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Abstract

We study a n−person bargaining problem where offers are gener-

ated randomly and each party decides to accept or reject the current

proposal. Bargaining terminates when n0 out of the n agents accept

the current proposal. The effect of patience, the number of players,

as well as the majority requirement (n0) are examined. For example,

as n0 increases, we find the following tradeoff: more efficient outcome

are obtained, but it takes more time to reach them. We also relate the

solutions obtained to some classic results in bargaining and voting.

1 Introduction

A central feature of Rubinstein’s alternating offer bargaining game is the

assumption that each party in turn makes a take it or leave it offer to the

other party, and that each party has full control over which offer he makes

to the other party. In equilibrium, a party whose turn it is to move has a
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strategic advantage, that he exploits by choosing an offer that makes the

responding party indifferent between accepting the offer now and getting

that strategic advantage for herself next period (thus at the cost of delaying

the agreement).

In practice however, the proposals put on the table are often the outcome

of a complex process, that both parties try to influence, but over which

neither party has full control. Besides, preferences may be subject to random

shocks. In such circumstances, even a player who would have full control

over offers made in the physical space would find it difficult to target a

specific utility level for the other parties.

A first objective of the paper is to provide a model of bargaining where

parties no longer have full control over the offers made along the bargain-

ing process. In the basic version of the model, proposals will be drawn at

random, and negotiation will continue until an agreement is reached, that

is (in case unanimous consent is required), until all parties accept the same

proposal. In effect, we are thus transforming the standard bargaining model

into a simple timing game in which each party just decides when to say

”yes”.1

A second motivation for our work is to provide a new and simplemodel of

multi-party bargaining. Many folk ideas in multi-person bargaining do not

yet, to our knowledge, have theoretical support. For example, it is frequently

suggested that bargaining with many parties should be more difficult than

bargaining with few parties. Also, it would seem that agreement is more

difficult to obtain when agreement requires unanimous consent, than when a

smaller majority requirement prevails. No theory comes in support of these

1Another way to think of our model is in terms of a multi-person search process gov-

erned by a pre-agreed termination procedure (i.e. a majority requirement to enforce the

choice of a proposal).
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intuitions however.2,3 We believe that our model with random proposals

outlined above may be a good step towards a better understanding of these

issues.

The paper is organized as follows. We present the model in Section 2,

and analyze the trade-off between various majority requirements in Section

3. One strength of our model is its simplicity. This allows us to deal with

standard set-ups, but also with less standard ones. Section 4 and 5 show

that despite its simplicity, our model generates the usual solutions in the

classic set-ups. And it provides novel insights in the less standard ones.

Finally, in Section 6, we analyze some extensions of our model to the case

where parties have some control or influence over the proposals put on the

table.

2 The Model

There are n parties, labeled i = 1, ..., n. At any date t = 1, ..., if an agree-

ment has not been reached yet, parties receive a proposal for agreement.

The set of proposals will vary in a space of dimension m ≥ 1. We denote by
x a proposal, by X the set of proposals, and we assume that X is isomor-

phic to [0, 1]m. We also assume that proposals at the various dates t = 1, ..

are drawn independently from the same distribution with continuous density

f ∈ ∆(X). So players have no influence on the proposals that get to the
negotiation table. In Section 6, we will amend the model and analyze the

case where parties may affect the distribution of proposals.

2Theory might even provide support for the opposite intuition: A core allocation exists

under unanimity rule, while it does not under, say, majority rule.
3A recent and interesting exception is Cai (2000, 2002) who considers settings where

one active bargainer negotiates sequentially with N passive bargainers. (Inefficient delays

occur in these models because bargaining is sequential, and each passive player prefers to

be the last one to negotiate with the active player). Such results are in the vein of the

hold-up literature.
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At any date, after a proposal x has been made, each party (sequentially)4

decides whether to accept the proposal. Under the unanimity rule, the game

stops whenever all parties accept the current proposal. Under the majority

rule, or any qualified majority rule, the game stops whenever, say, n0 out of

the n agents decide to accept.5

We let ui(x) denote the utility that player i derives at date t from an

agreement x obtained at t. We assume that ui(.) is continuous, and we

normalize to 0 the payoff that parties obtain in the absence of agreement.

Let X0 denote the set of proposals that are individually rational for all

players:

X0 = {x ∈ X,ui(x) > 0 for all i}
Throughout the paper, we will assume that X0 is non-empty.

We assume that payoffs are discounted with a common discount factor δ,

so that viewed from date 1, agreement on x obtained at date t yields party

i a discounted payoff equal to δt−1ui(x).

In principle, a strategy specifies an acceptance rule that may at each

date be any function of the history of the game. We will however restrict

our attention to stationary equilibria of this game, where each party adopts

the same acceptance rule at all dates.

Given any stationary acceptance rule σ−i followed by other parties, we

may define the largest expected payoff v̄i(σ−i) that player i may derive given

σ−i from following his (best) strategy. An optimal acceptance rule for party

i is thus to accept the proposal x if and only if

ui(x) ≥ δv̄i(σ−i),

which is stationary as well (this defines the best-response of player i to σ−i).
4We assume the responses are made sequentially to rule out the weakly dominated

strategies that may be used in such coordination problems. An alternative is to assume

that players do not use weakly dominated strategies.
5More generally, a termination procedure could be described as a general function of

individual acceptance decisions.
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Under unanimous consent, stationary acceptance rules may thus be char-

acterized by a vector v = (v1, .., vn) that satisfies, in equilibrium:

vi = PE[ui(x) | uj(x) ≥ δvj ∀j] + (1− P )δvi (1)

where P = Pr{uj(x) ≥ δvj ∀j}, or equivalently

vi = ρE[ui(x) | uj(x) ≥ δvj ∀j] (2)

where

ρ =
P

1− δ + δP

It will be convenient to refer toA as the acceptance set. Under the unanimity

rule, this acceptance is defined by:

A = {x ∈ X,ui(x) ≥ δvi∀i}.

Under more general termination procedures, such as the qualified majority

rule (n0), the acceptance set becomes:
6

A = {x ∈ X,∃N0 ⊂ {1, ..., n}, | N0 |= n0, ui(x) ≥ δvi∀i ∈ N0},

and equilibrium values satisfy

vi = PE[ui(x) | x ∈ A] + (1− P )δvi (3)

where P = Pr(x ∈ A).
One of our objective will be to compare equilibrium values under various

majority requirements. Before turning to the analysis of the model, we first

derive an existence result:

Proposition 1: Whatever the majority requirement (n0), a sta-

tionary equilibrium exists.

Proof: Define the function v → φ(v), where φi(v) coincides with the

RHS of Equation (3), and let ū = maxi,x ui(x). The function φ is continuous

from [0, ū]n to itself, hence it has a fixed point. Q. E. D.

6For any finite set B, | B | denotes the cardinality of B.
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3 Unanimity versus Qualified majority.

We start with an application of our model to multi-party bargaining. Our

objective is to analyze the trade-off between the unanimity rule and the

various possible majority requirements. Our model will give substance to the

idea that more stringent majority requirements improve the efficiency of the

agreement reached, but at the cost of more delays in finding an agreement

(because finding a proposal that satisfies more people takes more time).

In order to quantify this trade-off, we make specific assumptions in this

Section concerning preferences and the distribution over proposals. Specif-

ically, we examine the case of a surplus of size S to be shared, assuming

transferable utilities and a distribution over offers that is uniform on the

simplex, X = {x ∈ R+n ,
P
i xi ≤ S}. We will later return to more general

assumptions.

3.1 Inefficiencies under unanimous consent.

Bargaining under unanimous consent will induce inefficiencies, essentially

because parties have to wait for a proposal that satisfies everybody. Intu-

itively, as the number of players grows, it should be more difficult to get a

draw that satisfies all players, and the resulting inefficiency will therefore

grow with the number of parties. We will confirm that intuition in the next

Proposition in the case of patient parties.

Before that note that with arbitrarily patient players, bargaining will

be close to efficient. Indeed, assume by contradiction that the equilibrium

value vector remains away from the Pareto frontier by some amount ∆

even as discounting gets close to 1. Then, for any equilibrium value v,

the acceptance set A = {x ∈ X,ui(x) ≥ δvi} would be large and the
probability of agreement P significant (i.e. comparable to ∆n), which means

that agreement arises relatively fast (with probability close to 1, it will occur

before a date small compared to 1/(1 − δ)). In particular, agreement will
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continue to arise fast even if, say player 1 raises his acceptance level by

∆/2. Hence this would be a profitable deviation, because he would obtain

δv1 + ∆/2 >> v1 relatively fast. Even though the outcome must be close

to efficient, there are still some inefficiencies left. The following Proposition

quantifies how the inefficiency grows with the number of participants:

Proposition 2: Assume ui(x) = xi and that there is a surplus

S to be shared. Let ∆n be the efficiency loss, and let r(n) =

(1 − δ)1/n. (a) If the distribution over offers is uniform on the

simplex X = {x ∈ R+n ,
P
i xi ≤ S}, then, for δ close to 1, we

have:

∆n/S = (
n+ 1

n
(1− δ))1/(n+1) + o(r(n+ 1)))

(b) If the distribution over offers is uniform on the (n-1-dimensional)

simplex X = {x ∈ R+n ,
P
i xi = S}, then, for δ close to 1, we

have:

∆n/S = r(n) + o(r(n))

Besides, in both cases, in any period the probability of agreement

is comparable to (1− δ)/∆n.

Proposition 2 implies that as the number of parties grows, the inefficiency

grows substantially. When 1 − δ = 1/10000, unanimous consent among 4

participants already implies an efficiency loss comparable to 10%. Note that

inefficiencies would remain substantial, even if offers were more ”localized”,

that is closer to the offer (S/n, ..., S/n). Assume that offers fall in the simplex

X∆ = {x ∈ R+n ,
P
i xi ≤ S, xi ≥ S(1−∆)/n}. Then it is easy to check that

∆n/S is reduced by a factor ∆.

Proposition 2 also shows that, not surprisingly, when offers may be in-

efficient, the efficiency loss increases further. The reason is that conditional

on satisfying all players, the offer now involves an efficiency loss (comparable

to n/(n+ 1)).
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Proof: Because f is symmetric, there exists a symmetric equilibrium

characterized by v. Let V = nv be the sum of equilibrium values, and

s =
P
i xi. In case (a), we have.

P = Pr{xi ≥ δv} = (1− δV/S)n

and7

V = ρE[s | xi ≥ δv ∀i] = ρ(δV +
n

n+ 1
(S − δV ))

with ρ = P/(1−δ+P ). Ignoring the terms of order higher than 1 in (1−δ),
these equalities imply that

n+ 1

n
(1− δ)V/S = (1− V/S)n+1.

which further implies the desired statement.

In case (b), we have

P (v) = (1− δV/S)n−1

and

V = ρS

which implies, ignoring the terms of order higher than 1 in (1− δ),

(1− δ)V/S = (1− V/S)n

which implies the desired statement. Q. E. D.

3.2 Inefficiencies under qualified majority rule.

Now how different is the situation when only a qualified majority of n0 < n

participant is required? Then the set of realizations for which agreement

will occur is much larger, and most importantly, its measure does not tend

7Note that since f is uniform, E[s | s ≤ s0] = n
n+1

s0. (This is because the volume of

the (n− 1)-dimensional simplex,P
i
xi = s is equal to as

n−1 for some constant a).
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to 0 when players become arbitrarily patient. So agreement will obtain much

faster. To see why intuitively, observe that parties cannot expect more than

S/n on average. So they will accept any proposal that gives that amount.

Let

A0 = {x ∈ X,∃N0 ⊂ N , | N0 |= n0, xi ≥ S/n for all i ∈ N0}

In any period, the probability of agreement is at least equal to PrA0. The

set A0 contains the simplex

B = {x ∈ X,xi ≥ S/n for i = 1, ..., n0, and xi ≥ 0, for i = n0 + 1, ..., n}.

Compared toX, B is just a smaller simplex, with edges of length S(1−n0/n)
instead of S. So its volume if just the fraction (1−n0/n)n the volume of X.
Hence the probability of agreement never vanish as δ tends to 1.

So there is a benefit to the qualified majority rule. But of course there

is also a potential cost, because agreement may occur even if this is at

the expense of the n− n0 parties: n0 players may agree even if the n− n0
remaining parties gets 0 in that agreement. So the outcome may lie far away

from the Pareto frontier. The next Proposition examines this trade-off.

Proposition 3: Assume ui(x) = xi and that there is a surplus S

to be shared. Let ∆n be the efficiency loss. (a) If the distribution

over offers is uniform on the simplex X = {x ∈ R+n ,
P
i xi ≤ S},

then, for δ close to 1, we have:

∆n/S =
1− n0/n

n+ 1− n0/n +O((1− δ))

(b) If the distribution over offers is uniform on the (n-1-dimentional)

simplex X = {x ∈ R+n ,
P
i xi = S}, then, for δ close to 1, we

have:

∆n/S = O(1− δ)

Besides, in both cases, there exists a > 0 such that the probability

of agreement in any period exceeds a independently of δ.
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So case (b) corresponds to a case where there are no loss to less stringent

majority requirements, because proposals are always efficient. The only

effect is to speed up agreement, which improves overall efficient compared

to the unanimity rule. In case (a) however, there is a cost, which increases

as the majority requirement n0 decreases. This cost however should be

compared with that obtained under the unanimity rule, which is comparable

to (1− δ)1/(n+1)

Proof: Without loss of generality, we set S = 1. We first compute

G(z) = E(xi | xj ≥ 1/n− z for n0 players).

Assume player i’s expected valuation is 1/n − z. Under qualified majority
rule, player i has a chance n0/n of being in the (qualified) majority, and

a chance 1 − n0/n of not being in the majority. By symmetry, players get
1/n− z + h when they are in the majority, and h when they are not, where
nh = n

n+1(1− n0
n + n0z). It follows that

G(z) =
n0
n
(
1

n
− z) + h = n0

n
(
1

n
− z) + 1

n+ 1
(1− n0

n
+ n0z)

Now choose z so that δvi = 1/n−z. We use equilibrium conditions to derive
nz, which corresponds to the efficiency loss. We have:

1/n− z
δ

=
P

1− δ + δP
G(z) (4)

Since P is bounded away from 0, we get, forgetting terms of order 1 in

(1− δ):

(1− n0
n
)(
1

n
− 1

n+ 1
) = z((1− n0

n
+

n0
n+ 1

)

hence

nz =
1− n0/n

(n+ 1)− n0/n,
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Note that the probability of agreement in any period is at least8

Qn0 = (1− n0
n
+ n0z)

n = (1− n0
n+ 1− n0/n)

n

In case (b), G(z) = 1/n. So Equation (4) yields:

1− nz = δP

1− δ + δP

or equivalently, nz = (1 − δ)/(1 − δ + δP ), where P is at least equal to

(1− n0/n)n. Q. E. D.

4 Bargaining under unanimous consent.

One virtue of our model is its tractability. This allows us to deal with classic

set-ups in the bargaining and the voting or political science literature. But

it also allows us to deal with new issues not addressed in the literature. In

the next two Sections, we show that in the classic set-ups, our model pro-

vides predictions that coincide with the standard ones, and we also provide

predictions for less standard set-ups.

Our model has two frictions: discounting, and the lack of control over

offers. We view the second friction as an important ingredient of many

negotiation processes. It is a friction commonly assumed in search theory,

but it is an unexplored one in the bargaining context. We also view the

first one as being important, in particular in light of Section 3, as patience

8An exact expression is given by inductive formula:

Pn0 = (
n0

n
)Qn0(z)− Pn0+1

where Qk(z) = (1− k
n
+ kz)n, hence

Pn0 =

n−n0X
k=0

(−1)k( k
n
)Qk(z)
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may turn out to be crucial in determining which majority requirements

promote overall efficiency. In the next sections however, we will concentrate

on the second friction, and provide predictions of our model assuming that

discounting tends to 1.

We start with bargaining set-ups, where we impose the unanimous con-

sent requirement. We examine first the case where the space of proposals

is rich, e.g. the dimensionality of the offer space is at least as large as the

number of players.

4.1 The case of a rich space of proposals

By rich space of proposals, we mean that local variations in the space of

proposals generate all possible variations in the utility space. So in partic-

ular, the dimension of the space of proposals (m) must be at least equal to

the number of parties (n). We will show that when discounting gets close to

1, equilibrium outcomes must get close to the generalized n−person Nash
solution (hence to the Rubinstein (1982)’s solution as well in the two person

case).9

Formally, we make the following assumption, which not only ensures

that the space of proposals is rich, but also ensures that the Nash solution is

uniquely defined, and that it is not a degenerate point of the Pareto frontier:

Assumption 1: Assume that (i) u(.) is smooth, (ii) u(X) is a smooth

ndimensional convex set, and (iii) x∗ = argmaxx∈X
Q
i ui(x) is not a bound-

ary point of the Pareto-frontier of u(X).

We have:

Proposition 4: Assume that Assumption 1 holds, and that f

is bounded away from 0 and smooth on X. When δ tends to 1,

9This can be viewed as the analog of Binmore et al.(1986) in our random offer bar-

gaining setup. Note tha we allow for more than two players (but yet restrict attention to

stationary equilibria).
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equilibrium values tend to v∗ such that v∗i = ui(x∗). Besides there

exist constants m,M > 0 such that for any δ and any stationary

equilibrium, the probability of agreement P at any date and the

equilibrium value v satisfy:

m(1− δ)1−1/(n+1) < P < M(1− δ)1−1/(n+1) (5)

m(1− δ)1/n+1 < | v∗ − v |< M(1− δ)1/n+1 (6)

The intuition as to why as δ tends to 1, equilibrium values must tend to

the Pareto frontier has already be explained in Section 3. (If equilibrium val-

ues are far away from the Pareto frontier, each player could strictly improve

her payoff by tightening her acceptance rule, thus yielding a contradiction.)

As δ tends to 1, equilibrium values cannot tend to the Pareto frontier too

fast either. This was already apparent in Proposition 3, which dealt with the

transferable utility case. The intuition is simple. If v were an equilibrium

value close to the frontier, (away from the frontier by ∆ << (1−δ)1/n), then
the acceptance set A would be small, the probability of agreement would be

small as well (i.e. P (v) << 1 − δ), implying that players expected payoff

cannot lie too close to the frontier. Thus, yielding a contradiction. It follows

that equilibrium values lie away from the frontier by a distance at least of

the order of (1− δ)1/n. In Appendix, we will compute more precise bounds

on equilibrium values and acceptance probabilities.

Now observe that since f is bounded away from 0 and smooth on X,

conditional on acceptance, the distribution over proposals gets close to being

uniform on the acceptance set when δ is close to one (because as δ tends to

1, the acceptance set becomes a small set, on which variations of f become

tiny). This is essentially why as δ tends to one, the solution is independent

of the distribution f .

Let us now characterize the limit equilibrium vector, and show that it
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coincides with the Nash solution. First observe that equation (2) implies

vi
v1
=
E(ui(x)− δvi | uj(x) ≥ δvj for all j)

E(u1(x)− δv1 | uj(x) ≥ δvj for all j)
. (7)

Since u is smooth, the distribution over proposals induces a distribution over

joint utilities (u1, ..;un) that is close to the uniform distribution on the set

Dδ = {u ∈ u(X), ui ≥ δvi}.

Let g(u) = 0 be a parameterization of the frontier. Since Dδ is large com-

pared to (1−δ), it is close to D1, and since u(X) is a smooth n−dimensional
convex set, D1 is itself close to the simplex

D = {u, ui ≥ vi,
X
ai(ui − v̄i) ≤ 0},

where v̄ is the point on the frontier closest from v, and where ai = g
0
i(v̄).

10

On the right-hand side of (7), both the numerator and the denominator

are comparable to (1 − δ)1/n, which is large compared to (1 − δ), hence

ignoring terms comparable to (1 − δ) or small compared to (1 − δ)1/n, we

finally have:
vi
v1
=
Eunif (ui − vi | u ∈ D)
Eunif (u1 − v1 | u ∈ D) , (8)

which implies:
vi
v1
=
a1
ai

We thus obtain the same equations as those obtained from the Nash maxi-

mization program.

Asymmetric waiting costs.

In our model, waiting costs are the same for all players. Our analysis can

easily be extended to the case of asymmetric waiting costs. The following

Proposition establishes the connection with the generalized Nash solution in

this case. We assume that each party i has a discount factor δi, such that

(1− δi) = (1− δ)/αi.
10Dδ has a size comparable to (1 − δ)1/n+1. By close, we mean that the frontiers of

these sets are away from each other by a term no larger than (1− δ)2/n+1.
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Assumption 2: Assume that (i) u(.) is smooth, (ii) u(X) is a

smooth n-dimensional convex set, and (iii) v∗∗ = argmaxu∈u(X)
Q
i(ui)

αi

is not a boundary point of the Pareto-frontier of u(X).

We have:

Proposition 5: Assume that Assumption 2 holds, and that f

is bounded away from 0 and smooth on X. When δ tends to 1,

equilibrium values tend to v∗∗.

Intuitively, it is not surprising that more patient players get a higher

expected payoff in equilibrium. For example assume that all parties have a

fixed discount factors δi, and consider the case where party 1 would become

arbitrarily patient. It is easy to see that as δ1 approaches one, party 1

must get all the surplus. Indeed, as δ1 approaches 1, it cannot be that in

equilibrium the probability of agreement P = P (v) remains bounded away

from 0, because otherwise, party 1 would prefer to demand (substantially)

more, at the risk of decreasing the probability of agreement to, say P/2.

This would increase for him the expected value of agreement, conditional

on agreeing. This increase would be at the cost of more delays, but since

his waiting costs are small, the deviation would be profitable. And since P

must tend to 0, it must be that (i) the equilibrium outcome is close to the

Pareto frontier, and (ii) other players equilibrium payoffs get close to 0.

Proof: The analysis is very similar to that of Proposition 4, so details

are omitted. Just note that the left hand side of the analog for the case

of asymmetric discount factors of Equations (7) and (8) becomes (1−δi)vi
(1−δ1)v1 ,

and that the right hand side of the analog of (8) is unchanged because the

acceptance set is large compared to all δi, i = 1, ..., n. Q. E. D.
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4.2 Bargaining on a smaller set of alternatives.

In the previous subsection, we have assumed that the set of alternatives

was quite rich: local changes in the alternative picked could generate all

possible variations in the utility space. When utility is not transferable and

bargaining takes place over physical alternatives (other than money), there

are a number of applications in which local variations in the alternative

picked need not generate all possible variations in the utility space. How

does our analysis change in that case?

Our main insight is that the equilibrium outcome may be entirely de-

termined by a subset of agents (despite the fact that all agents have a veto

power).

To illustrate the claim, we examine the case where the set of feasible

agreement is one-dimensional,11 and where preferences over these agree-

ments are single-peaked. More specifically, we assume:

Assumption 3: Assume X = [0, 1], 0 ≤ θ1 < ... < θn ≤ 1, ui(x) =
v(xi − θi), where v is smooth, single peaked with a maximum at 0, and

positive on [−1, 1].
We will refer to the parameter θi as party i’s bliss point.

We start by observing that for patient individuals, our model remains

predictive: as parties get very patient, the set of accepted proposals becomes

arbitrarily close to some limit proposal x∗, and this set is large enough so

that delays in reaching agreement induce only negligible costs: a proposal

gets accepted in a laps of time short compared to 1/(1− δ). The intuition is
very similar to that given earlier. Roughly, consider the set A of accepted

agreements. (i) The set A must be small: if it were not small, then agent i

would always prefers to veto agreements that would lie furthest away from

his bliss point; and (ii) the set A cannot be too small, that is, too concen-

11Allowing for more dimensions (but still staying away from the case of rich set of

alternatives) would not alter the insight that only a subset of agents drive the equilibrium

outcome.
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trated around some x∗: otherwise agreement takes time to occur, parties

cannot expect more than λui(x
∗) for some λ < 1 and the set of propos-

als that would be accepted unanimously would be large, contradicting the

premise that it is small.

In comparison with Section 4.1 however, the locus of the accepted agree-

ments will no longer coincide with the generalized n−person Nash solution.
Rather, assuming that v(.) is a concave function, it will in general be deter-

mined by the characteristics of only two individuals.

Proposition 6: Let preferences satisfy Assumption 3 with v

concave.12 Then when δ tends to 1, only proposals close to some

θ∗ are accepted. The position θ∗ is determined only by the bliss

points θ1 and θn of individual 1 and n, and it corresponds to the

(Nash) solution obtained in case only individuals 1 and n are

present. If v is symmetric around 0, then θ∗ = θ1+θn
2 .

The solution is thus determined by the Nash bargaining solution among

the two individuals with most extreme preferences. This is in contrast with

the generalized Nash solution, in which all parties preferences would matter.

Intuitively, equilibrium conditions impose constraints on the set of pro-

posals that may be accepted. When the set of possible proposals is one

dimensional and v is concave, the set A of accepted proposals is an interval.

This set is thus determined by two conditions, and it is thus not surprising

that the preferences of only two players matter.

The reason why only the extremists matter is as follows. Let A = [x, x̄]

denote the set of outcomes accepted when only individuals 1 and n are

present. x and x̄ are determined so that (i) individual 1 is just indifferent

between accepting x̄ now and waiting for the arrival of another proposal in A

- these proposals are better for him, but he has to wait -, and (ii) individual

12Concavity can be interpreted as reflecting the risk aversion of agents.
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n is just indifferent between accepting x now and waiting for the arrival of

another proposal in A. Now assume that there are other individual present,

with θi ∈ (θ1, θn) for each of them. Say, θi < x. Because v is concave,

and because say θi is closer to A than θ1, individual i cares less about which

alternative in A is picked. So given that only alternatives in A can be picked,

he does not want to delay further the outcome, and he is willing to accept

any proposal in A.

It is interesting to contrast our solution with that which would obtain

in a more standard random proposer model (Binmore (1987)), where each

party is selected with probability 1/n to make an offer (over which he has full

control). In such a model, the equilibrium value vector would not coincide

with the generalized Nash solution, but it would not coincide with our model

either, because the way bliss points are distributed over the segment [0, 1]

would now matter. Typically, an equilibrium would consist of a pair {x, x̄}
of proposals: parties with bliss point below x would offer x, and parties

with bliss point above x̄ would offer x̄. The relative frequency with which

x and x̄ are proposed thus depends on the number of parties with bliss

points below and above x and x̄; and so is the locus of x and x̄: As δ tends

to 1, the solution would tend to the weighted Nash solution among the

two most extreme individuals (θ1 and θn), in which weights are determined

endogenously by the distribution of agents along the segment (θ1, θn).

Proof of Proposition 6: Because v is concave, the set of outcomes

accepted by each individual is an interval. So the joint acceptance set is

also an interval, say A = [x, x̄].

Now let vi denote player i’s equilibrium value. We have:

vi = Pr(A)E[ui(x) | x ∈ A] + (1− PrA)δvi,

hence

δvi = λE[ui(x) | x ∈ A]
where λ = δPrA

1−δ+δPrA < 1. Define g(θ, x) = v(x− θ)− λE[v(x− θ) | x ∈ A].
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Equilibrium conditions therefore require that for all x ∈ A, and for all i,
g(θi, x) ≥ 0.

We wish to show that g(θ1, x̄) = 0. Indeed, assume g(θ1, x̄) > 0. Since v

is concave, for any θ < x̄, we have

∂g

∂θ
(θ, x̄) = −v0(x̄− θ) + λE[v0(x− θ) | x ∈ A]

≥ −(1− λ)v0(x̄− θ) > 0.

Besides, for any θ ≥ x̄, g(θ, x̄) > 0. It would thus follow that g(θi, x̄) > 0 for
all i, hence proposals slightly larger than x̄ would be accepted unanimously

as well. Similarly, we may show that g(θn, x) = 0. The interval A is thus

solely determined by the preferences of player 1 and n. Q. E. D.

5 Bargaining under (qualified) majority require-

ments.

We now move to settings where unanimous consent is not required.

5.1 The simple majority rule and the median voter predic-

tion

We examine first the majority rule case. Under the assumption that the set

of feasible alternative is one-dimensional, and that preferences over these

alternatives are single peaked, the standard voting model is quite predictive

when there is an odd number of agents: a unique outcome turns out to be

stable,13 the one preferred by the median voter. What we will show below

is that the same prediction obtains in our case.14

13An outcome is stable if there is no alternative outcome that a majority would prefer.
14This insight should be compared with that of Baron (1996), who also obtains that

same prediction, using the bargaining model of Baron and Ferejohn (1989) (based on the

random proposer model of Binmore (1987)). For further work on the relationship between

Baron and Ferejohn’s model and the core, see Banks and Duggan (2000).
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Our model is rather different from a standard voting model: it is dy-

namic, and agents have the choice between voting for one particular alter-

native (randomly selected), or remaining at the status quo. Of course, voting

against the proposed alternative does not imply that agents will remain at

the status quo for ever. Another alternative will later be put to a vote. This

is why there is a connection between the two models: when an outcome far

from the median voter outcome is proposed, a majority of players will prefer

to reject the current proposal and wait for the arrival of a proposal closer

to the median voter outcome.

The following proposition confirms that intuition and shows that when

agents are patient, the solution gets close to the median voter outcome.

Proposition 7: Let preferences satisfy Assumption 3 with v

concave.15 Let m = int(n+1)/2. If n is odd, then m is the me-

dian voter and when δ tends to 1, in equilibrium, only proposals

close to θm are accepted.

To get some intuition for the result, assume that the set of accepted

outcomes consists of an interval A = [x, x̄].16 Then A must contain θm.

Indeed assume x̄ < θm, then any individual i ≥ m would get utility at

most ui(x̄), hence they would also accept any outcome in [x̄, θm]. Since

these individuals form a majority, such offers are accepted, leading to a

contradiction. It follows that A must contain θm. But, how large can A be?

We will show that A must be small as δ tends to 1. Assume by contradiction

that A is large. Then for very patient individuals, the expected value of

voting against the proposed alternative is

E[ui(x) | x ∈ A]
15The assumption that v is concave is not necessary. It greatly simplifies the proof

however.
16This will easily follow from the concavity of v.
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which, because preferences are single peaked, is strictly larger than min(ui(x), ui(x̄)).
17

So no individual votes for both x and x̄, and there cannot be a (strict) ma-

jority for both x and x̄. A complete proof appears in Appendix.

5.2 Qualified majority rules and the moderate voters out-

come.

We now turn to qualified majority rules, and restrict attention to the sim-

pler case where v is concave. While standard voting models would not

be predictive anymore (proposals get harder to defeat), our model remains

predictive (when players are patient). The following Proposition provides

a full characterization of the equilibrium outcome for the case where v is

concave. It shows that, as for the unanimity case, the preferences of only

two individuals matter. But as one gets from unanimity to the majority

rule, the decisive individuals become more and more moderate.

Proposition 8: Let preferences satisfy Assumption 3 with v

concave. Consider the qualified majority rule n0 > Int(n/2).

When δ tends to 1, the equilibrium outcome coincides with that

obtained when only players n0 and n− n0 + 1 are present.

To get some intuition for the result, let A = [x, x̄] denote the acceptance

set when only players n0 and i0 = n− n0 + 1 are present. When δ tends to

1, this set tends to the Nash bargaining solution between these two players,

and we have θi0 < x < x̄ < θn0 . Let us check what happens when the other

players are added. As for the unanimity case, players i ∈ {n−n0+1, .., n0}
accept all proposals in A. Now observe that since v is concave, rejecting a

proposal cannot yield more than ui(ex) where ex = E[x | x ∈ A]. It follows
that players with a bliss point lower than θi0 do not accept all proposals in

17The assumption that x and x̄ are far apart from each other as δ goes to 1 guarantees

that conclusion.
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A, but accept all proposals in [x, ex]. And similarly, all players with a bliss
point higher than θn0 accept all proposals in [ex, x̄]. Hence for any x ∈ A,
there is a qualified majority of at least n0 players that accepts x. The full

proof is more complex, because we need to show that the result holds for

any equilibrium. The proof is relegated to the Appendix.

5.3 When X is two-dimensional.

Voting theory has been successful in dealing with one-dimensional settings

and single peaked preference. When one departs from these assumptions

however, the existence of a Condorcet winner is not guaranteed, and voting

theory loses its force. We wish to illustrate in this Section that our model

can provide novel insights whether a Condorcet winner exists or not, and

more generally, whether the core is empty or not.

Consider first settings in which the core is empty. Then, as illustrated by

Proposition 3, we cannot expect that the set of accepted agreement would

converge to a small set (because if it did, then other agreements would be

accepted as well). Nevertheless, our model provides a set prediction: not

all proposals get accepted, and one can characterize the set of proposals

which are indeed accepted. We will provide in Example 1 below a simple

illustration in a two dimensional setting.

Consider next settings in which the core is non-empty. Then considering

patient players, our model may provide a way to select among the possible

elements of the core: this is illustrated in Proposition 4 for example where

the Nash bargaining outcome was selected under unanimous consent rule and

rich proposal space. More generally, it should be clear that when δ tends to

1, if the set of accepted agreement gets small, then it must be an element

of the core (if not, then players would prefer to wait for the occurrence of

the proposal in the core that dominates the supposed solution). In addition,

under the unanimity rule, it should also be clear that when δ tends to 1, the
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set of accepted agreements should be small in any equilibrium. So, if not too

many equilibria arise (as in the context of Proposition 4) our model permits

to select a subset of the core. Under other termination rules however, three

is no guarantee that the limit set of accepted agreements (if not small) will

be in the core. The reason is that an outcome may be accepted by a large

majority of players because some players may fear that another outcome

unfavorable to them may be accepted by (another) large majority of players.

Example 2 below will illustrate this phenomenon, showing that the limit set

of accepted agreements may be large, despite the fact that there exists a

unique Condorcet winner.

Example 1: There are three players, i = 1, 2, 3. The preference of

player i is defined by ui(x) = v − a | x − θi |k with k > 1, where | . |
is the euclidean distance. Bliss points θi are located on the corners of an

equilateral triangle, and we let X = Co(θ1, θ2, θ3) denote the surface defined

by this triangle. Proposals are assumed to be distributed uniformly on X.

Under unanimous consent (and patient individuals), the unique symmet-

ric equilibrium outcome lies close to the point x∗ that is equidistant from all

θi. Under simple majority rule, there is no Condorcet winner. By symme-

try, player i cannot expect more than ui(x
∗). (This is due to the concavity

of d → v − adk for k > 1 and that by symmetry the expected location of

accepted proposals is x∗.) All outcomes x such that | x − θi |≤| x∗ − θi |
for at least two individuals are accepted. The actual acceptance is larger.18

More generally, solutions can be computed as a function of the locus of the

bliss points. This example should be contrasted with that of Baron (1991)

who uses Baron-Ferejohn (1989)’s bargaining model, and predicts that in

equilibrium, the proposer gives just enough to ensure that one (and only

one - this is enough to pass to proposal) other party accepts and obtains the

18When k is close to 1 this is the actual acceptance set. For k > 1, we conjecture that

the larger k the larger the acceptance set.
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rest of the surplus.19

Example 2: There are four individuals i = 1, ..4 whose bliss points

θ1, ...θ4 are located on the corners of a square, X = Co(θ1, θ2, θ3, θ4). Pro-

posals are distributed uniformly on the surface X of the square.

Under unanimous consent, the unique symmetric equilibrium outcome

lies close to the point x∗ equidistant from all θi. Under simple majority rule

(three individuals have to say yes), x∗ is the only point in the core.20 Yet,

It can be checked that when k is large enough, the set of accepted proposals

remains large, even as δ tends to 1. (TO BE COMPLETED)

6 Imperfect control over offers

Although we view the lack of control over offers as an essential ingredient

of any bargaining process, agents may have some control over offers. How

does our analysis extend to the case where players have some control over

offers? For simplicity, we assume below that one and only one agent, say

party 1, has some control over offers.

We will distinguish between two types of imperfection. In the first one,

we assume that player 1 can perfectly control offers, but only infrequent

so. In the second one, we assume that player 1 may only influence the

distribution over offers, but this distribution remains characterized by a

density with full support on X.

We make the following observations: under the first imperfection, player

1 may derive a substantial benefit from control, and when players are patient,

this benefit is larger under unanimous consent than under qualified majority

rules.

19In the case of a surplus of size one to be shared, transferable utilities and very patient

players, accepted proposals are of the form (2/3, 1/3, 0).
20Any point located outside the triangle formed the bliss points of three players can be

destabilized by the coalition of these three players.
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In contrast, under the second imperfection, as discounting tends to one,

player 1’s ability to influence the distribution over offers has vanishing value

in the unanimous consent case, while it may have positive value under qual-

ified majority rules.

Infrequent control.

We make two observations. First, we show that even if control is infre-

quent, if it is perfect, then player 1 may derive a substantial benefit from

it. Second, we show that if control is imperfect, in the sense that (i) player

1 may affect the distribution over offers, but (ii) this distribution remains

characterized by a density with full support on X, then, as discounting

tends to one, player 1’s ability to influence the distribution over offers has

vanishing value.

To formalize the first imperfection, we assume the following:

A1: At at any date with probability 1−p, the offer is drawn from
X according to f , and with probability p, player 1 has complete

control over the offer made in X.

The following Proposition shows that under unanimity rule, when players

are very patient, player 1’s ability to control offers allows him to obtain all

the surplus.

Proposition 9: Assume A1 holds, and consider the unanimity

rule case. Let v1(δ) be the smallest equilibrium value for player

1 when players discount future payoffs with discount factor δ.

When δ approaches 1, v1(δ) approaches the highest feasible value

for player 1.

Intuitively, when players are patient, the acceptance set is very small,

that is, only proposals that fall in a small neighborhood of the equilibrium

value (say v) are accepted. Besides, at dates where player 1 happens to have
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full control over offers, he can exploit this control by picking an offer that is

accepted for sure. These two observations imply that conditional on being

accepted, a proposal has most likely be generated by player 1. So the game

has a structure similar to a bargaining game where only player 1 would be

making offers, and as a result, player 1 is able to extract all surplus.

In contrast, if only a (qualified) majority is required, then it cannot be

that player 1 extracts all surplus: if it were the case, then all players other

than 1 would accept any offer (giving positive payoff), hence in the event

player 1 does not have full control, agreement would be immediate, what-

ever proposal is drawn, hence each player i 6= 1 would obtain an expected

payoff at least equal to (1 − p) PrX0E[ui(x) | x ∈ X0] > 0,21 leading to a

contradiction. The exact effect of the control of one player in the (qualified)

majority case remains to be determined.

We now turn to a formal proof of Proposition 9

Proof of Proposition 9: Fix δ and consider the equilibrium that gives

lowest payoff to party 1, and denote by v this equilibrium value. For any

w = (w1, ..., wn), let ū1(w) denote the maximum payoff player 1 can obtain

when each player j 6= 1 gets wj . At any date where player 1 makes an offer,
he can secure ū1(δv). It follows that

v1 ≥ pū1(δv) + (1− p)δv1

which implies

ū1(δv)− δv1 ≤ (1− δ)v1/p.

It follows that v is not further away from the frontier than a term comparable

to 1− δ. So (i): even in events where player 1 does not control offers, player
j cannot expect more δvj + k(1− δ) for some k > 0, and (ii) the probability

of acceptance P (conditional on player 1 not controlling offers) is at most

comparable to 1 − δ. Also, in events where player 1 makes proposal, party

21Remember that X0 = {x ∈ X | ui(x) > 0 for all i}.
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j cannot get more than δvj . As a consequence, we have:

vj ≤ δvj + (1− p)P [k(1− δ)]

hence vj ≤ (1 − p)Pk, which is close to 0 when δ is close to 1 because the

probability of acceptance P is close to 0. Q. E. D.

Imperfect influence over offers.

To formalize the second imperfection, assume that at any date player

1 may take an action a, not observable to other agents, that affects the

distribution over the proposals made in any period, and denote by g(. | a) the
distribution over proposals induced by action a.22 The following Proposition

shows that in the face of extremely patient players, the ability to influence

offers has no value under the unanimity rule.

Proposition 10: Assume g(. | a) is smooth and bounded away
from 0 for all a. Under the unanimity rule, when δ tends to 1,

equilibrium values tend to v∗.

Proof: In a stationary equilibrium, the action chosen by player 1 is the

same in every period. For any fixed a, and in particular for the action which

player 1 finds optimal, the argument of Proposition 1 applies, showing that

equilibrium values must tend to the Nash solution. Q. E. D.

The main insight behind this proposition is that if the set of accepted

proposals is very small, then conditional on acceptance, the distribution

22For example, one possible assumption is that with probability 1− p, the distribution
over offers is, as before, described by a density f(x). With probability p however, player

1 has the option to choose a pair a = (β, z) ∈ [0, β̄] × X, that induces a distribution
over proposals g(x | β, z) = g0e −β(x−z)2f(x), where g0 is a normalizing constant. z ∈ X
should be interpreted as a target proposal, β ∈ [0, β̄] as the agent’s effort to control offers,
and β̄ as the extent to which party 1 can control offers.
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over proposals looks like a uniform distribution, whatever actions players

undertake to influence the distribution. So these actions have no effect on

the outcome as players get very patient.

Under qualified majority rules, the effect of control can be quite different

however. We have seen that under the qualified majority rule, if the space

of proposals is rich, then the set A of proposals that are accepted could

be quite large. One interesting corollary of this observation is that even if

players are very patient, having some influence over the proposals made can

now be valuable.

This observation however does not apply to the case where the space of

proposal is one dimensional, because then, even when only a simple majority

is required, the set of proposals that are accepted remains small when players

are patient.

Discussion

The propositions above have characterized limit outcomes as players get

very patient. When players are not very patient, the set of accepted agree-

ment becomes large, even under the unanimity rule. This implies that for

not very patient players, having some influence over the distribution over

proposals may be effective, and players having the strongest ability to influ-

ence proposals, or target specific utility levels for their opponent should be

able to extract more surplus. What Proposition 10 shows is that patience

and veto power from other parties limit the effect of control.

Control or influence over proposals can thus be viewed as a source of

bargaining power, that complements the traditional view that (in complete

information models) bargaining power is driven by relative patience (Rubin-

stein) and by the relative frequency with which parties make offers (as in

the random proposer model of Binmore).

One interesting corollary of the above observations (and a possible av-

enue for further research) has to do with the various ways parties might try

to influence proposals. One can think of lobbying efforts, or in large groups,
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as efforts to form coalitions which depending on their size will carry more

weight in influencing proposals in one way or another: forming a coalition

may help its members controlling the process over offer generation. Our

model suggests that such efforts will be more valuable (hence more likely to

occur) when agents are not too patient and other players do not have veto

power.

7 Appendix

Proof of Proposition 7: Let x (respectively x̄) denote the lowest proposal

accepted in equilibrium. Let d = x̄ − x, and recall that A is the set of

proposals accepted in equilibrium. We have shown in the main text that we

must have x ≤ θm ≤ x̄. We will show that when δ tends to 1, d must shrink
to 0.

We first show that A must be an interval. Let ex = E[x | x ∈ A]. Since
v is concave, δvi ≤ λui(ex), hence all parties (unanimously) accept ex. Since
v is single-peaked, parties that accept x and ex also accept any proposal in
[x, ex]. So there must be a majority voting for these proposals. A similar

argument applies to proposals in [ex, x̄]. So A = [x, x̄].
We now show that λ% 1 as δ tends to 1. Assume λ does not tend to 1.

Then there exists a sequence of discounts δk % 1 and equilibria such that

λk < λ < 1. Since δvi ≤ λui(ex), hence all parties (unanimously) accept all
proposals in a neighborhood of ex (of size comparable to 1−λ). It follows that
PrA does not tend to 0, contradicting the premise that λ remains bounded

away from 1.

Now assume that d does not tend to 0. Since v is concave, and since the

distribution over proposals has full support, there must exists µ > 1 such

that

E[ui(x) | x ∈ A] > µmin(ui(x̄), ui(x)]. (9)

Since, at least one party, say i0, must accept simultaneously x and x̄, we
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must also have

min(ui0(x̄), ui0(x) ≥ λE[ui0(x) | x ∈ A],

which, combined with inequality (9) implies that λ < 1/µ, contradicting the

fact that λ must tend to 1. So d must tend to 0.

Proof of Proposition 8: Let vi denote player i’s equilibrium value,

and let A denote the equilibrium acceptance set. Also let x̄ (respectively x)

denote the highest (respectively lowest) proposal accepted in equilibrium.

Following the steps of Proposition 7, we have:

δvi = λE[ui(x) | x ∈ A]

where λ = δPrA
1−δ+δPrA < 1.

Define g(θ, x) as in Proposition 7 and let i0 = n− n0 + 1.
(i) We check that g(θi0 , x̄) = 0.

Indeed, if g(θi0 , x̄) > 0, then for any θ ≥ θi0 , g(θ, x̄) > 0.23 Hence

by continuity, there are proposals x > x̄ that are accepted by at least n0

individuals, contradicting the premise that x̄ is the largest proposal accepted

in equilibrium. So g(θi0 , x̄) ≤ 0. Now if g(θi0 , x̄) < 0, then g(θ, x̄) < 0 for

all θ < θi0 , hence x̄ would not be accepted by the qualified majority n0.

(ii) Similarly, it is easy to check that g(θn0 , x) = 0.

(iii) We now check that A = [x, x̄]. Let ex = E[x | x ∈ A]. Since v
is concave, δvi ≤ λui(ex), hence proposal ex is accepted unanimously. Any
party who accepts both x and ex must also accept all proposals in [x, ex]. So,
since there is a qualified majority for x, there is also a qualified majority for

any proposal x ∈ [x, ex]. A similar argument applies to proposals in [ex, x̄].
(iv) It thus follows that A = [x, x̄], and that x̄ and x are fully charac-

terized by g(θn0 , x) = 0, and g(θi0 , x̄) = 0. The solution is thus identical to

that which would obtain if only i0 and n0 were present. Also note that, by

23This is because for any θ < x̄, ∂g
∂θ
(θ, x̄) > 0, and because for any θ ≥ x̄, g(θ, x̄) > 0.
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an argument similar to that of Proposition 7, when δ tends to 1, x̄−x must
tend to 0.
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