 q s fi i i i i i i i i i

XUt tŽ . .y s f , k otherwise. With probability « any state of belief s g SS isi i i i i
equally likely to arise.

Initialization

The above elements of the learning process implicitly define a stochastic
Ž .process. A global current state in this stochastic process is denoted by g ;

Ž . Ž .it consists of 1 a pair of current state of belief s for each player i s 1, 2i
Ž . Ž . Ž . Žand 2 a stream of Max n , n q 2 or more alternate actions standing1 2

.for the last played actions . The set of states g is finite. It is denoted by G.
The transition from state to state occurs every other period. The process is

Žinitialized by considering some arbitrary initial global state. The particular
.choice of an initial state plays no role in the analysis.
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Ž .5. LEARNING TO PLAY n , n -SOLUTIONS1 2

Two classes of states in G will play a special role in the analysis. The
Ž . Ž .class of n , n -solution states, and the class of self-confirming n , n -1 2 1 2

solution states which are defined by:

Ž . ŽDEFINITION 6. A state g g G is a n , n -solution state resp. self-con-1 2
Ž . .firming n , n -solution state if there exists a forecasting rule profile1 2

Ž . Ž . Žf s f , f associated with a n , n -solution resp. self-confirming1 2 1 2
Ž . . U Ž .n , n -solution s g S together with a path Q g Q f generated by1 2

Ž . Ž .f s f , f such that 1 f is player i’s most plausible forecasting rule1 2 i
Ž Ž . . Ž .according to player i’s state of belief s i.e., s f s 1 , 2 player i’si i i

forecasting rules f g F which yield some incorrect predictions along thei i
Ž .path Q those repeat cyclically because everything is cyclical are among

Ž Ž ..the least plausible forecasting rules for player i i.e., they belong to S k ,i i
Ž . Ž . Ž .and 3 the stream of Max n , n q 2 actions in g coincides with1 2

w xtqMaxŽn1, n2 .q2 Ž Ž .Q for some t it corresponds to Max n , n q 2 consecutivetq1 1 2
.actions in Q .

Ž .In the following analysis, it will be convenient to gather self-confirming
Ž .n , n -solution states which have the same states of belief for players 11 2

Ž .and 2 but which may differ in their streams of Max n , n q 2 actions1 2
Ž Ždue to the position of the cycle in the path Q generated by the self-

. Ž . .confirming n , n -solution . Such sets will be referred to as clusters:1 2

Ž . ŽDEFINITION 7. The set of n , n -solution resp. self-confirming1 2
Ž . .n , n -solution states which correspond to the same states of belief for1 2
each player i s 1, 2 and which may differ only in their stream of

Ž . Ž . ŽMax n , n q 2 actions is referred to as a n , n -solution resp. self-1 2 1 2
Ž . . Ž .confirming n , n -solution cluster. The set of n , n -solution clusters is1 2 1 2

Ž .denoted E, and the set of self-confirming n , n -solution clusters which1 2
are not in E is denoted S.

5.1. Absorbing Sets without Trembles

ŽWe first study the learning dynamics in the absence of trembles i.e.,
.« s 0 . The learning process defines a Markov process, and we are

interested in the stationary distributions of this Markov process. A set of
states is absorbing if it is a minimal set of states with the property that the
Markov process can lead into this set but not out of it. An absorbing set
may a priori contain only a single state in which case it is a stationary state
of the Markov process or it may contain more than one state in which case
the Markov process cycles between states in the absorbing set. It is readily

Ž .verified that starting from a state in a self-confirming n , n -solution1 2
cluster, the system never leaves that set because the played actions can
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Ž .only confirm the belief in the self-confirming n , n -solution forecasting1 2
rule. More precisely, the system then cycles between the states in the

Ž . Ž .self-confirming n , n -solution cluster according to the cyclical se-1 2
Ž .quence of last Max n , n q 2 actions generated by the path of the1 2

Ž .associated self-confirming n , n -solution. The following Proposition es-1 2
Ž .tablishes that the self-confirming n , n -solution clusters are the only1 2

absorbing sets of the process without trembles.

PROPOSITION 1. The only absorbing sets of the learning process without
trembles are the sets of states in E j S.

5.2. Stochastically Stable Sets

We now proceed to analyze how the dynamics of the learning process is
affected by the presence of rare trembles. For every « ) 0, we first note
that the learning process defines an aperiodic dynamics because it is
always possible to move from one state to another with an appropriate

Žnumber of mistakes and appropriate realizations of the random device in
.the updating process . From the theory of Markov processes, that property

Ž .ensures that 1 the learning process has a unique stationary distribution,
Ž .2 the proportions of states reached along any sample path approach this

Ž .distribution almost surely, and 3 the distribution of states at time t
approaches this distribution as t gets large.

We thus obtain a unique stationary distribution for each probability of
tremble « . We study the limit of these stationary distributions as the

Ž .probability of mistake « gets small keeping all other parameters fixed .
The limit distribution is termed the stochastically stable distribution.

PROPOSITION 2. The stochastically stable distribution places positï e weight
Ž . Ž .only on n , n -solution clusters i.e., in E and no weight on self-confirming1 2

Ž . Ž . Ž .n , n -solution clusters that are not n , n -solution clusters i.e., in S .1 2 1 2

The technique involved in establishing this result relies on Freidlin and
Ž .Wentzell 1984 . Intuitively, with vanishing trembles the system spends

virtually all of its time in absorbing sets of the learning process without
trembles or equivalently the stochastically stable distribution allocates all
of its probability to such sets. Transitions from one absorbing set to
another can be accomplished only by means of trembles. The system will
asymptotically allocate all of its probability to absorbing sets that are easy
to reach and from which it is hard to get out. The proof of Proposition 2
consists in showing that it is much harder to go from the set E of
Ž . Ž .n , n -solution clusters into the set S of-self-confirming n , n -solution1 2 1 2

Ž .clusters that are not in E than the other way around.
The interpretation of Proposition 2 is thus that eventually players learn

Ž . Ž .to play some n , n -solution as opposed to a self-confirming n , n -1 2 1 2
solution. It should be noted that Proposition 2 only guarantees that some
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Ž . Ž .n , n -solution will emerge, but does not specify further which n , n -1 2 1 2
solution is more likely to emerge. In fact, it may well be that the
stochastically stable distribution assigns a strictly positive probability only

Ž . Ž .to a subset of the n , n -solution clusters as opposed to every n , n -1 2 1 2
solution cluster. Since the main purpose of this paper is to show that some
Ž .n , n -solution will emerge, we do not go into that analysis, but in1 2

Ž .principle the n , n -solution concept could be refined on that basis. A1 2
Ž .refined n , n -solution would be such that it is reached with a strictly1 2

positive probability in the stochastically stable distribution.
The proof of Proposition 2 requires several steps, and introducing some

Ž .new notation. First, for any state g in G, we let G g denote the set of
states gX in G such that the states of belief associated with g and gX may
differ only in their assignment of the players’ plausibility levels of those
forecasting rules which are not the most plausible one. That is, for any gX

Ž . Xin G g , player i’s most plausible forecasting rule according to g coincides
with player i’s most plausible forecasting rule according to g, and the

Ž . Xstreams of Max n , n q 2 actions in g and g are the same. Assume g is1 2
Ž . Ž .a self-confirming n , n -solution state. Then in the dynamics without1 2

X Ž .trembles starting from states of belief in g or in any g g G g yields the
Ž Žsame sequence of plays i.e., that induced by the associated self-confirm-

. Ž . . Xing n , n -solution , since g and g have the same most plausible1 2
forecasting rules which are always confirmed by the observations through-
out the play. Second, we define the notions of sequences of trembles and
of isolated trembles.

Ž . � t 4̀DEFINITION 8. 1 A sequence of trembles is a sequence d , wherets1
d t s 1 if there is a tremble at period t and d t s 0 if there is no tremble at
t. It is referred to as an infinite sequence of trembles whenever the number
of periods where d t s 1 is infinite.

Ž . � t 4̀2 A sequence of isolated trembles is a sequence of trembles d ts1
Ž .such that there are at least 2 Max n , n periods between two consecutive1 2

trembles. That is, if d t s 1 then d tq1 s 0, d tq2 s 0, . . . , d tq2 MaxŽn1, n2 . s 0.

The following lemma is a key step in the proof of Proposition 2.

Ž . Ž .LEMMA 1. i Starting from a n , n -solution state g, the system ne¨er1 2
Ž .lea¨es the set of states G g whene¨er trembles occur according to a sequence

of isolated trembles.
Ž . Ž .ii Starting from a self-confirming n , n -solution state that is not a1 2

Ž .n , n -solution state, there always exists a finite sequence of isolated trembles1 2
Ž .that leads with a strictly positï e probability to a n , n -solution state.1 2

The intuition for Lemma 1 is as follows. Consider a self-confirming
Ž . Ž .n , n -solution state that is not a n , n -solution state. As long as there1 2 1 2
are no trembles the system cycles between the states of the corresponding
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Ž .self-confirming n , n -solution cluster. By assumption there must exist at1 2
Ž .least one time of the cycle induced by the self-confirming n , n -solution1 2

where the most plausible forecasting rule of a player, say player 1, yields
an incorrect prediction off the equilibrium path. Assume that a tremble
occurs at such a time, say at period t, and yields an action with an
incorrect n -length prediction according to player 1’s most plausible fore-1

Ž .casting rule f . Assume also that no tremble occurs before 2 Max n , n1 1 2
periods. From period t to period t q n y 1, the only effect on player 1 of1
the period t tremble is to increase the plausibility levels of some forecast-
ing rules which previously had incorrect predictions on the equilibrium

Ž .path and had the prediction fitting with the tremble . It should be noted
that during those periods player 1’s most plausible forecasting rule remains

Žthe same since the plausibility of forecasting rules having incorrect
predictions on the equilibrium path prior to t can only reach the plausibil-

.ity level k y n at best and k y n ) 1 . At period t q n , the period t1 1 1 1 1
predictions can be compared with the stream of realized actions from
period t q 1 to period t q n . Since there were no trembles during those1
periods, the current most plausible forecasting rule f of player 1 yields an1
incorrect prediction, and therefore becomes a little less plausible relative
to any forecasting rule f X g F having correct predictions both on and off1 1

Ž .the equilibrium path for this particular tremble . If such a forecasting rule
f X happens to be as plausible as f at period t, then the state of belief of1 1
player 1 is destabilized and may lead to any most plausible forecasting
rule. Otherwise, after n other periods without trembles, the system has1
returned to the original state of belief of player 1 except that some
forecasting rules including f X have now a plausibility level that has1
reduced by one increment. Clearly after a finite number of such isolated

Ž .trembles the self-confirming n , n -solution state will be destabilized, and1 2
Ž . 11may lead to some n , n -solution state. It should be noted that the1 2

same argument would not apply if the most plausible forecasting rule f1
Ž .originated from a n , n -solution rather than from a self-confirming1 2

Ž .n , n -solution. The reason is that now at period t q n no forecasting1 2 1
rule other than f would see its plausibility level decrease, as the period t1
prediction of f would be correct.1

The rest of the proof for Proposition 2 goes as follows. The first part of
Ž .Lemma 1 shows that nonisolated or consecutive trembles are needed to

Ž .destabilize a n , n -solution cluster. Proposition 2 is obtained by observ-1 2
ing that consecutive trembles are far less likely than finite sequences of

Žisolated trembles occurring at given times of the cycle induced by a
Ž . .self-confirming n , n -solution .1 2

11 The complete argument requires looking at the state of belief of player 2 as well; see the
Appendix.
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5.3. An Example

The aim of this subsection is to provide a simple example illustrating the
learning dynamics and its convergence properties. To this end, we con-

Ž .struct an example with both a self-confirming n , n -solution and a1 2
Ž .n , n -solution, and we show how the system is likely to go from the1 2

� 4 � 4former to the latter. Let n s n s 1, A s U, D , A s L, R . To1 2 1 2
simplify the exposition we will assume that F consists of only two1

� t4 X � X t4time-independent forecasting rules f s f , f s f such that ; t,1 1 1 1
tŽ . tŽ . X tŽ . X tŽ .f U s L, f D s R, and f U s f D s L. The two rules differ in1 1 1 1

their predictions when D is played. Similarly, F consists of two time-inde-2
� t4 X � X t4 tŽ . tŽ .pendent forecasting rules f s f , f s f such that ; t, f L s f R2 2 2 2 2 2

X tŽ . X tŽ .s U and f L s D, f R s U, which differ in their prediction when L2 2
Ž . Ž . Ž . Ž .is played. We assume that n LUL ) n LDR and n ULU ) n URU1 1 2 2

Ž .so that the forecasting rule profile f , f is that of a self-confirming1 2
Ž . Ž .n , n -solution on the equilibrium path the actions U and L are played .1 2

Ž . Ž . Ž . Ž .We also assume that n LDL ) n LUL , n RUL ) n RDL and1 1 1 1
Ž . Ž . Ž . Ž . Ž X X .n ULD ) n URU , n DLD ) n DRU so that the profile f , f is2 2 2 2 1 2

Ž . Ž .that of a n , n -solution the equilibrium path is DLDL . . . . We assume1 2
Ž . Ž . Ž .that n DLU ) n DRU so that f , f does not correspond to a2 2 1 2

Ž . Žn , n -solution if the off equilibrium path action D is played, player 21 2
prefers action L to action R given his forecast and this contradicts player

.1’s forecast . Finally, we assume that players use three levels of plausibility:
k s k s 3.1 2

Start from the global state that is most favorable to the self-confirming
Ž . Ž .n , n -solution generated by f , f . That is, the initial states of belief1 2 1 2

Ž . Ž X.satisfy s f s 1, s f s 3, for i s 1, 2, and the last actions of the initiali i i i
Ž .state correspond to the path induced by the self-confirming n , n -solu-1 2

Ž .tion f , f . As long as there are no mistakes the actions U and L are1 2
played by players 1 and 2, respectively, and their states of belief remain
unchanged. Assume that at some period t player 1 makes a mistake and

t Ž . t Ž X .plays D. Then the new state of belief of player 2 is s f s 1, s f s 22 2 2 2
Ž X X ty1Ž . ty1Ž . .f becomes a little more plausible as f L s D and f L s U .2 2 2
Given that player 2’s most plausible forecasting rule is f , player 2 selects2

Ž .the action L if he does not make a mistake at period t q 1 because
Ž tŽ .. Ž tŽ ..n DLf L ) n DRf R . That action of player 2 makes the forecast-2 2 2 2

Ž tŽ . .ing rule f a little less plausible since f D s R and the forecasting rule1 1
X Ž X tŽ . .f a little more plausible since f D s L to player 1. That is, the new1 1

tq1Ž . tq1Ž X .state of belief of player 1 is s f s 1, s f s 2. At period t q 2,1 1 1 1
Ž .player 1 chooses U if he does not make a mistake since f is still the1

most plausible forecasting rule for him and L has just been played. It
follows that the period t q 2 state of belief of player 2 is again s , i.e.,2

tq2Ž . tq2Ž X . Xs f s 1, s f s 3. In later periods t ) t, as long as there are no2 2 2 2
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mistakes the sequence of plays is ULUL . . . , and the states of belief of
tXy1 Ž . tXy1 Ž X . tXŽ .players 1 and 2 are, respectively, s f s 1, s f s 2 and s f s1 1 1 1 2 2

tXŽ X . X1, s f s 3. Assume that at some period t player 1 makes again a2 2
X tXŽ .mistake and plays D. Player 2’s period t state of belief is s f s 1,2 2

tXŽ X . Xs f s 2, and player 2 selects L at period t q 1. This implies that2 2
X X Xt q1 t q1Ž . Ž .s f s s f s 2, and therefore player 1’s state of belief may1 1 1 1

tXq1 tXq1 Ž .switch to any state of belief in particular to s , where s f s 3,1 1 1
tXq1 Ž X . X Žs f s 1. In such a case, player 1 chooses U at period t q 2 when he1 1

. Ž X tŽ .. Ž X tŽ ..does not make a mistake , since n LDf D ) n LUf U and player 21 1 1 1X XX Xt q2 t q2Ž . Ž .has played L in period t q 1. Then s f s s f s 2, and player2 2 2 2
2’s state of belief is destabilized so that it may switch to s tXq2 , where2

tXy2 Ž . tXy2 Ž X . Xs f s 3, s f s 1. From then on, f remains player i’s most2 2 2 2 i
plausible forecasting rule for player i s 1, 2 as long as there are not

Ž . Ž .consecutive trembles, and therefore the n , n -solution path DLDL . . .1 2
Ž X X .generated by f , f is played.1 2

6. DISCUSSION

The learning process involves several elements of bounded rationality
Ž .in addition to the feature of limited forecasting . We wish now to discuss
the role and interpretation of each assumption.

6.1. On the Finiteness of the Number of Plausibility Le¨els

The state of belief as defined in Section 4 reflects some limited capabil-
ity of the players in their information treatment, where the limitation
bears on two points. First the updating of the state of belief relies only on
the information whether the predictions of forecasting rules f g F coin-i i
cide with the observation or not as opposed to how many mistakes are
required to explain the observation with f . Second, each player i restrictsi
himself to a finite number k of plausibility levels as opposed to ai

Ž .potentially larger or infinite number. The first limitation is not crucial,
and there would be no conceptual difficulty in making the updating depend
on the number of mistakes required to explain the observation with each

Ž .forecasting rule f g F . We have made it for notational purposes. Thei i
second limitation is more essential. Correct Bayesian updating would
require a perfect record of how many mistakes are needed to explain past
observations with each forecasting rule in the support of belief. Thus, for t
large enough, with the standard Bayesian view, the plausibility level of
some forecasting rule could go beyond k . It should be noted though that ifi
one accepts that player i restricts himself to k plausibility levels, the kindi

Žof updating proposed in Section 4 seems reasonable in that it is as close as
.possible to the correct Bayesian updating .
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Technically, the bound on the number of plausibility levels allows us to
reduce the learning process to a Markov process with a finite state space.
This is used to apply the techniques of perturbed Markov processes in
Section 5. On an interpretative level, the bound on the number of
plausibility levels seems a reasonable way to capture the idea that a
boundedly rational player is likely to form his belief on the basis of some
imperfect record of past observations.12 We wish to stress that our finding

Ž .that eventually players learn to play a n , n -solution is robust to any1 2
change in the bound on the number of plausibility levels as long as
k ) n q 1.13 In this sense, the limit behavior is not too sensitive to thei i
degree of bounded capability in information treatment.

6.2. On the Uniqueness of the Most Plausible Forecasting Rule

We have assumed that at each point of the process the players have a
Žuniquely defined most plausible forecasting rule which, of course, may

.change from period to period . We wish to point out that the above
analysis can easily be extended to the case where the players may have
several most plausible forecasting rules at the same time still assuming
though that when a player has several most plausible forecasting rules

Ž .there is a chance which may be arbitrarily small that his state of belief
Žswitches to any conceivable state of belief not necessarily one with a
.uniquely defined most plausible forecasting rule . Specifically, the learning

framework would then be adapted as follows: Each forecasting rule f g F ;i i
Ž .would have an a a priori weight denoted m f . Whenever there is noi i

tremble at period t the current action at would be chosen so as toi
Ž . Ž ty1 tŽ .. ty1

tmaximize Ý m f n a a f a , where a is the period t y 1f g S Ž1. i i i j i i i ji i

action and the sum bears over all period t most plausible forecasting rules
tŽ . Ž tŽ . .f g S 1 i.e., such that s f s 1 . Finally, the updating of players’ statesi i i i

Ž .of belief including the possibility of switch would be defined exactly in
the same fashion as in Section 4. With easy adaptations of the proofs, it
can be shown that the learning framework just described yields the same

Ž .asymptotic results Propositions 1 and 2 as the one described above. The
framework with uniquely defined most plausible forecasting rules was
chosen mostly for notational purposes.

12 The limitation imposed by k in the state-of belief does not reduce to bounded recalli
Ž .where the players remember only a finite number of past actions . If imperfect record were
to take the form of bounded recall, then the result of Proposition 2 would only hold if the
memory capacity of the players increases to infinity at the same time as the probability of

Žmaking a mistake goes to zero the complete argument would be significantly harder to
.establish .

13 We have used that assumption to guarantee that forecasting rules which have incorrect
predictions on the equilibrium path have a sufficiently high plausibility level.
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6.3. On the Random De¨ice When There Are Se¨eral Most Plausible
Forecasting Rules

We have assumed that whenever a player has several forecasting rules
Žwhich may be the most plausible one, there is a chance which may be

.arbitrarily small that the player switches to any conceivable state of belief,
which means that any forecasting rule may become the most plausible one.
On a technical level, we have used that assumption to ensure that the only
absorbing sets of the process without mistakes are the self-confirming
Ž . Žn , n -solution clusters. Otherwise, it would a priori be conceivable that1 2
the process without mistakes admit other absorbing sets in which the most

.plausible forecasting rule of a player varies in a cyclical fashion, say.
ŽWhether that assumption is needed for Proposition 2 is an open and

. Žpresumably difficult question left for future research. Note that in the
example, we would obtain the same conclusion if the assumption were to

.be dropped because there are only two forecasting rules.
The random device assumption can again be interpreted in terms of

bounded rationality, and it should be noted that the convergence result to
Ž .n , n -solutions does not depend on the exact specification of the distri-1 2
bution of change in the state of belief. It is nevertheless probably the least
satisfactory feature in the learning process, and it would be of interest to
analyze what happens asymptotically to the process if that assumption
were to be dropped. A possible defense for the assumption is as follows.
Given that player i’s learning bears on forecasting rules, player i may be
thought of as being mostly concerned with the determination of the most
plausible forecasting rule. When there is exactly one most plausible
forecasting rule, player i is satisfied. When there are two or more forecast-

Žing rules that can be the most plausible one, player i is unhappy or feels
.that something is wrong with his belief and must change something. It

seems then reasonable to model that change as a switch to any conceivable
Žstate of belief where the switch is assumed not to be fully under the

. 14, 15control of the player .

14 There are other ways to model the disenchantment of player i. For example, when the
previous most plausible forecasting rule becomes as likely as some other forecasting rule,
then the previous most plausible forecasting rule may be assigned to the set of least plausible
forecasting rules with positive probability. Such a specification would yield the same asymp-

Ž .totic results with a slightly more complicated proof .
15 Another interpretation of the state of belief perturbation is that the player misperceives

with positive probability the plausibility levels of the forecasting rules other than the most
plausible one, and therefore when there are several most plausible forecasting rules the state
of belief may switch to any conceivable state. In establishing Proposition 2, that interpretation
would, however, require that the probability of misperception goes to zero together with the
probability of trembling, which would complicate the argument.
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6.4. On the Mistakes

In the learning process we have assumed that each player i could make
a mistake at each period where he must move. Also, the distribution of
mistakes was assumed to be independent from period to period and
stationary. Given the analysis of Section 5 it should be clear that the
feature of the mistake distribution that drives the convergence result is

Žthat consecutive trembles are far less likely than isolated ones in the
.sense made precise in Definition 8 . This is because isolated trembles are

Ž . Žsufficient to destabilize a self-confirming n , n -solution that is not a1 2
Ž . .n ,n -solution cluster, whereas consecutive trembles are required to1 2

Ž .destabilize a n , n -solution cluster. The asymptotic result of Section 51 2
would thus continue to hold as long as that property is met whether or not
the distributions of mistakes are assumed to be stationary and independent

Žfrom period to period on state-dependent perturbations, see also Bergin
.and Lipman, 1996 .

6.5. On the Forecasting Rule

Throughout the paper, each player i was assumed to make his choice of
Žaction on the basis of his forecast over the forthcoming n moves includ-i

.ing his own moves . In some cases, the forecast can be thought of as
bearing only on the reaction function of the other player over the forth-
coming n moves. In such cases, one might argue that player i makes ai
plan of actions over the forthcoming n moves given his forecast about thei
reaction function of the other player. His plan of actions leads him in turn
to choose a current action, which is the effective choice to be made in the
current period. At every period where player i must move, player i would
then make plans of actions over the forthcoming n periods yielding ai
choice of current action. For such a process of thought, it may well be that
his effective choices of action in the next periods do not coincide with the
plan originally made even though player i has a correct forecast about the
reaction function of the other player. In other words, this process of
thought might lead to time inconsistencies. In the long run, if player i
learns the reaction function of the other player he should realize that his
plans of actions do not coincide with the actions he effectively chose in the
next periods. The only way for player i to avoid time inconsistencies is to
reduce his current period choice to his current period action. The formula-
tion adopted in this paper is the only one compatible with that view.

7. CONCLUSION

A learning process was proposed in which players eventually learn to
Ž .play a n , n -solution. The process involved several elements of bounded1 2



PHILIPPE JEHIEL´294

rationality including some which are not linked to the limited forecasting
Ž .form of bounded rationality. Still, as suggested in the discussion Section 6

Ž .the convergence to n , n -solution is robust to a number of variations of1 2
how the other sorts of bounded rationality are modelled as long as the
players are assumed to keep the same length of foresight throughout the
process. A possible extension would allow player i to change his length of
foresight when he feels that he understands sufficiently well the forthcom-

Ž .ing n moves as a function of his own move. He might then potentiallyi
decide to increase his length of foresight from n to n q 1, say. In thisi i

Ž .view, starting from the n , n -solution that is currently played, player i1 2
might infer from the observed sequence of forthcoming n q 1 actions newi
Ž .n q 1 -length forecasts. In the case this induces a modification of hisi

Ž .behavior, a second stage of learning would lead to some n q 1, n -i j
Ž . Žsolution. Otherwise, the original n , n -solution was already a n q1 2 i

.1, n -solution. Such a process of changes of lengths of foresight might bej
pursued for both players defining a new stochastic process. If there exist

Ž . Ž .strategy profiles that define a n , n -solution for all n , n sufficiently1 2 1 2
Žlarge such strategy profiles are termed hyperstable solutions in Jehiel,´

.1995 , then these are absorbing states of the overall process, and one
might conjecture that they will emerge in the long run. The precise
analysis is left for future research.16

APPENDIX

Proof of Proposition 1. It is rather immediate to check that sets in
Ž .E j S are absorbing. To see this consider a self-confirming n , n -solu-1 2

tion state, and observe that when there are no trembles the played actions
Ž .always confirm the prediction of the self-confirming n , n -solution fore-1 2

Ž .casting rule. As a result the self-confirming n , n -solution forecasting1 2
rule remains the most plausible forecasting rule all along the played path
Moreover, those forecasting rules which give the correct predictions along
the played path keep the same plausibility level and those which give some
incorrect predictions have a plausibility level set to k .i

Conversely, consider an absorbing set. We wish to show that it is
Ž .necessarily a self-confirming n , n -solution cluster. If the same forecast-1 2

ing rule remains the most plausible one for each player i all along the
learning process generated by a state in the absorbing set, then it is rather
straightforward to see that the absorbing set must be a self-confirming

16 It might as well be argued that, when a player feels that he understands sufficiently well
the sequence of forthcoming actions, he decides to be less sophisticated and reduces his
length of foresight by one increment, say. As long as the length of foresight remains above
the threshold defined by the hyperstable solution the play is unaffected.
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Ž .n , n -solution cluster. If the most plausible forecasting rule does change1 2
for at least one player, say player 1, along the learning process generated
by some state in the absorbing set, then it must be that the random device
in the updating process of player 1’s state of belief is triggered at some
points in time. Consider such a period t. There is a positive probability
that the next state of belief of player 1 corresponds to that of a self-con-

Ž .firming n , n -solution state. If player 2’s state of belief corresponds to1 2
Ž .that same self-confirming n , n -solution state, then the Markov process1 2

Ž .has reached a self-confirming n , n -solution cluster which is absorbing.1 2
It will thus never return to the original absorbing set, yielding a contradic-
tion. If player 2’s state of belief does not correspond to that self-confirming
Ž . Ž .n , n -solution state, then eventually after a finite number of periods1 2
some forecasting rule of player 2 other than the most plausible at period t
will become equally plausible. At such a time the random device of the
updating of player 2 will be triggered and there is a positive probability
that player 2’s new state of belief now corresponds to the self-confirming
Ž . 17n , n -solution state. From then on, the system will never leave the1 2

Ž .associated self-confirming n , n -solution cluster, and therefore will never1 2
return to the original absorbing set, a contradiction. Q.E.D.

Ž . Ž .Proof of Lemma 1. 1 Consider a n , n -solution state. Assume1 2
player 1 makes a mistake at period t, and that there is no further tremble

Ž .up to period t q 2 Max n , n . We first analyze the effect of such a1 2
tremble on player 1’s state of belief. Compared to the description in the
main text, the only difference is that, at period t q n , the current most1
plausible forecasting rule of player 1 yields a correct prediction, and
therefore the updating can only reinforce player 1’s belief in his most

Žplausible forecasting rule the plausibility level of those forecasting rules
which yielded incorrect predictions after the period t tremble will increase

. Ž .by one increment if possible . Regarding the effect of player 1’s tremble
on player 2, we note that it is only temporary and after 2n periods, player2
2’s state of belief returns to his original period t state of belief. Clearly,
the argument shows that infinite sequences of isolated trembles are unable

Ž .to destabilize a n , n -solution cluster.1 2

Ž . Ž .2 Consider a self-confirming n , n -solution state that is not a1 2
Ž .n , n -solution state. As explained in the main text, consider a time of1 2

Ž .the cycle induced by the self-confirming n , n -solution where the most1 2
plausible forecasting rule of a player, say player 1, yields an incorrect
prediction off the equilibrium path. Assume that a tremble occurs at such
a time, say at period t, and yields an action with an incorrect n -length1

17 If in the meantime the random device of player 1 is triggered there is always a positive
Ž .probability that he returns always to the same self-confirming n , n -solution state of belief.1 2



PHILIPPE JEHIEL´296

Ž Ž . .prediction with no tremble before 2 Max n , n periods . The effect on1 2
player 1’s subsequent states of belief has been described in the main text.
If the updating at period t q n yields several most plausible forecasting1
rules to player 1 then his state of belief will switch. If the updating at
period t q n yields a uniquely defined most plausible forecasting rule,1
then there is no random switch in player 1’s state of belief at period
t q n , but after period t q 2n the plausibility level of some forecasting1 1

Žrules yielding the correct predictions on the equilibrium path and after
.the period t tremble has reduced by one increment. Moreover as noted

Ž .earlier the effect of player 1’s, tremble on player 2 is only temporary and
after 2n periods, player 2’s state of belief has returned to his original2

Ž .period t state of belief there is no experimentation for player 2 . Clearly,
after at most k y 1 such isolated trembles, there will be a period where1
Ž .in the updating process player 1 has more than one plausible forecasting
rule. Player 1’s state of belief may then switch to any state of belief, in

Ž X. Ž .particular to a state s such that s f s 1, s f s k for every forecast-1 1 1 1 1 1
X Ž X X . Ž .ing rule f / f , where f , f is the forecasting rule profile of a n , n -1 1 1 2 1 2

Ž . Xsolution for some player 2’s forecasting rule f . Let f be player 2’s most2 2
plausible forecasting rule at the time of the switch. Lemma 1 follows if
Ž X . Ž . Ž X .f , f is the forecasting rule profile of some n , n -solution. If f , f is1 2 1 2 1 2

Ž .not the forecasting rule profile of a n , n -solution, then two cases may1 2
Ž X . Ž .arise. Either f , f is the forecasting rule profile of a subjective n , n -1 2 1 2

Ž X .solution or not. When f , f does not correspond to a subjective1 2
Ž .n , n -solution, then player 2’s state of belief will be destabilized even1 2

Žwithout further trembles. That is, after a finite number of periods without
.trembles , player 2’s updating will result in several most plausible forecast-

Ž X . Ž .ing rules. When f , f does correspond to a subjective n , n -solution1 2 1 2
Ž .which is not a n , n -solution, then by the same argument displayed for1 2

player 1, one can show that player 2’s state of belief will be destabilized
Ž . 18after a finite number at most k y 1 of player 2’s isolated trembles.2

When player 2’s state of belief is destabilized, there is a chance that his
Ž X . Ž .state of belief switches to s , where s f s 1, and s f s k for other2 2 2 2 2 2

forecasting rules, where f X is player 2’s forecasting rule that has been2
Ž Ž X X . Ž . .introduced above i.e., f , f defines a n , n -solution . We have thus1 2 1 2

Ž .shown that a finite number at most k q k y 2 of isolated trembles may1 2
Ž .lead with positive probability to a n , n -solution state. Q.E.D.1 2

Proof of Proposition 2. Proposition 2 follows from Proposition 1, Lemma
Ž1, the general analysis of perturbed Markov processes see Freidlin and

.Wentzell, 1984 , and the observation that when the probability of tremble

18 If player 1’s state of belief is destabilized in the meantime, his state of belief may go back
to s as defined above.1
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Žgoes to zero a finite sequence of isolated trembles occurring at given
.times of a cycle of finite length is infinitely more likely than consecutive

Žtrembles over a number T f Nr« of periods where N s k q k y 2 is1 2
the maximum number of isolated trembles required to destabilize a

Ž . .self-confirming n , n -solution state, see above . The reason is that, over1 2
T s Nr« periods, the expected number of trembles is N, and as « goes to
zero the probability that there be consecutive trembles becomes negligible
as opposed to the probability of having N isolated trembles destabilizing

Ž .some given self-confirming n , n -solution state. Q.E.D.1 2
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