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Abstract

We develop a simple model that accounts for the widely spread

intuition that as committees get large, (well chosen) majority rules

are preferable to unanimity. The model is one of collective search

in which members do not control the proposal put to a vote. The

main drawback of unanimity is that it makes it too difficult to find a

proposal acceptable by all, which in turn induces extra costly delays

in comparison with majority rules. The best majority rule is the one

that solves best the trade-off between speeding up the decision process

and avoiding the risk of adopting too inefficient proposals.

1 Introduction

It is widely accepted that when a committee is too large and must adopt

decisions by unanimity, it does not function well.1 This is, in essence, what

∗PSE, 48 Boulevard Jourdan, 75014 Paris. e-mail:compte@enpc.fr
†PSE and UCL; e-mail: jehiel@enpc.fr
1This view is expressed in various ways in a number of classic writings. For example,

Black (1958, page 99) writes:

”The larger the size of majority needed to arrive at a new decision on a

topic, the smaller will be the likelihood of the committee reaching a decision

that alters the existing state of affairs.”
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has led the EU to adopt the Lisbon treaty in recent years. As the EU has

grown larger, it has become clear that maintaining the requirement that

decisions should be approved by unanimity would lead to much inaction,

and the Lisbon treaty was precisely proposed to correct this deficiency (by

lowering the majority requirement for a number of decisions).

Despite the wide acceptance of such a claim, the bargaining literature has

difficulties providing a rationale for it. For example, following the legislative

bargaining literature (pioneered by Baron and Ferejohn (1989)) and viewing

committees as bargaining over the division of a pie of fixed size, unanimity

is found to be no worse than any other majority rule (in fact all majority

rules are welfare equivalent).2 Even more striking: if one extends the basic

Baron-Ferejohn’s setup to allow for the size of the pie to evolve according

to a stochastic process, then the unanimity rule provides a welfare efficient

outcome (see Merlo and Wilson (1998)) and other majority rules typically

lead to welfare inferior outcomes (see Eraslan and Merlo (2002)).

We revisit this essential question by applying a collective search frame-

work first developed in Compte and Jehiel (2004-2009) (see also Albrecht et

al. (2009) — which is discussed further below — for other applications of this

setup). In the collective search model, the members of the committee do

not control the proposals put to a vote. Their strategic decision consists in

voting on whether they are in favor of the proposal or whether they prefer

waiting for a better alternative. If the proposal put to a vote receives the

support of the required majority, it is implemented. Otherwise, the search

process continues.

Such a collective search framework is we believe well suited to model a

number of collective decision processes such as those taking place in the EU

or in other organizations representing diverse interests, public or private.

And Buchanan and Tullock (1962) express related concerns about the cost of unanimity

rules.
2This is because an agreement is reached immediately in all cases.
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More precisely, whenever financial capacities are scarce, as is the case in

virtually all organizations, implementing a tentative proposal or financing a

tentative project would come at the cost of making future proposals harder

(or even impossible) to implement. Moreover, a tentative proposal generally

comes together with how the rents it generates are distributed among the

various concerned parties. To the extent that proposals are not under the

(perfect) control of parties, the collective decision making in such situations

is well described as a collective search process.3

Observe that the collective search model is flexible enough to accommo-

date the idea that the various possible proposals may correspond to different

aggregate payoff or welfare (the sum of utilities of the various committee

members or the size of the pie in Eraslan and Merlo’s framework) so that it

can accommodate the idea that the size of the pie may be stochastic (as in

Merlo and Wilson’s work). A key difference between collective bargaining

and collective search though is that under the collective bargaining approach

all possible partitions of the pie are simultaneously available, while under

the collective search approach, a proposal at a given date determines both

the size of the pie and how the pie would be divided among the committee

members: some other proposals for partitioning the pie will eventually arise,

but only through later draws. With patient players however, this difference

between the two approaches would not seem to matter a great deal, as in

principle each member could at little cost wait for a division he would like

to see proposed. What this paper shows is that the two approaches actually

lead to predictions that differ substantially.4

3In the collective search model to be analyzed later, there is room for only one project.

We conjecture that similar insights would carry over in setups allowing for flows of projects

and bounded capacity.
4Our finding shares some similarities with Diamond’s observation that small search

costs on consumers’ side would lead competing oligopolists to charge the monopoly price

as if there were no competition, in sharp contrast with the analysis of the frictionless

case (Bertrand competition). Here, we show that even as members are very patient (so
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Our collective search setup will be used to characterize simply the welfare

associated with the various majority rules in the limit of large committees

and patient members. We shall characterize the optimal majority rule, and

in particular, we shall establish (as a corollary) that the unanimity rule is

not the optimal rule. Inefficiencies in our setup can take two forms. Either

a proposal that is not welfare optimal is approved or there is excessive delay.

The unanimity rule always induces inefficiencies in the form of delay (in par-

ticular, inefficiencies continue to arise in the unanimity case even when all

proposals are welfare-equivalent), thereby confirming the intuition that una-

nimity would lead to much inaction in large committees. As one decreases

the majority requirement starting from unanimity, one eventually reaches a

point at which mostly those proposals with maximal welfare are accepted

and almost all of them are accepted. This is the optimal majority rule. Un-

der further symmetry assumptions on how the welfare is distributed among

committee members, this optimal majority rule corresponds to the simple

majority rule.5 As one lowers further the majority requirement beyond the

optimal majority rule, then inefficiencies arise again and they typically take

the form that welfare inefficient proposals may be adopted too early.

While the latter form of inefficiency obtained for majority requirements

less stringent than the optimal majority rule is similar to the inefficiency

derived in the collective bargaining model of Eraslan and Merlo (2002) (for

rules other than unanimity), the inefficiency of the unanimity rule (as well as

the inefficiency obtained under majority requirements more stringent than

the optimal one) is specific to the collective search approach of our model,

and does not arise in the collective bargaining approach.6

that search frictions may be considered to be small), the collective search model and the

collective bargaining model have very different predictions.
5More precisely, a majority rule is characterized by a scalar α, i.e. the fraction of players

required for the proposal to pass. The optimal majority rule corresponds to setting α equal

to the probability that the idiosyncratic part of the rent is positive.
6Aghion and Bolton (2003) consider a two-period collective bargaining model that
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2 The Model

We consider a committee consisting of n members, labeled i = 1, ..., n. At

any date t = 1, ..., if a decision has not been made yet, a new proposal

is drawn and examined. A proposal is denoted u. The set of proposals

is denoted U . If the proposal u is implemented, it gives member i utility

ui. The utilities (ui)
n
i=1 of the proposal u may vary from one proposal to

the next. Each ui belongs to [u, u], and we assume that proposals at the

various dates t = 1, .. are drawn independently from the same distribution

with continuous density f(·) ∈ ∆([u, u]n).

Upon arrival of a new proposal u, each member decides whether to accept

that proposal. We consider various majority rules. Under the k-majority

rule, the game stops whenever at least k out of the n members vote in favor

of the proposal.

We normalize to 0 the payoff that parties obtain under perpetual dis-

agreement, and we let δ denote the common discount factor of the committee

members. That is, if the proposal u is accepted at date t, the date 0 payoff

of member i is δtui. Observe that we allow that u be negative, that is, we

do not impose that proposals deliver payoffs above the status quo payoffs to

all members.

Strategies and equilibrium. In principle, a strategy specifies an accep-

tance rule that may at each date be any function of the history of the game.

We will however restrict our attention to stationary equilibria of this game,

shares some similarities with our basic insight. More precisely, when transfers are suffi-

ciently costly, Aghion and Bolton find in their setup that the unanimity rule is not opti-

mal as less stringent majority rules may allow smaller groups to adopt welfare improving

projects without the consent of the hurt agents who would resquest (costly) compensations

(thereby making the project non-profitable when the transfer costs are big enough).

Compared to their model, our collective search approach allows us to obtain similar

insights about the inefficiency of unanimity even in the limit as search frictions get small,

thereby dispensing with the assumption of exogenous large transfer costs.
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where each member adopts the same acceptance rule at all dates.7

Given any stationary acceptance rule σ−i followed by members j, j �= i,

we may define the expected payoff v̄i(σ−i) that member i derives given σ−i

from following his (best) strategy. An optimal acceptance rule for member

i is thus to accept the proposal u if and only if

ui ≥ δv̄i(σ−i),

which is stationary as well (this defines the best-response of member i to

σ−i).

Stationary equilibrium acceptance rules are thus characterized by a vec-

tor v = (v1, .., vn) such that member i votes in favor of u if ui ≥ δvi and votes

against it otherwise. For any k-majority rule and value vector v, it will be

convenient to refer to Av,k as the corresponding acceptance set, that is, the

set of proposals that get support from at least k members when failing to

agree today yields member i a continuation payoff of vi (from the viewpoint

of next period):8

Av,k = {u ∈ U,∃K ⊂ {1, ..., n}, | K |= k, ui ≥ δvi for all i ∈ K}.

(1)

Equilibrium consistency then requires that

vi = Pr(u ∈ Av,k)E[ui | u ∈ Av,k] + [1− Pr(u ∈ Av,k)] δvi (2)

or equivalently

vi =
Pr(u ∈ Av,k)

1− δ + δPr(u ∈ Av,k)
E[ui | u ∈ Av,k]. (3)

7To avoid coordination problems that are common in voting (for example, all players

always voting ”no”), we will also restrict attention to equilibria that employ no weakly

dominated strategies (in the stage game). These coordination problems could alternatively

be avoided by assuming that votes are sequential.
8For any finite set B, | B | denotes the cardinality of B.
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A stationary equilibrium is characterized by a vector v and an acceptance

set Av,k that satisfy (1)-(2). It always exists, as shown in Compte and Jehiel

(2004-2010).

3 On the cost of too stringent majority rules

The objective of this paper is to understand the disadvantage of having too

stringent majority requirements as the number n of committee members

get large. Before we address this by specifying further the distribution of

proposals, we provide a simple example illustrating that unanimity may be

undesirable in some cases.

The simplest illustration of this is obtained in the following symmetric

setup for which symmetric (stationary) equilibria are considered.

Claim: Assume proposals u are all such that the welfareW (u) =
∑

i

ui is constant, say with value w > 0, and proposals are drawn

according to a uniform distribution on U =

{
u |

∑

i

ui = w

}
.

Then expected welfare increases when the majority requirement

is decreased.

When proposals are welfare equivalent, the majority rule affects the ex-

pected welfare only to the extent that it speeds up the agreement. In-

tuitively, the claim holds because under less stringent majority rule, the

acceptance set gets bigger.

To show this formally, observe that by symmetry, the acceptance thresh-

old δvi is the same for all members and depends only on the majority

requirement k. Denote by v∗k, the per-member welfare obtained in equi-

librium under the k−majority rule, and by π∗k the equilibrium probability

of agreement. Assume by contradiction that one can have k1 > k2 and
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v∗k1 ≥ v∗k2 . Given that Pr(u ∈ Av,k) is decreasing with k and v, we would

have π∗k1 = Pr(u ∈ Av∗
k1
,k1) < π∗k2 = Pr(u ∈ Av∗

k2
,k2). Since the expected

welfare v∗k is an increasing function of the probability of agreement π∗k,
9 we

must have v∗k2 > v
∗
k1
, contradicting the premise that v∗k1 ≥ v

∗
k2
.

In more general settings, when the welfare associated with the various

proposals may vary (and members may possibly be ex ante asymmetric), a

different conclusion may arise. To get further insight about the pros and

cons of tightening the majority rule, we decompose the various effects of the

majority requirement on the ex ante welfare as measured by the expected

sum of utilities obtained by all committee members in equilibrium.

Specifically, defineW (u) ≡
∑
i ui as the welfare associated with proposal

u, by vk the equilibrium value profile associated with the k-majority rule,

and by Wk ≡
∑
i v
k
i the associated ex ante welfare. Summing expression (3)

over all members i yields:

Wk ≡
Pr(u ∈ Avk,k)

1− δ + δPr(u ∈ Avk,k)
E[W (u) | u ∈ Avk,k] (4)

Expression (4) shows that there may be two factors reducing welfare as

compared with the maximum possible welfare level W̄ = max
u∈U

W (u):

- There may be delays, because it may take some time before a proposal

gets accepted: the smaller the term
Pr(A

vk,k
)

1−δ+δPr(A
vk,k

) , the more severe the

decrease in welfare due to delays.

- The acceptance set may contain inefficient proposals in the sense that

some proposals in Avk,k may not belong to argmax
u∈U

W (u). The reduction in

welfare is all the more severe that Avk,k is far away from argmax
u∈U

W (u).

Why majority rules may dominate?

Intuitively, for a given profile of acceptance thresholds, as one reduces

the majority requirement k, the acceptance set increases, hence delays are

9This is because E[ui | u ∈ Av,k] = w/n so (3) implies v∗k =
π∗
k

1−δ+δπ∗
k

w

n
.
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reduced. However, the acceptance set may now allow for proposals that are

further away from the Pareto frontier, thereby inducing a welfare loss.

In case proposals are mostly efficient as in the simple example provided

above, the term E[W (u) | u ∈ Avk,k] in Expression (4) remains close to W̄

for all k, hence the only source of decrease in welfare is delay. Majority rules

then dominate the unanimity rule because they reduce delay. Of course the

comparison may be reversed when proposals may be significantly inefficient

and members are patient enough (so that delay costs become negligible).

Comparison with first-best.

To conclude this Section, we compare the equilibrium outcomes with

the first best. Note that given the search friction (i.e. the randomness of

proposals), waiting may be socially desirable,10 and the maximum welfare

that members can jointly obtain may be strictly smaller than W̄ . Let w̄

be that welfare value.11 The socially efficient acceptance set Ā would thus

consist of the proposals u for which W (u) ≥ δw̄:

Ā = {u |W (u) ≥ δw̄}.

All k-majority rules whatever k are socially inefficient because they induce

acceptance sets that cannot take the form Ā. For any tentative v, k-majority

rules either exclude proposals that are welfare superior to δW (v) (this is for

example the case under the unanimity rule), or they include proposals that

are welfare inferior to δW (v). When the majority requirement is increased,

inefficiencies of the second type are reduced, but inefficiencies of the first

10Because the current proposal may be too inefficient.
11It is the value obtained in a standard one-agent search model in which this agent’s

utility is W (x), x arrives according to f(·) and the discount factor is δ.
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type are generated.

1

2

Unanimity

Accepting these proposals
would increase welfare

A

1

2

Majority

Rejecting these proposals
would increase welfare

A

A

δv

δv

δv

δv

The Figure above provides an illustration in a simple three member

setting in which member 3 would always accept (because, say, all proposals

are equivalent for him). The figure draws the acceptance set in the space of

members 1 and 2’s preferences under the unanimity rule (Left) and under

the majority rule (Right).

4 Optimal majority rule in large committees

We now turn to our main question of interest, that is, how the majority

rule should be set in large committees so as to maximize welfare. We will

consider symmetric settings and symmetric (stationary) equilibria so that

the ex ante payoff is the same for all members, and welfare can be identified

with any member’s payoff.

Specifically, member i assesses proposal u according to:

ui = x+ θi

The common part x is drawn in each period according to a density g(·) on

[x, x]. We assume that the conditional expectation z → E(x | x > z) is

a smoothly differentiable function of z with slope no greater than 1. This
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holds true for the uniform distribution and for many more densities g(·) with

bounded variations.

The idiosyncratic parts θi are drawn independently across periods and

across members according to a smooth density h(·) on [−1, 1]. We assume

that E(θi) = 0,12 and we define α0 as the probability that the idiosyncratic

part is positive:

α0 ≡ Pr(θi > 0).

When θi is symmetric around 0, we have α0 =
1
2 .

4.1 Equilibrium analysis

We wish to analyze how the various majority rules compare in terms of

expected welfare as the number of members grows large. Specifically, we

will compare the ex ante payoff obtained by every member in equilibrium

under the various majority rules. In making this comparison, we shall set

the discount factor close to 1 (patient members) and make the number of

members grows arbitrarily large.

When the number of members grows large, whether a proposal is ac-

cepted or not depends almost exclusively on the realization of x (this is due

to the law of large numbers, as we shall see). In subsequent results we refer

to α = k
n
as the majority rule where k is the majority requirement defined

in Section 2. For every α and δ, there will be a threshold x∗ such that, as

n grows large, only proposals such that x > x∗ are accepted. Our objective

below is to characterize x∗.

Let us first define v(x∗, δ) as the expected payoff that any member re-

ceives if all proposals such that x > x∗ are accepted and only such proposals

are accepted. We have:

v(x∗, δ) ≡
Pr(x > x∗)

1− δ + δPr(x > x∗)
E(x | x > x∗) (5)

12This is just a normalization, since if E(θi) �= 0 we can add E(θi) to x.
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Note that our assumption that z → E(x | x > z) has slope less than

1 implies that z → v(z, δ) has slope less than 1. Also note that x∗ = x

corresponds to the case where all proposals are accepted (so v(x, δ) = E(x)),

while x∗ = x corresponds to the case where no proposals are accepted (so

v(x, δ) = 0).

The following figure draws v(., δ) for a discount factor δ = 0.95, assuming

that x is uniformly distributed on [−1, 3], and θi is uniformly distributed on

[−1, 1].

-1 -0.5 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

The function v(., δ)

The figure illustrates that starting from x, a more stringent acceptance

threshold x∗ increases welfare, up to the point where this would reduce

so much the probability of acceptance that welfare starts decreasing.

The complete characterization of the equilibrium as n grows large goes

as follows. For every α, define θ∗(α) as the threshold that solves:

Pr(θi > θ
∗(α)) = α

or equivalently:

1−H(θ∗(α)) = α

where H(·) denotes the cumulative of h(·). The threshold θ∗(α) is thus

set so that each member i has a probability α to have his idiosyncratic

part θi exceed θ
∗(α). As n grows large, by the law of large number, α will
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approximately correspond to the fraction of members for which θi exceeds

θ∗(α). Observe that when α gets close to 1, θ∗(α) gets close to −1, while

when α gets close to 0, θ∗(α) gets close to 1. For the uniform distribution

for example, H(θ) = (1 + θ)/2 so θ∗(α) = 1− 2α.

Now assume that v∗ is the equilibrium expected payoff received by each

member. A member votes in favor of a proposal x whenever

x+ θi > δv
∗. (6)

For a given x, the number of members in favor of the proposal is thus

a random variable: it corresponds to the number of realized value of θi

for which (6) holds. As n grows large however, the proposal receives the

support of a share of members approximately equal to Pr(θi > δv∗ − x)

with probability close to 1. Thus, given the majority rule α, proposal x

goes through whenever Pr(θi > δv∗ − x) > α, or equivalently whenever

θ∗(α) > δv∗ − x. That is, whenever:

x > δv∗ − θ∗(α).

So as mentionned earlier, in equilibrium, as n grows arbitrarily large, a

proposal x is accepted if and only if it exceeds some threshold x∗.13 Thus

by definition of v(., δ) (see (5)) we must have:

v∗ = v(x∗, δ)

Three cases may thus be distinguished, depending on whether the thresh-

old x∗ is interior, or x∗ = x̄ (no proposal accepted), or x∗ = x (all proposals

accepted).

In the first case (interior solution), the threshold x∗ must solve:

δv(x∗, δ) = x∗ + θ∗(α) (7)

13The statement only holds at the limit where n grows very large. Proposition 1 will

make a precise statement for the case where n is large but fixed.
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If x−δEx+θ∗(α) < 0 < x̄+θ∗(α), equation (7) has a solution x∗, and since

z → v(z, δ)− z is decreasing, that solution is unique.

In the second case (no proposals accepted), the candidate equilibrium is

x∗ = x̄. Perpetual disagreement is indeed an equilibrium when

x̄+ θ∗(α) ≤ 0

Finally, in the third case (all proposals are accepted), the candidate

equilibrium is x∗ = x, and immediate agreement on whatever proposal is

indeed an equilibrium when

x− δE(x) + θ∗(α) ≥ 0.

It follows that for each value of α, one and only one of the three cases

above applies, thus the threshold x∗ is uniquely defined.

Going back to the above case of uniform distribution, the following figure

explains graphically how the threshold x∗ is obtained for the unanimity rule

α = 1 (in which case θ∗(α) = −1), and for the majority rule α = 1/2 (in

which case θ∗(α) = 0).

-1 -0.5 0.5 1 1.5 2 2.5 3
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0.5

1

1.5

2

2.5

Deriving x∗

As one decreases the majority requirement α, θ∗(α) increases, hence so

does the line x+θ∗(α). As the figure above illustrates, the threhold x∗α shifts
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to the left. Under the assumptions of the figure (δ = 0.95) and starting from

the unanimity rule, this shift increases welfare.

As mentioned earlier, the analysis above has been made for the case

where n is arbitrarily large. The next proposition makes a formal statement

for cases where n is large but fixed. It is proven in Appendix.

Proposition 1. Fix α and for every n consider the majority requirement

k(n) = Int(αn) where Int(αn) denotes the integer that is closest to αn. For

every ε > 0, there exists n such that for every n > n, the expected equilibrium

payoff obtained by every member in the k(n) majority requirement w(δ, n)

satisfies |w(δ, n)− v(x∗, δ)| < ε where x∗ is the threshold just defined.

4.2 Comparative statics with patient members

As the above Figure illustrates, Proposition 1 can be used to compare the

welfare obtained under different majority scenarios. We now do these com-

parisons assuming that members are patient.

We start by considering majority rules α that are more stringent than

α0 (recall that α0 ≡ Pr(θi > 0)). For any such majority rule α, we have

θ∗(α) ≤ 0, so Proposition 1 tells us that the threshold x∗ should satisfy

δv(x∗, δ) = x∗ + θ∗(α) ≤ x∗

Now, for values of x∗ bounded away from x̄, δv(x∗, δ) is arbitrarily close to

E[x | x > x∗], hence it exceeds x∗. It follows that x∗ must get close to x̄ as

the discount factor δ tends to 1.14

The consequence for welfare is immediate. Assuming for simplicity that

x > 1 (so that even under the unanimity rule, perpetual disagreement can-

not be an equilibrium), we obtain that when the majority rule is α ≥ α0,

14Note that in this thought experiment, we have first taken n to infinity and then

considered the limit as δ goes to 1, which fixes the order in which the limits should be

taken for this exercise to be valid.
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members (each) get an expected payoff equal to

x̄+ θ∗(α)

So when the majority requirement coincides with α0, θ
∗(α) = 0 and

every member gets in expectation a payoff equal to x. This is clearly the

maximum welfare that one can hope to get in this problem, and it clearly

dominates the welfare obtained under more stringent majority rules. In

particular, under the unanimity rule, each member obtains x̄− 1.

In all cases above, only proposals such that x is close to x are accepted,

but while under the majority requirement α0 this is achieved at almost no

additional cost, under more stringent majority rules there is an extra delay

cost which can increase up to 1 under unanimity. This delay cost of 1 is the

one that is necessary to obtain the approval of all members as opposed to

only an α0 majority of them.

As now one decreases the majority requirement below α0, we have θ
∗(α) >

0. For any such majority requirement, Proposition 1 tells us that δv(x∗, δ) =

x∗+θ∗(α), which implies, since v(x∗, δ) ≤ x̄, that x∗ must be bounded away

from x̄. This further implies that when members are patient, δv(x∗, δ) is

close to E(x | x > x∗). Hence, x∗ solves

x∗ + θ∗(α) = E(x | x > x∗). (8)

Equation (8) confirms that the threshold x∗ is strictly below x. Expected

welfare, which coincides with E(x | x > x∗) is below x̄ as well, and there are

thus inefficiencies as compared with the α0 majority rule. Note that this time

the inefficiency takes the form of having members accept too many proposals

as compared to the optimal case, which is very different from the inefficiency

due to delay identified in the unanimity case.15 Too many proposals are

15This inefficiency (unlike the delay inefficiency) is similar to the inefficiency identified

in Eraslan and Merlo (2002).
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accepted because members are afraid that proposals even worse for them

are adopted by a sufficient majority. Note that this fear of expropriation

may in turn lead members to have an overall negative welfare whenever

E(x | x > x∗) < 0 (remember 0 is the status quo payoff). Also note that

as the majority requirement decreases below α0, the threshold x
∗ decreases

and the inefficiency increases.

To summarize,

Proposition 2. As the number of members gets large and δ goes to

1, expected welfare is maximized for the α0 majority rule. Any majority

rule α > α0 induces inefficiencies in the form of delay. Any majority rule

α < α0 induces inefficiencies in the form of having too many proposals being

accepted.

The following figure summarizes how welfare varies as a function of α,

assuming as before uniform distributions.16
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Expected (per member) welfare as a function of α

Comment. At first, the conclusion of Proposition 2 may seem at odds

with the observation made in Albrecht et al. (2009) that as members get
16For uniform distributions, α0 = 1/2 and θ∗(α) = 1 − 2α. When α > 1/2, welfare is

equal to x̄ + θ∗(α). When α < 1/2, welfare is equal to x∗ + θ∗(α), where x∗ + θ∗(α) =

(x̄+ x∗)/2, implying that x∗ + θ∗(α) = x̄− θ∗(α).
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very patient, the best rule is the unanimity rule (see also Compte and Jehiel

(2004) for an early statement of the same insight in a less general class of

examples). Yet, in Proposition 2, the number of members is supposed to be

large, and the conclusion that the majority rule α0 is optimal holds true only

in the limit as n goes to infinity more quickly than δ goes to 1 (which is a

more concrete way of interpreting the order of limits in the above analysis).

4.3 Collective search vs collective bargaining

In our collective search framework, the best majority rule is interior, as we

have just shown. For comparative purpose, we now consider the correspond-

ing collective bargaining framework, and we will show there that the more

stringent the majority requirement the better (thereby confirming insights

from Merlo and Wilson (1998) and Eraslan and Merlo (2002)).

The collective bargaining we consider is as follows. A pie is to be divided

among the various committee members. As long as agreement on how to

partition the pie has not been reached, a new pie is drawn. In every period,

the size z of the pie is drawn at random from a distribution with density

g(·) on [z, z̄]. The draws at the various periods are independent of each

other. Members are equally patient (with discount factor δ), and they are

each selected to make a proposal with the same probability. A proposal

consists of a splitting of the current pie among the various members with the

constraint that every member should receive a non-negative share of the pie.

After the proposal is made, there is a vote. The sharing is implemented and

bargaining stops if the proposal receives the support of at least k = Int(αn)

members. Otherwise, one moves to the next period, which has the same

structure.

We consider stationary equilibria of the above collective bargaining game.

As in the case of collective search, we consider the case of large n. Calling

vb(α, δ) the expected equilibrium welfare obtained by members under the
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α-majority rule, we obtain that pies of size z get implemented whenever a

fraction α of the members can each be allocated a payoff equal to vb(α, δ)/n,

that is, taking the limit as n grows large, whenever:

z > δαvb(α, δ).

Thus, vb(α, δ) is the solution to

vb(α, δ) = v(αvb(α, δ), δ)

where the function v(·, ·) is the one defined in (5).

Taking the limit as δ goes to 1, the welfare gets close to E(z | z > zb(α))

where zb(α) is the unique solution to:17

αE(z | z > zb(α)) = zb(α).

It is readily verified that α→ zb(α) is increasing in α and converges to z̄ as

α converges to 1. The corresponding welfare (which is equal to E(z | z >

zb(α))) is also decreasing in α. To summarize,

Proposition 3. As the number of members gets large and δ goes to

1, in the collective bargaining model, expected welfare is maximized for the

unanimity rule. Expected welfare is an increasing function of the majority

rule α.

To illustrate Proposition 3, assume that z is uniformly distributed on

[z, z̄]. We have that zb(α) = max( α
2−α z̄, z) and the corresponding welfare

17If x > αE(x | x > x) set x = xb(α).
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E(z | z > zb(α)) is depicted in the following fi

0.5 1

0.5

1

1.5

2

2.5

3

The welfare function vb(α, 1)

The contrast between Propositions 2 and 3 is striking. The collective

search model explains why unanimity is undesirable in large committees,

and the collective bargaining model does not.

5 Conclusion

This paper has provided a very simple model that accounts for the widely

spread intuition that as committees get large, (well chosen) majority rules

are preferable to unanimity. Unlike the well developed models of collec-

tive bargaining (with transferable utility) which would unambiguously favor

unanimity, our model assumes that members do not control the proposal

put to a vote. The main drawback of unanimity in such collective search

settings is that it makes it too difficult to find a proposal acceptable by all,

which in turn induces extra delay costs in comparison with majority rules.

The majority rule should not be too low though, as it would result in the

acceptance of too inefficient proposals. The best majority rule is the one

that solves best this trade-off.18

18A very different argument in favor of majority as opposed to unanimity follows the

line of the Condorcet jury theorem by suggesting that majority rules may better aggregate
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Appendix

Proof of Proposition 1. For any w we define π(w) ≡ Pr(x > −θ∗(α)+

δw), and u(w) = E[x | x > −θ∗(α) + δw]. Also define w∗ as the value

satisfies:

w =
π(w)

1− δ + δπ(w)
u(w) (9)

Note that by construction, we have w∗ = v∗(x∗, δ) and x∗ = −θ∗(α) + δw∗.

We show below that the equilibrium value must be close to w∗ when n

gets large. The argument makes use of the following lemma (some form of

the law of large numbers). Define the events Bε, Cε,Dε as:

Bε = {#{i, θi > θ
∗(α) + ε}/n > α}

Cε = {#{i, θi < θ
∗(α)− ε}/n > 1− α} (10)

Dε = {
1

n

∑

i

θi /∈ [−ε,+ε]} (11)

and let Eε denote the event complement to Bε∪ Cε ∪Dε.

Lemma. ∀ε,∃n such that for all n > n,Pr{Eε} > 1− ε.

Now choose ε small, and n large enough so that the inequality of the

Lemma holds (n > n̄).

Assume now that the equilibrium value is w. We are going to establish

bounds on w. To this end, it is convenient to denote by A the event where

the current proposal passes. It is also convenient to denote by F+w,ε the event

{x > −θ∗(α) + δw + ε}, by F−w,ε the event {x < −θ
∗(α) + δw − ε}, by F 0w,ε

the event complement to F+w,ε ∪ F
−
w,ε. Note that since the distribution over

proposals has a continuously differentiable density, there exists h such that

Pr(F+w,ε) < hε

Observe that under F+w,ε, member i accepts x if θi + x > δw, hence a

fortiori if θi > θ
∗(α)− ε. Under event Eε, there is a fraction α of members
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for which this is true, hence such proposals x must pass. Similarly, under

event Eε ∩ F−w,ε, proposals cannot pass. It follows that in any period, a

proposal passes with probability at least

π− ≡ Pr(Eε ∩ F
+
w,ε) = (1− ε)π(w + ε/δ)

and at most

π+ ≡ 1− Pr(Eε ∩ F
−
w,ε) = 1− (1− ε)(1− π(w − ε/δ)).

We now derive bounds on the expected payoff that any given member i

obtains, conditional on the event A where the current proposal passes.

Observe that by symmetry, for all x,

E[θi | A] = E[
1

n

∑

i

θi | Ax]

which implies that

| E[θi | A ∩Eε] |< ε.

Finally we have seen that Eε ∩ F+w,ε ⊂ A and that Eε ∩ F−w,ε ∩A = ∅, thus:

Pr(Eε ∩ F
+
w,ε | A) > 1− PrEcε − PrF 0w,ε > 1− (1 + h)ε

It follows that E[x+ θi | A] is bounded above by

u+ ≡ (1− (1 + h)ε)E[x | F+w,ε] + (1 + h)εū

and bounded below by:

u− ≡ (1− (1 + h)ε)E[x | F+w,ε] + (1 + h)εu

where ū and u are bounds on the payoff that any member may get. The

equilibrium value must satisfy:

π−

1− δ + δπ−
u− < w <

π+

1− δ + δπ+
u+

As ε get small, π+ and π− converge to π(w), and u+ and u− converge to

u(w). Hence w must converge to the (unique) solution of (9), that is, w∗.

Q. E. D.
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