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In two-player infinite-horizon alternating-move games, a limited forecast (n,, n.)-
equilibrium is such that (1) player i chooses actions according to his n,-length
forecasts so as to maximize the average payoff over the forthcoming s, periods, and
(2) players’ equilibrium forecasts are correct. With finite action spaces, (n,, 114)-
solutions always exist and are cyclical, and the memory capacity of the players has
no Influence on the set of solutions. A solution is hyperstable if it is an (n,, #,)-solu-
tion for all n,, 1, sufficiently large. Hyperstable solutions are shown to exist and are
characterized for generic repeated alternate-move 2 x 2 games. Journal of Economic
Literature Classification Numbers: C72, D8L. 1 1995 Academic Press. Inc

I. INTRODUCTION

It is now commonplace to solve extensive form games of complete and
perfect information, like chess, by the concept of subgame perfect nash
equilibrium. However, as Simon [9] has pointed out, it is clear that no
chess player is able to compute the equilibrium path (see also Simon and
Schaeffer [10]}). Stated differently, chess players are only boundedly
rational. There are obviously many ways to think of bounded rationality
(see, for example, Rubinstein [ 7, 8]), but in this context a natural approach
is to view chess players as trying to formulate, at each stage where they
must move, predictions about the forthcoming n moves, say, as a function
of their current move (and the pre-play position of the game). In other
words, players have a limited ability to forecast the future, and presumably,
the longer the length of foresight, the better the player. However, a major
difficulty in the game of chess is to understand what a reasonable value
function at the end of the horizon of foresight may be. The treatment of
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that point is extremely complex. We will avoid such a difficulty by con-
sidering repeated alternate-move games for which we propose a natural
criterion to make comparisons based only on limited forecasts.

The objective of this paper is first to define a game-theoretic solution
concept that has the feature of limited forecasting and, second, to analyze
the properties of such solutions in a simple class of games, the class of
repeated alternate-move 2 x 2 games. The general class of games we con-
sider is as follows. There are two players who move sequentially. At each
period ¢, the current payoff to a player is a function of the period ¢ action
of the player who moves currently and the previous period action of the
other player.! The action spaces of the players are finite and remain the
same throughout the play. The horizon is infinite and, for simplicity, we
assume that players do not discount the future: streams of payoffs are
evaluated according to the overtaking criterion.”

Players are assumed to have a limited ability to forecast the future.
Player / 1s characterized by the length of his foresight n,. At period ¢, player
i formulates predictions for the forthcoming n; moves after his own move.
Then he must make his choice of current action on the basis of his limited
forecasts only. A natural criterion for player / to compare actions on the
basis of his limited forecasts is the average payoff obtained over the length
of foresight. This is because (1) player 7 cannot build his criterion on what
will come after n, periods, since he makes no prediction about (or he has
no idea of) it, and (2) given the stationarity of the game, the average payoff
over the length of foresight may be perceived as a good approximation of
the true objective function.

What is a plausible outcome when players 1 and 2 play such a repeated
alternate-move game? This paper proposes as solution concept, the
(ny, ny)-solution. Two preliminary notions are required: (1) A strategy for
player i is justified by a sequence of forecasts if the strategy only prescribes
actions that maximize the average payoff obtained over the length of
foresight (as given by the forecasts), and (2) a sequence of forecasts for
player i is consistent with a strategy profile if the forecasts coincide with the
truncation to the first n, actions of the respective continuation paths
induced by the strategy profile. A (n,, n,)-solution is then defined as a
strategy profile that can be justified by consistent sequences of forecasts for

'The alternating-move paradigm is more appropriate than the simultaneous-move
paradigm to study the effect of limited forecasting because it avoids folk-theorem-like
arguments, and allows one to have unambiguously different outcomes with different lengths
of foresight.

2 We could alternatively assume that players do discount the future, but that they are
patient.
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players 1 and 2. In other words, at an (n,, n,)-solution, (1) current actions
are chosen so as to maximize the average payoff over the length of
foresight, and (2) at any period where player { must move, his forecasts for
the forthcoming n; actions as a function of his current action are correct.
It should be noted that the predictions for the forthcoming n, actions made
by player i include his own actions and that the equilibrium forecasts about
all these actions are assumed to be correct whatever his current action and
not only for the action on the equilibrium path.

We show that an (n,, n,)-solution always exists, and that the period !
forecasts associated with (n,, n,)-solutions repeat cyclically as ¢ varies. We
also observe that players may be better off with shorter lengths of foresight.
To be more precise, in the following analysis, we allow the limited forecasts
made by the players to depend on history. In addition to his limited ability
to forecast the future, player i is assumed to have a bounded recall. The
solution concept with bounded recall allows player i’s forecasts to depend
on the past N, actions as well. We show that the set of these solutions
coincides exactly with the set of (n,, n,) solutions. In other words, the equi-
librium forecasts associated with such solutions do not depend on history,
and the memory capacity of the players has no impact on the set of
solutions as long as it is finite.

We next define the concept of hyperstability. Hyperstable solutions are
strategy profiles that are (n,, n,)-solutions for all n,, n, sufficiently large.
The requirement for hyperstability is, in general, extremely strong. How-
ever, if hyperstable solutions happen to exist, they have highly desirable
properties since they are robust to a great deal of behavioral changes.
A somewhat surprising result is that for generic repeated alternate-move
2 x 2 games, a hyperstable solution always exists. A full characterization of
hyperstable solutions 1s provided for this case.

The remainder of the paper is organized as follows. In Section 2, we
describe the model and define the (n,, n,)-solution concept. In Section 3,
we define hyperstability and characterize hyperstable solutions of repeated
alternate-move 2 x 2 games. Section 4 provides concluding remarks.

2. THE MODEL

2.1. Repeated Alternate-Move Games

We consider two players indexed by i=1, 2. Player / chooses actions q,
from a finite action space A,. Players act in discrete time, and the horizon
is infinite. Periods are indexed by ¢ (¢=1,2,3..). At time ¢, player i’s

642°672-15
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TABLE 1

UL UR DL DR

(,=a,u,=a’) (uy=h,u;=c") (uy=c,u,=»5") (uy=d u,=d")

single-period payoff is a function of the current actions «! of the two
players i=1, 2, but not of time: u,=u,(a}, 45). We assume that players do
not discount the future. Streams of payoffs are evaluated according to the
overtaking criterion.

Players move sequentially and player | moves first. At each odd period
t=2k—1(t=1,3,5,..) player 1 chooses an action that remains the same
for the two periods ¢ and ¢+ 1: ai*=a7* ! for all k. Similarly, player 2
moves at each even period =2k (1=2,4,6,..) and a3* "' =a?*.

Games with the above features are referred to as repeated alternate-more
games. When the cardinality of the action spaces is two, the latter are
denoted by 4, ={U, D} and 4,={L, R}. Players’ single-period payofls as
a function of pairs of actions are then given as in Table L.

A stream of action profiles {¢!} = {gq7* '.¢¥}_,, where ¢%* '€ 4,
and ¢3* € A, is referred to as a path and is denoted by Q. Since players may
only change actions every other period, a move at period ¢ affects payoffs
both at periods ¢ and ¢+ 1. In path Q, each action ¢3* (resp. ¢3**"') of
player 2 (resp. 1} is thus combined both with the previous action, qf" .
(resp ¢%), and the next action, ¢**' (resp. ¢3¥*2), of player 1 (resp. 2):
At pertods 2k and 2k + 1, the current payofls to player / induced by path
Q are u;(¢* ', ¢g¥) and u,(¢7** ", ¢3). respectively.® We first introduce
some preliminary and standard notation.

Notation. {1) Let R, denote an arbitrary n-length stream of alternate
actions. v,{R,) denotes the sum of the per period payoffs to player i
induced by R,,, where each action of R, is combined both with the previous
(except for the first one) and the next (except for the last one) action of R,,.
For example, in the 2x2 case, the 4-length stream R,=(U, L, D, R)
induces v;( R} =v,{ULDR)=u (U, L)+ u,(D, L)+ u;(D, R).

(2) [Q], denotes the truncation of path, Q= {¢!}~,, to the first n
actions: [Q],={qi}"_,.

(3) [¢]" denotes the truncation of ¢ = {¢!}"_ to the lust N actions:
[(1] N = {q:} Ir“= w N+ '4

? Single-period payoffs start at period 2.
4 This expression is valid if N <w—¢. When N >w —r, [¢]" is identified with g.
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(4)  {(q. q') denotes the concatenation of ¢ = {q¢!}_ withq' ={q'}"_ . :

W

(¢-¢"y=1qi} 7,
2.2, The Solution Concept with Limited Horizon Forecast

Players arec assumed to have a /imited ability to forecast the future and
a bounded recall® The idea is that players who have some units of brain
power at their disposal allocate them partly to the study of the future and
partly to the analysis of the past. Player i has a two-dimensional ability
that is represented by two integers: n,, his length of foresight and N, his
memory capacity. At each period where player / must move, this player
makes fimited predictions for the forthcoming moves: his forecasts are
restricted to the forthcoming n, moves after his own move. Since player i
has a bounded recall, his limited forecasts may only depend on the last N,
actions and the current time period. We then assume that player i chooses
actions on the basis of his limited forecasts. Restricting attention to pure
strategies and predictions, we now introduce some definitions and notation.

Definitions and Notation. Let #(N;) denote the set of N,-length
histories of alternate actions, the last action of which is an element of 4,
{(j#1) and let 1 denote an arbitrary element of #'(N,).

(1)  An n;-length (pure) prediction for player / is a stream of alternate
actions of length », starting with an action in A, (j#i). The set of n,-length
predictions is denoted by P,: P, =(A4;xA4,)"? if n; is even and P, =
Ay x (A, x Ay 20 s odd.

{2) An n;-length forecast for player / at a pertod ¢ where this player
has to move is denoted by f/. It maps, for every N,-length history
he # (N,), the set of actions 4; to be currently chosen into the set of
predictions P, . Formally, f/={f/(-|/h)},. where Yhe # (N,), f/(-|h)
A, = P,; fl(a; | h} is the prediction about the forthcoming #, actions made
by player 7 at period ¢ if he currently chooses «; given the last N, actions
he #(N,).

(3) f;=1{/f/}, denotes an arbitrary sequence of forecasts f; for every
period ¢ where player i must move. The set of f; is denoted .%#. A pair
( f1./>)e . # x.# is denoted by f and the set of f is denoted #.

(4) A pure strategy for player i is denoted by o,. It is a sequence of
functions ¢/, one for each period r where player i must move. The function
at period ¢, o}, is the behavior strategy of player / at that period. It deter-
mines player i’s action at period t as a function of the last N, actions.

* Still we assume that players can identify the current time period.
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Formally, ¢/ # (N;)— A,.° The set of player i’s strategies is denoted by
X, A strategy profile (¢,,0,) is denoted by o, and the set of strategy
profiles X', x X', is denoted 2.

Any strategy profile o € X generates a path denoted by Q(a) = {qi(0)},,
i=1 (resp. 2) if t is odd (resp. even).” Let #’ denote the set of histories
of alternate actions of length . Let #* be an arbitrary history of length
t—1,ie, h*e #' ' The strategy profile and the path induces by ¢ on the
subgame following /* are denoted by o|,. and Q(ol,.), respectively. Given
h* e #'~ ! and the action «; € A, at period ¢, the continuation path induced
by o after (h*, a,) is thus Q(c],.,). In the following, we will consider the
set of all such period ¢ continuation paths. This set is referred to as
the period ¢ continuation set and is denoted by Q'(os), where Q'(o)=
{(a;, QO a))} he o The sequence of continuation sets, Q'(g), t=1, 2, ...,
is denoted by Q(c) = { Q'(a)},. Note that given a sequence of continuation
sets, we can easily construct the associated strategy profile. Hence, a
strategy profile can equivalently be described in terms of ¢ or Q(a).

The basic idea of this paper is that players’ strategies (i.e., choices of
actions) are to be based on their himited forecasts only. Hence, in order to
define the solution concept, we still must (1) specify a criterion based on
limited forecasts (the criterion will induce choices of actions given
forecasts) and (2) say how equilibrium forecasts are related to equilibrium
strategies.

We assume that players use the average per period payoff over the length
of foresight as their criterion. Such a criterion is natural, since the environ-
ment faced by the players is stationary and, by assumption, player / has no
idea of (or does not consider) what the stream of actions after n; periods
will be. In other words, the outcomes over the length of foresight are
viewed as a fair sample of all future outcomes, and we assume that the
associated average payoff is perceived by player / as a good approximation
of the true objective function. Formally:

DEFINITION 1. A strategy g, € 2, is justified by a sequence of forecasts

fi={f} e Fif

® The limitation to the last N, periods is due to the bounded recall of player i. At period
t, t < n;, there are less than N, past actions, and all previous actions must be considered: for
such periods ¢, we identify .#'(N;) with the set of histories of length ¢ —1.

"This path is defined inductively as follows: gl(6)=a!, and for t=2,...¢'* (o) =
ai " ([gilo) ... gjo) I,

¥ For notational convenience current actions are included in continuation sets.
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9(}0) Vi, Vhe #(N,), Va,cA, oih)earg, maxv,ha,f/(a;|h)),
and™

(2) Vi, t', YVhe #(N;), V' e #(N,), if (Va,eA,. vi([h]'a;fl(a;| 1)
=v,([h']'a, fI(a;| K"))), then ai(h)=a"'(h").

While condition (1) defines the criterion, condition (2) is a tie-breaking
rule, meaning that if all current actions yield the same value of the criterion
in two different situations, the same action should be chosen. Observe first
that condition (2) is relevant only when several actions yield the same
(maximum) average payoff over the length of foresight. ( Otherwise, condi-
tion (2) ts implied by condition (1).) Second, such a tie-breaking rule is
natural since it requires the choice of current action to depend exclusively
on the values of the criterion (which result from the values of the forecasts),
and we have assumed that the choices of current actions should be based
on limited forecasts only. Third, if we had introduced discounting, then for
arbitrary limited predictions and truncated histories, two different actions
would have generically yielded different average payoffs over the length of
foresight. Thus, condition (2} would have been generically irrelevant.''

We next assume that player i's equilibrium forecasts are related to equi-
librium strategies by a consistency relationship, which is defined as follows.
Given any history of length ¢+ —1, i*, and any current period ¢ action «;,
Q(ol4-,) is the continuation path induced by o after (4*, a,). At period 1,
the N, last actions are h=[h*]" Consistency requires that for every
(h*, a;), the prediction f/(a; | h) coincides with the truncation to the first n,
actions of the continuation path induced by o, [ Q(al,«,)],. In other
words, consistency means that forecasts are correct on and off the equi-
librium path. Formally:

DEFINITION 2. f,={f/}, € % is consistent with o € X if for every period
¢ where player i must move: Va, e A;, Vhi*e #' ', fl(a,| h) =[ Q6|4 10
with h=[h*]™.

° The last action of # matters because the game is alternate. Note that we could equivalently
consider as criterion r,([#]'a;f(a, | 1)), where only the last action of &, i.e., [/#]', matters.

'Y When n; = «, we use the overtaking criterion; i.e.. player i strictly prefers path Q to path
Q ifAT* st. ¥YT>T* ¢ ([ Q] ) —vd[Q T >0.

' By genericity, we mean that there is no rational combination of the single-period payofls
(different from the null combination) that is equal to zero. With no discounting, indifferences
may generically occur if. for example, in the 2x2 case n,=23, fZ*"(L|h)=DRU.
JFYRI M) =DLU, and [h]'=U. This is because ro{ ULDRU)=rv.(URDLU). However,
with discount factor ¢ (and discounted average as criterion), we generically have u,(U, L)+
Sur(D, L)+ s D, RY + S ur{ U, Ry #u( U, R) + durl D, R} + 8%us( D, L)+ #u~(U, L). Hence,
there is no indifference.
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We can now define the solution concept: An (#,, N,; n,, N,)-solution 1s
a strategy profile that can be justificd by consistent forecasts for players 1
and 2, ie., a strategy profile that is associated with sequences of forecasts
such that (1) players choose their actions in order to maximize the average
payoff over the length of foresight, and (2) player i’s forecasts for the
forthcoming »n; moves after his own move (given the past N, actions) are
correct on and off the equilibrium path. Formally;

DEerINITION 3 (THE SoLuTioN CONCEPT). A strategy profile o=
(o,,0,)eX1san (n,, N,;n,, N,)-solution if and only if there exists sequen-
ces of forecasts f={f,.f>)e.# such that for i=1,2,

(1) a;is justified by f; and
(2} [, 18 consistent with g,

Note that we have given no justification for why forecasts should be
correct in equilibrium. This issue is addressed in Jéhiel [4], where I discuss
a learning process based on limited predictions such that players eventually
learn to have correct forecasts. Hence, players eventually behave as in an
(n,.N,;n,, Ny)-solution.

2.3. Backward Construction

Consider an arbitrary forecast f;” for player i at period T. We show that
if /7 is associated with an (n,, Ny; n,, N,)-solution o, then the period 7 — |
equilibrium forecast associated with ¢ can be derived backward on the sole
basis of f7.

An example in the 2 x 2 case follows. Both players have the same length
of foresight n, =mn,=1, and the same memory capacity N, =N,=2. We
assume that there exists an (1, N,; n,, N,)-solution ¢ such that the asso-
ciated player 1's forecast at period 2k +1 is given by f7**'(U| UL)
=L, [F"YUJURy=R, [ U|DLy=R, f#**NU|DRy=L, and
SEND|ULY=R, [ (D| URY=R, f**(D|DLy=L, {3**Y(D| DR)
= L. Note that these forecasts do depend on the last two actions. We now
construct player 2’s forecast at period 2k, To fix ideas, we consider the
following single-period payoffs:

EXAMPLE 1.
UL UR DL DR
(3,2) (0,3) (2, 1) (2,0)

Consider period 2k with an arbitrary (2k — 1)-period history 2*. The last
action of 4* is U. If player 2 chooses to play L at period 2k, then the
history at period 2k + 1 1s (A*, L), and the truncation to be considered at
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period 2k + 1 is h=[h*, L] = (U, L). Using condition (1) of Definition 1,
we get that player I must choose U rather than D at period 2k + 1 because
e fhUFF U | hy) > ey (hDFFYD | ) (3+34+3>342+2) Conse-
quently, since {by consistency) the equilibrium predictions made by player
2 at period 2k must be correct, player 2 must forecast at period 2k that if
he chooses L, player | will choose U at period 2k+1: Va,e A,
JHL [ (a,, U))=U. By the same argument, we find that Va,e A,,
SHF(R | (ay, U))=D, fF(L|(a>,D))=D, and f#*(R|(a.,D))=D. We
have constructed the forecast at period 2k. Observe that player 2’s predic-
tions at period 2k only depend on the last action (even though they could
a priori depend on the last two actions since N, =2).

2.4 First Properties

The backward construction introduced in Subsection 2.3 is now used for
the general analysis of (n,, N,;n,, N,}-solutions. Starting from any
possible forecast at period T, f7, we can construct the equilibrium forecast
at period T—1, f7~', assuming that f7 is the period T equilibrium
forecast. This, in turn, restricts the set of possible equilibrium forecasts at
period 7—1. Starting from f7~', we next construct the equilibrium
forecast at period 7—2. Continuing in this way, we find that prior to
period T —Max(N,, N,), equilibrium forecasts necessarily have two
properties: (1) they are history independent, i.e. for t <7 — Max(N,, N,),
St | h)is independent of he s (N,), and (2) sequences { /7}, . 7 max(n,. A2
are cyclical, re., Jsst. Vi< T—Max(N,, N,),f/*=f]. Since T can be
chosen arbitrarily large, these two properties hold for the entire sequences
of equilibrium forecasts f;. Moreover, we can use the cycles of forecasts as
derived in the backward constructions to obtain the existence of (n,, N,;
n,, N,)-solutions.

PROPOSITION 1.  For arbitrary repeated alternate-move games with finite
action spaces A,,
(1) there always exists an {(n,, N; n,, N,)-solution,
(2)  equilibrium forecasts associated with (n,, N, n,, N,)-solutions are
history independent, and
(3)  sequences of equilibrium forecasts ([, [5) are necessarily cyclical,
re, ds s.t. Ve, fi = f] for i=1,2.
Proof.  Without loss of generality assume that n, = »,.

(1) We first prove that the equilibrium forecasts are history inde-
pendent. Let N =Max(N,, N,). Since all (n;, N:n,, N,)-solutions are
(n;, N; n,, N)-solutions, we can restrict our attention to N, =N, =N. Let
o be an (n,, N;n,, N)-solution, and f denote the associated sequence of
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forecasts. Let f7**' be the forecast of player 1 at period 2k +1. As in
Example I, we derive (backward) the equilibrium values of the forecast at
period 2k, ie., f3*(a, | h) for every he #'(N), a, € A,. Because the last
(N —1) actions of A, i, [A]" ', combined with the current action, a,,
of player 2 at period 2k fully determines an AN-length history (ie.,
([#1V ", @,)) at period 2k + 1, the action of player 1 at period 2k + 1 can
be derived on the sole basis of the last N— 1 actions of 4 using player I’s
forecast at period 2k + 1: That action must satisfy condition (1) of Defini-
tion 1. Since player 1’s forecast at period 2k + 1 is correct, player 1’s action
at period 2k + 1 yields the true stream of actions up to period 2k +n, + 1.
Since player 2’s forecast at period 2k is correct, and since the past (N —1}
actions fully determine the stream of future actions up to period 2k +#, + 1
as a function of his current action, it follows that player 2’s forecast at
period 2k may only depend on the past (N — 1) actions. Continuing the
backward construction for earlier periods, we find by induction that, at all
periods before 2k — N + 1, forecasts must be history independent (we use
condition (2) of Definition 1 for cases of indifferences). Since k& can be
chosen arbitrarily large, we have proven (2).

(i1) We next prove the existence of (n,, N,; n,, N,)-solutions. For k
large enough, consider an arbitrary forecast for player 1 at period
2k 4+ 1, £ 71, and construct the forecasts before 2k + 1 by backward induc-
tion as in 2.3. Since there is only a finite number of possible n,-length
forecasts for player 1, there exist k', k" £k’ s.t. f7* ! = +! The cyclical
sequence of forecasts where a basic cycle is defined by the chain of those
forecasts between periods 24"+ 1 and 2k"+ 1 defines implicitly an
(n,, N;n,, N,)-solution.

(ii1) Finally, we prove the cyclicity of (n,, N,;n,, N,)-solutions.
Since there is only a finite number of possible n, -length forecasts, at least
one forecast of player I must occur an infinite number of times in any
(n,, Ny;n,, Ny)-solution. Hence, there exist 1k} _, st Vm,nt,
Sitmt =k +1 By condition (2) of Definition 1 (or (1) if there is no indif-
ference), using the backward construction we obtain that f7%»=fZn
Continuing in this way, we can conclude that the sequence of forecasts is
necessarily cyclical, where a basic cycle is given by the chain of forecasts
between 2k, + 1 and 2k, + 1. QED

EXAMPLE 1 (CONTINUATION). We illustrate Proposition 1 through
Example 1. Given the forecast at period 2k constructed above, we proceed
to period 2k — 1. Using the backward construction, we find that the
forecast of player 1 at period 2k — 1 is history independent. We obtain that
Yh, e #(N)), f*=U|h)=L and f%* (D | h;)=L. Continuing in this
way, we next determine the forecasts of players 1 and 2 at all periods
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before 2k—1. We find that VA, e #(N,), Yh,e#(N,), VK <k,
FNULh) =, D h) =L, and f3 XL | hy)=U, f3**(R| hy)=D.

It follows that the forecasts at the periods preceding 2k do form a cycli-
cal sequence of history-independent forecasts. We conclude that the
original forecast of player 1 at period 2k + 1 (see Subsection 2.3) cannot be
part of a (1,2;1, 2)-solution, since such a forecast is never reached in the
above cycle. However, the above cycle allows us to construct a (1, 2;1, 2)-
solution. Consider 6 € X and fe .# defined by Yh, € #(N,), Vh, € #(N,),
Yk, [ NU )=/ (Dih)=L, f5(L | hy)=U, f*(R| h,)= D, and
ol=U o¥(hy)=L, o* " (UL)y=0¥*(DLy=U, o1**(UR)=07*"'(DR)
= D. It is readily verified that o i1s a (1. 2:1, 2)-solution associated with /.

Observe that (1) for any h*e #* 2 the continuation paths induced
by o after (h* U) and (h* D) are the same and given by Q(a|,..)=
Q(6l,ep) = LULU... and (2) for any h*e # * ~! the paths induced by o
after (h*, L), (h*, R) are Qlol,.,)=ULUL..., Qa|,«g}=DLUL...., respec-
tively.

Remark 1. Note that the cyclicity of (n,, N,; n,, N,)-solutions refers to
cycles in the sequence of forecasts, /], and not only in the actions actually
played in equilibrium. Observe that all (n,, N,; n,, N,)}-solutions can be
constructed by backward induction. For n, 2 n,, consider successively all
possible forecasts /7% * ! for player 1 and proceed to the backward construc-
tion. The associated cycles (implicitly) define all possible (n,. N, n,, N,)-
solutions.

Remark 2. One might infer from Remark 1 that the number of
(n,.N,;n,, Ny)-solutions is an increasing function of the lengths of
foresight since the number of possible forecasts increases as the lengths
of foresight get larger. However, this intuition is not correct in general, and
one can find parameter values in the 2 x 2 case for which the number of
(n,, N,; n,, N,)-solutions is not a monotonic function of »,.

We now use Proposition 1 to simplify notation. Proposition 1 shows that
the memory capacity has no effect on the set of solutions. Hence, we may
drop the parameters N, and N,. An (n,, N,; n,, N,)-solution is called an
{n,, ny)-solution. Similarly, we drop the parameter / in forecasts: f/(«a, | /1)
is replaced by f/(«;). The history independence of forecasts together with
condition (2) of Definition 1 also implies that the behavior strategy of
player i at period ¢ following history i* € #' ' only depends on t and the
last action of /i*, i.e., the action chosen by player ;j at period 7 — 1. This, in
turn, yields that the continuation path following (h* a,)e # ' 'x A4,, ie.,
Qfo|,.,). may only depend on ¢ and player i’s action at period ¢, a,: This
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path is more simply denoted Q'(«,)."* The continuation set at period ! is
then Q"= {(«,, Q"(4,))} . .4, As an immediate consequence of these obser-
vations we get:

COROLLARY 1. Let a be an (n,, n,)-solution and Q'(a,) be the associated
continuation path following action a; at period t. Assume that the Oth action
of Q'la,) (ie., the action at period t +0) is the same whatever a; € A,. Then
Jor all ¢ =0, the ¢th action of Q'la;) (ic., the action at period t+ ¢) is the
same whatever a; € A;.

Proof. Since for arbitrary s, the action at period 7+ s+ 1 only depends
on the action chosen at period ¢+, the result is derived by induction.
Q.ED

Corollary | allows us to simplify further the notation of equilibrium con-
tinuation sets. Since equilibrium forecasts are consistent, f/(a;) =[ 0(«4,}],,
for all «; and ¢ (see Definition 2). Hence, equilibrium forecasts can be con-
structed from equilibrium continuation sets. Consider now an (n,, n,)-solu-
tion and suppose that, at period ¢, the equilibrium value of the (fth action
of Q'(u;) is the same for all ¢;,. Without loss of information with respect to
the choice of current action, the continuation set at period ¢, Q', can be
reduced to the first 0 actions. This is because Corollary 1 guarantees that
the information contained in the reduced continuation set is sufficient to
compare the original #,-length predictions of player i on the basis of player
i’s criterion, even if 0 <n,."?

Simplified Notation. (1) From now on, an (n,, n,)-solution ¢ will be
described in terms of the sequence of continuation sets, Q= {Q'}, that o
generates.

(2) The original representation of continuation sets is identified with
the reduced one.
(3) In the 2 x 2 case, continuation sets Q¥ ' and Q* are denoted by

voR Ty, LOPA(L :
(pSw ap)) and (£8u(%)). respectively.

To illustrate the reduction process, consider the (1,1) (originally
(1, 2; 1, 2))-solution constructed in Example 1. The continuation paths at
action of Q¥ ~'(U) is the same as that of Q* l(D) the continuation
set at period 2k — 1 can be reduced to the first action: It simplifies into
Q* ~'=(4E). Similarly, because the second action of Q**(L)=ULUL... is

can be reduced to the first two actions: It simplifies into Q% =(%57).

2 The reference to ¢ is omitted for simplicity.
" In such a situation, we have Arg, max(ha,[ Q'(a,)],) = Arg, maxr,(ha Q] Q'(a,)],).
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(4) To summarize, the continuation sets associated with the (1, 1)-
solution of Example 1 are Q% '=(5%) and Q% = (45%) for all k. We say
that this (1, 1)-solution is defined by the cycle: Q'=(}H)« Q" '=

(EEEy — Q" 2= (LF). (Note that the arrow indicates that we proceed to the
next period.)

2.5. When a Player Is Better Off with a Shorter Length of Foresight

In an example, we compare the payoffs obtained with different lengths of
foresight. The example is chosen so that for every (n,, n,). all equilibrium
outcomes lead to the same payoffs. At first glance, one might think that for
a given length of foresight of player j, the longer the foresight of player i,
the better for player /. This intuition is led by the idea that an increase in
n, makes the criterion of player i/ closer to his true objective function. This
loose argument is not correct in general, since an increase in player i’s
length of foresight may adversely affect the behavior of player j, even if
player j keeps the same length of foresight n,. The following example shows
that the payoff to player / may not be an increasing function of player i’s
length of foresight »n,. More, it shows that player / may be better off not
being fully rational.

ExaMmPLE 2. Player 2’s length of foresight is 1, and the single-period
payoffs are:

UL UR DL DR

(a=1.ad" =1) (hb=2,¢'=2) (c=3,b"=5) (d=1,d =6)

Assume first that player I’s length of foresight 1s 0. All (0, l)-solutions lead
to the cycle (55) e (£PLy — (LF). This is because ¢ >a, b>d. a’ +b'>2¢',
2b'> ' +d', and (ﬁ’zhe— (5r) whatever X and Y. The sequence of actions
actually played at any (0, 1)-solution is DLDL..., which leads to player I's
average payoff ¢ =3.

Assume now that player 1 is rational: His length of foresight is n, = oc.
One can check that all (oc, 1)-solutions lead to the cycle (f,’f)«— (EB) «
( DRy« (LPRYy — (LF). This is because ¢>a, b>d c+d>a+b a +b>2c,
2b' > +d', c'+d’>a +b', d'>b', ¢'>d, which also guarantees that

LDYy o (85), (BY) « (5R), and (55Y) < (LX) whatever X, Y. The sequence
of actions actually played at any (oo, 1)-solution is DLDRDLDR..., which
leads to player 1’s average payoff 1(c +d)=2<3. Player 1 gets more by
having a myopic behavior (n, =0) rather than by being fully rational
(h,=oC).
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3. HYPERSTABILITY

3.1. The Concept

This section proposes a concept of stability, called hyperstability, in
connection with the concept of an (#,, i1,)-solution.

DEFINITION 4. A strategy profile o is hyperstable if there exist n¥ and
n¥ such that ¢ i1s an (n,, n,)-solution for all (n,,n,) with n, >nf¥ and
n,>n¥.

Hyperstable solutions have highly desirable properties. First, they are
robust to increases of the lengths of foresight. Assume in a learning context
(see Jéhiel [47]) that player i, once he is able to correctly forecast the
forthcoming n, moves after his own move, decides to forecast the forth-
coming 1, + 1 moves. Provided the lengths of foresight of players 1 and 2
are sufficiently large, a hyperstable solution is immune against such
behavioral changes. Second, hyperstable solutions are also robust to reduc-
tions of the lengths of foresight. Assume that at some point of the learning
process, player 7 finds it unnecessary to be very sophisticated. He may then
decide to reduce his length of foresight. As long as his length of foresight
n, remains larger than n*, the players may keep the behavior strategies
induced by the original hyperstable solution. Third, in an evolutionary con-
text (see Maynard Smith [6]), a hyperstable solution is a solution that is
immune against many types of invaders. More precisely, whatever his type
(length of foresight) player / will not change his behavior strategy if his
opponent (i.e., player j) is replaced by any invader with length of foresight
n;>n*. Finally, note that hyperstable solutions are rational solutions since
the case of rational players (n, =n, = oc) is covered by Definition 4.

As far as the existence of hyperstable solutions is concerned, one might
think at first glance that it is not problematic: Proposition 1 ensures that
(n,,n,)-solutions are defined by cyclical sequences of forecasts. If, for
(n,, n,) sufficiently large, we can find an (n,, #,)-solution o such that the
length of the cycle induced by o is smaller than n, and n,, then cyclicity
ensures that no new information about future behavior is obtained when
the lengths of foresight increase. Such a strategy profile might well be
hyperstable. However, a uniform upper bound on the length of the cycle
induced by (#,, n,)-solutions does not necessarily exist. The point is that
by increasing #n = Max(n . #.), the set of possible n-length forecasts is also
enlarged: When the action spaces have the same cardinality # A4, the best
upper bound on the length of the cycle induced by an (n,, n,)-solution is
then ( # 4)"*'. Consequently, it is not « priori possible to ensure (for large
n, and »,) that there exists an (n,, n,)-solution with a length of cycle
smaller than », and »n,.
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3.2. Results in the 2 x2 Case

A somewhat surprising result is that for generic repeated alternate-move
2 x2 games there exists at least one hyperstable solution (3.2.1). Hyper-
stable solutions are completely characterized in the 2 x2 case (3.2.2), and
an example is provided where the set of hyperstable solutions bears no
relationship to the set of Markov perfect equilibria (3.2.3).

3.2.1. Existence

THEOREM 1. For generic' repeated alternate-move 2 x2 games, there

exists at least one hyperstable solution.

The proof of Theorem | heavily relies on the specificity of the 2 x 2 case.
It 1s relegated to the Appendix. The proof is constructive. Take the con-
tinuation set at period &k (k large) to be any continuation set reduced to the
first action (i.e., the continuation paths from period &+ 1 on are inde-
pendent of the period k action): Q* = (55), (5R) if k is odd or (£5), (&5 if
k is even. Assuming that the lengths of foresight are infinite (n, =n, =),
we use the backward construction as introduced in Subsection 2.3 to derive
the sequence of continuation sets Q* at every period k', k' <k. Using
genericity arguments (see Lemma | in the Appendix), we find that it is
always possible to construct @ so that as many Q as we wish can be
reduced to the first action.' Since there are only four possible continuation
sets reduced to the first action, we conclude that, in this sequence, there are
necessarily two identical continuation sets reduced to the first action.
Define 0={Q'} ~, to be a cyclical sequence of continuation sets where
one cycle is defined by the chain of O between the two identical reduced
continuation sets as constructed above. Clearly, Q is an (o, o )-solution.
Moreover, if T is the length of the cycle induced by @, it is readily verified
that Q is an (n,, n,)-solution for all n,,n,>T—1. Hence, O is a hyper-
stable solution. Note that in the above construction, all continuation sets
Q' can be reduced to a finite number of actions, that is, they are such that
for some finite 0, the associated stream of actions from period ¢+ ¢ on is
independent of the period ¢ action.

'* We need that w,(U. R)#u,(D, L), u{U, R) +u, (D, LY#u{D, R) +u{U, L) for i=1,2
and all similar inequalities obtained by permuting U and D, and/or L and R. Those are only
a finite number of inequalities on the components of the single-period payoff matrix which are
generically satisfied.

5 In the 2x 2 case, Lemma | imposes so much structure that we are able to derive such a
property from the backward construction.
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3.2.2. Characterization

DeFINITION 5. Hyperstable solutions @ ={Q"} %, such that all con-
tinuation sets Q' can be reduced to a finite number of actions are called

simple hyperstable solutions.

The proof of Theorem 1 as sketched above shows that for generic
repeated alternate-move 2 x 2 games, there exists at least one hyperstable
solution such that all continuation sets can be reduced to a finite number
of actions, i.e., a simple hyperstable solution. We now show how to con-
struct a// simple hyperstable solutions. Observe first that in the 2 x 2 case,
if at some period ¢ the continuation set Q' can (minimally) be reduced to
a finite number € of actions, then at period ¢+ () — 1, the continuation set
Q' " ! can necessarily be reduced to the first action. Consider next the
sequence of predecessors of Q' obtained in the backward construction with
n, =n,=oc, where Q' can be any continuation set reduced to the first
action. Such backward constructions necessarily lead to c¢yeles in the
sequence of continuation sets {see the proof of Theorem 1). It 1s readily
verified that the set of these cycles define all simple hyperstable solutions.

Remark. It can be shown that the length of the cycle (in the sequence
of continuation sets) induced by a simple hyperstable solution can be
arbitrarily large. Moreover, for a given per period payofl matrix, simple
hyperstable solutions may at most lead to four different cycles that
correspond to the four continuation sets reduced to the first action.

We next investigate whether there may be hyperstable solutions that are
not simple. To this end, we first note that the sequence of continuation sets,
0={0Q") . where Q> ) Q% = (Rlinreip ) for all k. is
hyperstable (with n¥*=n*=0) if b>a, ¢>d, c+d>2a, a+b>2d,
a+c¢>2d, b+d>2a, and o' >, d'>b, B +d >2' d 4+ >20,
a4+ b >2¢, ¢ +d >2b" Since such conditions can be met, and since no
Q' € O can be reduced to a finite number of actions, we conclude that some

hyperstable solutions may not be simple.

A

Fs

DeriNiTION 6. The sequence of continuation sets Q={Q‘}/, is
completely alternate if it is of the form Q% '=(LLPRULDE. ) 2k -

(keibrers ) for all k (or the similar sequence obtained by permuting U

and D, say).

There are only two completely alternate solutions, and we have shown
above the conditions on the per period payoff matrix that guarantee the
existence of completely alternate hyperstable solutions (for the other com-
pletely alternate solution, use permutations). In the Appendix we prove
that:
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THEOREM 2.  Hyperstable solutions of generic repeated alternate-morve
2 x2 games are either simple or they are completely alternate.

3.2.3. Comparison with Markov Perfect Equilibria

Because action spaces are finite, discounted repeated alternate-move
games are known to possess at least one stationary equilibrium, ie., a
Markov perfect equilibrium for which the current state is minimally defined
to be the action chosen in the previous period (see Fudenberg and Tirole
[2]). Several authors justify the Markov perfect equilibrium (MPE) on the
grounds that it is simple. The concept of hyperstability is clearly another
approach to simplicity. For a specific repeated alternate-move 2 x 2 game,
we show that the two notions of simplicity may lead to very different out-
comes.

ExAMPLE 3.
UL UR DL DR
(2,2) (7, 1) (L 1) (4, 10)

Hyperstable solutions are all simple. They are strict (no indifferences)
and all correspond to the cycle (55) (558 LDy (LK Ly,
The sequence of actions actually played at any hyperstable solution is
RDRURDRU... The average payoff to player /i is defined by
uAU, R)+u, (D, R)]: Each player receives 5.5.

Consider now the discounted game, where player /’s criterion is the dis-
counted means over his length of foresight. For discount factors sufficiently
close to one, because hyperstable solutions without discounting are strict,
they are still hyperstable even with discounting. Clearly, the sequence of
actions played at the hyperstable solution cannot correspond to a MPE,
since after action R of player 2, player 1 chooses alternatively U and D.
Actually, the difference between hyperstable solutions and MPE is even
more severe. Consider the limit as the discount factor goes to one of the
MPE of the discounted repeated alternate-move game. One can first
observe that an MPE in pure strategies fails to exist. (Gurvich [3] also
provides a Markov game with finite action spaces and no MPE in pure
strategies.) Moreover, the limit as the discount factor goes to one of the
unique MPE 1s such that player 1 chooses D when he sees L; he plays
U with probability 4/9 and D with probability 5/9 when he sees R.
Player 2 chooses R when he sees D; he plays L with probability 3/4
and R with probability 1/4 when he sees U. Such reaction functions
cannot be related to the sequence of actions played at the hyperstable
solution. (They lead to average payoffs 5 and 4 to players | and 2, respec-

)
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tively.) We conclude that there is no relationship between hyperstable
solutions and MPE.'®

4. CONCLUDING REMARKS

Before discussing the solution concept in view of the limited horizon
forecast interpretation, observe that at least two alternative interpretations
of the (. n,)-solution concept can be given.!” First an (n,, n,)-solution is
Sformally equivalent to the consistent outcome of the sequential game with
the same structure as described in Subsection 2.1, where players have now
a perfect forecast of the entire future but have tastes which vary along the
play path (see Strotz [11]): player i’s current taste should be then given
by the average payoff obtained over the next »; periods.

Second, the (n,n,)-solution concept can be given an overlapping
generations interpretation. Consider two countries i =1, 2. Each country is
composed of overlapping generations. The representative (or median voter)
of country 1 (resp. 2) chooses an action (or policy) a, € A4, (resp. a, € 4,)
at every odd (resp. even) period. That action remains the same for the next
period (because of political inertia, say). The representatives of countries
i=1, 2 change every other period. At every period 7, the representative of
country / who is in charge of the current policy is assumed to have an
exogenously given age. The country i policy maker at period ¢ dies at
period t+n,+ 1: He is thus only concerned with the forthcoming n,
periods. Assume that individuals do not discount the future as long as they
are alive, and that, given the current policies («], ¢5), the period ¢ payoff
to an individual in country i (who is alive at period ¢) is u(a}. a5). It is
readily verified that an (n,, n,)-solution is a subgame perfect Nash equi-
librium of that multi-player game. Moreover, hyperstable solutions are
solutions which are robust to variations of the lengths of lifetimes in coun-
tries 1 and 2.

Coming back to the limited forecast interpretation, we note that the
(n,, n,)-solution concept can hardly be justified with an eductive approach
(see Binmore [ 1]’s terminology). To see this, let n, =n, =n, for simplicity.
If player i were able by introspection to correctly forecast the forthcoming
n moves after his own move, he would be able to understand the reaction
function of player j for the next period. But, in order to find out his current
action at the following period, player j needs forecasts for his forthcoming
n actions. From the original viewpoint of player i, this represents the

1 If we restrict ourselves to cases where there exists an MPE in pure strategies, we still find
that the relationship between hyperstable solutions and MPE is ambiguous.
" am grateful to the associate editor for this observation.
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forthcoming # + 1 actions. If this argument is pursued, we see that with the
eductive approach, the correct forecasting of the next n periods requires a
full understanding of all subsequent actions, that is, full rationality. It may
then be questionable why players only consider a limited number of (and
not all) forthcoming actions.

In Jéhiel [4], I provide a learning justification for the (n,, n,)-solution
concept that somewhat follows the line of Kalai and Lehrer [5]. Player i
initially has a (private) belief over infinite sequences of forecasts f; (as
introduced in Subsection 2.2), chooses current actions so as to maximize
the expected average payoff over the forthcoming n, periods given his
current belief, and updates his beliefs according to Bayes’ rule. By allowing
the possibility of trembiles, it is shown that if the initial beliefs of the players
assign positive weight to sufficiently many sequences of forecasts, players
eventually learn to make correct forecasts and the play of the game is
asymptotically (for small trembles) that of an (#n, n,)-solution.

APPENDIX

Proof of Theorem 1. Take player 1’s continuation set to be Q' =(55).
Assuming that n, = n, = 20 (see Footnote 10), we next proceed to the back-
ward construction (as introduced in Subsection 2.3) starting from Q@ '. We
inductively define Q ~** "' to be the continuation set that precedes Q * for
every k in that construction. This yields an infinite sequence of continua-
tion sets {Q %} r_ .18

Cuse 1. There exist an infinite number of k s.t. @ % can be reduced
to the first action. Since there is a finite number (4) of continuation sets
that are reduced to the first action, we are sure that there exist &" and k"
such that @ % and Q * can be reduced to the first action, and
Q “ =0 *. As explained in the main text, we now define the sequence
Q=1{0%* ', Q*} 7_, to be cyclical where a basic cycle is implicitly given
by the chain of Q % between Q % and Q ~*": 0 is a hyperstable solution.

Case 2. There is a finite number of k. s.t. Q% can be reduced to the
first action. Consider the smallest & such that Q —* can be reduced to the
first action. Without loss of generality (wlo.g), we assume that it
corresponds to Q' = (%), The predecessor of Q' is either Q "2 =(%P%)

or @ 2=(%YL) (since the two other possible continuation sets can be

¥ Since an infinite sequence is considered, we cannot assume that Q ' occurs at some given
finite period. (Otherwise, @ ~' would only have a finite number of predecessors.) However, the
backward construction can still be used for the derivation of the infinite sequence: It is as if
Q! occurred at infinity.

642°67:2-16
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reduced to the first action). Assume w.lo.g. that Q =(&P%). Since Q °
cannot be reduced to the first action, elther Q’z D”Zgﬁ or Q= (325

We will show that generically only Q LePly is possible. Similarly,

generically only QO ‘=(LPKEyand Q ° ,;ﬁ‘ffﬁ,’i) will be possible. Given
the form of O °, we will be able to expllcltly construct a hyperstable solu-
tion in this case. The fact that generically Q *=(%%P%) relies on the

I)R( ‘L
following lemma which is proven below.

LEMMA 1. For generic repeated alternate-move 2x2 games, let
Q=10'1 -, denvte the sequence of continuation sets associated with an
{oc. oo)-solution. Then, there is no period t such that the continuation set Q'
e orm (P
is of the form ( ,’;'_ Z"; ), where x, y are any finite lists of (alternate) actions,

(a;, b )eA; x A;, (a;, b))e A, x A, {j#1), and b, (resp. b)) stands for the
action in A,; (resp. A»,) other than a; (resp. a,).

Assume now (by contradiction) that @ *=(3®.%) From Lemma 1
applied to a,=U (b,=D), ¢;=R (b;=1L), .\—)—L. we know that
Q *#(LLREL) Since Q% cannot be reduced to the first action (by
assumption in Case 2), we conclude that Q *=(%PLPL)  Again from
Lemma 1 applied to «, —L. w;=D, x=DL, y=UL, we know that
Q *#(HEPEPLY Since Q° cannot be reduced to the first action, we have
Q “=(5F5F5r). Continuing in this way (using Lemma 1), we find that
Q Frh=(phityand Q = (5080 for all k where (X), designates the
repetition of X, & times. However, generically the matching (U, R) and
(D, L) do not give the same payofl to players 1 and 2, in particular to
player 1. Assume, for instance , that u,(U, R)>u,(D, L). We are sure then
that there exists k* such that ¢ (L{UR).. UL)> v (I{DL),.DL) and
t{R(UR)UL)> v (R(DL),.DL). Consider the step —(2k* + 1) for which
we have shown that Q 7+ =({[®e 1%y The above inequalities can be
used for the derivation of Q¢ % ? in the backward construction starting
at Q- *"* 1 They imply that Q *" % L)=Q *" *R)=(UR),. UL. We
conclude that the continuation set Q%" 2 can be reduced to the first
action so that Q@ " 2= (LY, which contradicts the premise that @ %" 2

cannot be reduced to the first action. Hence, Q '#(LF5%), and
S3_(uLoL )
Q I)RUL

Slmllarly, we obtain that Q *=(%0R05) and Q 7 = ([&PR5E). This con-

figuration is possible. However, we now show that, for such a configura-
tion, Q° =(§)‘f) is also possible. Because, in the latter situation,
Q '=Q °=(Y5), we can construct a hyperstable solution as in Case 1. It

1s implicitly given by the cyclical sequence of continuation sets where a
basic cycle is (I)L)*(ﬁ’ii‘) (brez) < (ilrnr) (1‘5‘?

To see that @ “=(4F) is possible whenever Q@ ° = ( 55PRULy {5 possible,
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let us have a closer look at the derivation of Q °(D)= RULDL. We must
compare

Uo(DLDRUL)Y=us{D, L)+ u(D, LY+ u-(D, R)+ u,(U, R)y+ u,( U, L)
and
t5(DRULDL) =us(D, R) + u (U, RY+u,(U, L) +uy(D, LY+ u,(D, L).

These two expressions are the same. Hence, for such a configuration, both
Q (D)= RULDL and Q~3(D)= LDRUL are possible. In the former case,
we find that Q °=(YLPRUL) while in the latter case, we find that
Q °=(55) (Note that, for such a configuration, the hyperstable solution
that we have constructed above is not strict; that is, at some nodes of the
game tree, there are some indifferences and these are generic.)

Since we have exhausted all possible cases and shown that in each case
there exists a hyperstable solution, we have shown Theorem 1. (Observe
that a hyperstable solution as in Case 1 always exists.) QED

Before we prove Lemma 1, we prove:

LEMMA 2. For generic repeated altenate-move 2x2 gumes, let Q be a
hyperstable solution. Then, there is no period t such that the continuation set
Q' is of the form (:’,‘;22‘:) where x,y are any lists of (alternate) actions,
(a;, b)e A, x A, (a;,b)eA; x A; (j#1i), and b; (resp. b)) stands for the
action in A; (resp. A;) other than a; (resp. a;).

Proof. Consider a hyperstable solution Q= {Q'} |, and suppose by
contradiction that there is k s.t. Q% =(45%5Y) This also implies that
Q**2=(LPY) Since Q is hyperstable, it is also an (n, + 1, n,)-solution and
an (n, + 3, n,)-solution for n, sufficiently large. Consider player 1’s length
of foresight to be n, + 3 at period 2k + | and »n, + 1 at period 2k + 3, where
n, 1s sufficiently large. X and Y are then relevant only up to their n, first
actions. We consider the truncations to the », first actions of X and Y. For
notational convenience, we still denote these truncations by X and YV,
respectively. Given that Q% "2 = (42%) is part of a (n, + 1, n,)-solution, we
have

v (LDY) = v (LUX) (1)
and

v (RUX) =z t(RDY). (2)
Similarly, given that Q* = (£5RUY) is part of an (n, + 3, ny)-solution, we
have
v,(LURUX) = v,(LDLDY) (3)
e,(RDLDY) > t,(RURUX). (4)
By adding up (1), {2), (3). and (4), we obtain that 0 > 0.
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This implies that there are only equalities in (1), (2), (3). and (4).
By adding up (1) and (2) now, we obtain that u, (U, R)+u,(D,L)=
u (D, R)+u,(U, L). Since such a requirement is generically false, we have
shown Lemma 2. QED

Proof of Lemma 1. Consider, by contradiction, an (oo, oo )-solution,
Q={Q'} . such that for some k, Q* =(%0RLY) where X, Y are finite
lists of actions. (This implies that Q* "2 =(%P¥) and both Q** and Q% **
can be reduced to a finite number of actions.) At period 2k (resp. 2k +2),
the criterion of player 1 that is defined by n, = oc 1s equivalent to the
criterion defined by any s, +3 (resp. n, + 1) greater than the number of
actions to which @ (resp. Q***?) is reduced. By considering such an »n,,
we can replicate the proof of Lemma 2 to show Lemma 1. QED

Proof of Theorem 2. Assume the sequence Q={Q%* ' Q*};r , is
hyperstable.

Case 1. An infinite number of Q% can be reduced to the first action.
Then, there exist two stages k' and &” such that Q% = Q" = 0, where Q
can be reduced to the first action. We now inductively use the fact that if
limited forecasts are the same at periods ¢ and ¢”, the backward construc-
tion (for n,>n}) should yield the same limited forecasts at periods 1 — |
and " — 1. This implies that the sequence 0 ={Q* ', 0*} 7, is cyclical
where a basic cycle is defined by the chain of Q' between Q¢ and Q"
Hence, it is a simple hyperstable solution.

Case 2. A finite number of Q* can be reduced to the first action.
Then, there is a stage s such that from this stage on, continuation sets can-
not be reduced to a finite number of actions. Suppose that the sequence of
continuation sets from stage s on is not completely alternate. From
Lemma 2, we can deduce that there is a stage k* where the continuation

set is of the form ({YE#£RUL.y (Tf this were not the case, we would have,
(DRWULDR...

say, (\prroftey ). which implies that there is a period for which the
continuation set is (5PRPLN). This contradicts Lemma 2 applied to
a,=D,a;=R,x=LW, and y = RZ). This implies that the continuation set
at period k* + 2k is (jr0rprer. ) Given the cyclicity of the continuation
sets after stage k* +2k (and condition (2') of Definition 2), we can
conclude that the sequence has to be completely alternate. Hence, when a
hyperstable solution is not simple, it is necessarily completely alternate.

QED
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