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Abstract

In our laboratory experiment, subjects, in sequence, have to predict
the value of a good. We elicit the second subject�s belief twice: �rst
(��rst belief�), after he observes his predecessor�s action; second (�pos-
terior belief�), after he observes his private signal. Our main result is that
the second subjects weigh the private signal as a Bayesian agent would do
when the signal con�rms their �rst belief; they overweight the signal when
it contradicts their �rst belief. This way of updating, incompatible with
Bayesianism, can be explained by multiple priors on the predecessor�s ra-
tionality and a generalization of the Maximum Likelihood Updating rule.
In another experiment, we directly test this theory and �nd support for
it.

1 Introduction

Suppose you are contemplating the possibility of investing in a new project.
Since it seems, a priori, equally likely that it succeeds or fails, you ask for the
opinion of an independent advisor. After collecting some information on the
project, he evaluates the probability of success to be 70%. On the basis of
this recommendation only, clearly your belief on the probability of succeeding
depends on how much you trust your advisor�s ability. If you fully trust him, you
may agree with him and evaluate the probability of success to be 70% as well.
If you do not think he has done a good job, or you suspect he is not so talented
as you originally thought, you may even completely discard his view and keep
your prior belief of a 50% probability of success. For the sake of the example, let
us assume you trust him, although not completely, and assess that the project
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will succeed with probability 65%. You now receive further information on the
project, independently of your advisor�s information. The information is of the
same quality as that received by your advisor, but is negative, that is, if you
had to base your evaluation on this information only, you would update your
prior belief to a value lower than 50%, say to 30%. How would you now use
this information to make inferences on the quality of the project? Would you
change your mind on your advisor�s ability? And how would you revise your
65% belief?
One way of reasoning is that the negative private information you receive

(contradicting the advisor�s view) makes it more doubtful that he used his in-
formation correctly. You should, therefore, dismiss the advisor�s evaluation even
more than before and mainly rely on your information. Since you now trust him
less, your belief based on his advice only would be less than 65%. Moreover,
you have now negative information, which pushes your belief further down. For
instance, if you completely lost trust in your advisor�s ability, you would now
totally discard his view and evaluate the probability of success to be 30%.
While this reasoning seems appealing and intuitive, one has to be careful in

applying it, at least if one wants to respect standard Bayesian updating. Indeed,
a Bayesian agent, once expressed his unique belief of 65%, would simply update
it by considering the probability of the received information conditional on the
project being a success or a failure. The 65% probability summarizes all the
relevant information in order to update the belief. Given the values we have
used in our example, a Bayesian agent would update the 65% belief to 44:3%.1

Certainly he would never give a valuation of 30%.
The aim of this paper is to study human behavior in a controlled experiment

in which subjects face a decision problem like the one we have just, very inform-
ally, described. To be speci�c, we ask subjects to predict whether a good is
worth 0 or 100 units, two events that are, a priori, equally likely. A �rst subject
receives a noisy symmetric binary signal about the true value realization: either
a �good signal�, which is more likely if the value is 100; or a �bad signal�, which
is more likely if the value is 0. After receiving his signal, the subject is asked to
state his belief on the value being 100.2 To elicit his belief we use a quadratic
scoring rule. We then ask a second subject to make the same type of prediction
based on the observation of the �rst subject�s decision only. Finally, we provide
the second subject with another, conditionally independent, signal about the
value of the good and ask him to make a new prediction.
Eliciting the beliefs of a subject twice, �rst after he observes another subject�s

decision, and then, after he also obtains a private signal, is a novel experimental
design. It allows us to study in detail how people combine the information com-
ing from the observation of others�decisions with their private information. Our
purpose is to analyze how well human subjects�behavior conforms to Bayesian
updating when they have to make inferences from a private signal and from

1This percentage is the solution to the equation x
100�x =

65
35

30
70
, where we have expressed

the updating through the likelihood ratio.
2Speci�cally, subjects are asked to choose a number between 0 and 100. The number is

the probability (expressed as a percentage) that the value is 100.
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the decision of another human subject, and to understand the determinants of
deviations from it, to the extent that they show up in our study.
The main results of our investigation are the following. First, after observing

a private signal only, subjects do not show a particular bias in updating their
beliefs. In particular, there is no systematic overweight of the signal. While
there is a lot of heterogeneity in updating, the median update is in line with
Bayesian updating. Second, at time 2, after observing the predecessor�s decision
at time 1 only, subjects �discount� the informativeness of the predecessor�s
action, attaching a lower weight to it (as if the action were less informative than
the signal on which it is based). This is so despite the fact that an action at
time 1 above (respectively, below) 50 is almost as informative as the original
signal observed by the time 1 subject (since subjects very rarely update in the
wrong direction). Third, and most importantly, when at time 2 subjects observe
their private signal, they update their belief in an �asymmetric way.�When the
signal is in agreement with their �rst belief (e.g., when they �rst state a belief
higher than 50% and then receive a signal indicating that the more likely value
is 100), they weigh the signal as a Bayesian agent would do. When, instead,
they receive a signal contradicting their �rst belief, they put considerably more
weight on it (i.e., as if they had observed more than one signal, or as if the
signal had a higher precision than it actualy has).
This asymmetric updating is incompatible with standard Bayesianism. The

subject�s ��rst belief�(i.e., his belief after observing the predecessor but before
receiving the private signal) may di¤er from the theoretical (Perfect Bayesian
Equilibrium) one if the subject at time 2 has a misconception of the precision of
the signals or if he conceives the possibility that his predecessor�s action may not
perfectly reveal the private information he received, e.g., because of mistakes or
boundedly rational behavior. Whatever this ��rst belief,�however, the subject
should simply update it on the basis of the new information, giving the same
weight to the signal, independently of its realization (i.e., whether or not it goes
against the �rst belief), as this is a mere implication of the signals at time 1
and time 2 being independent conditional on the realization of the value of the
good.3

To test that our results are due to the multi-player aspect of our social
learning experiment, and not to any form of psychological bias purely based
on errors in signal processing, we ran a control (individual decision making)
treatment in which the same subject received two signals in sequence drawn
according to the same process as in our social learning treatment, and reported
his belief on the value of the good after the �rst and after the second signal.
In this treatment, we observed heterogeneity (thereby supporting the view that
subjects may attach subjective and dispersed beliefs to the precision of signals)
but not the asymmetry in updating (thereby supporting the view that subjects
had a reasonable understanding of the conditional independence feature high-

3 It should be added that even if subject 2 may perceive subject 1 as being irrational, there
should be no asymmetric updating as long as the cognitive type of subject 1 is determined
independently of the realization of the state and of the signal drawn by subject 2. This is so
since, conditional on the state, the �rst action and the second signal are independent events.
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lighted above). This control treatment thus establishes experimentally that the
asymmetric updating is intrinsically related to the social learning aspect of our
experiment.
To explain the results of our social learning experiment, we propose that,

like in models with multiple priors, the subject at time 2 may entertain sev-
eral possible theories about time 1 subject�s �rationality� (where a subject is
considered �rational� if he chooses an action higher than 50 when he receives
a good signal and lower than 50 when he receives a bad signal; an �irrational�
subject, in contrast, chooses an action lower than 50 when he receives a good
signal and higher than 50 when he receives a bad signal).4 Moreover, each time
he has to make a decision, he selects the theory that maximizes the likelihood
of the realized observations. Based on this selected theory about the rationality
of the predecessor, subject 2 updates his belief in a standard Bayesian fashion
(possibly using subjective representations of the precision of the signals).
Intuitively, this explains the asymmetry we observe for the following reason.

Imagine a subject observing the predecessor taking an action greater than 50
(i.e., an action that presumably comes from a good signal, indicating the value
is 100). Suppose he considers that the event is most likely under the prior that
the predecessor is rational and, therefore, chooses his own action (his ��rst be-
lief�) accordingly. After he observes a private signal con�rming his �rst belief
(that the value is more likely to be 100), the subject remains con�dent that the
predecessor was rational, that is, sticks to the same prior on the predecessor�s
rationality. He updates on that prior belief and so the weight he puts on the
signal seems identical to that of a Bayesian agent. Consider now the case in
which he receives a signal contradicting his �rst belief (i.e., a bad signal, indic-
ating that the more likely value is 0). In such a case he now deems it an unlikely
event that the predecessor was rational. In other words, he selects another prior
belief on the predecessor�s rationality, giving a much higher probability to his
predecessor being irrational. Once he has selected this new prior on the prede-
cessor�s rationality, he updates on the basis of the signal realization. This time
it will look like he puts much more weight on the signal, since the signal �rst
has made him change the prior on the rationality of the predecessor (becoming
more distrusting) and then update on the basis of that prior. It is important to
remark that it is as if the subject put di¤erent weights on the signal depending
on its realization, not that he really uses di¤erent weights. Using new data to
pick a prior from a set of priors has a well established tradition in statistics and
this type of updating rule has, more recently, found some axiomatic foundations
in economic theory. Based on the language from these literatures, we will refer
to our model of updating as the Likelihood Ratio Test Updating (LRTU) rule.
Since our theory proposes that the non-Bayesian updating observed in the

laboratory depends on how subjects think about the rationality of their prede-
cessors, after developping this theory we ran a further treatment that directly
tests this theory versus Bayesian updating. We cannot directly ask questions in

4As we will discuss in the next section, we use this minimal requirement in our de�nition
of rationality, since it is enough to infer the signal from the subject�s action, which is the only
thing that matters.
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terms of rationality of others, as this would mean giving a de�nition of ration-
ality to subjects and would, therefore, be somehow arti�cial (and, perhaps, bias
the results). We proceed in a di¤erent way. In this new treatment, subject 1 has
exactly the same task of predicting the value of the good. The second subject,
instead, has to state his belief that the �rst subject has observed a good signal.5

Similarly to the previous experiment, the belief elicitation occurs twice: �rst,
after he observes the predecessor�s decision, and then, after he also observes
a private signal. The beliefs stated by subject 2 are equivalent to his beliefs
that the �rst agent is rational, in our de�nition. Given our signal precision,
a Bayesian agent, once stated his �rst belief (say greater than 50%) that his
predecessor received the good signal, barely updates it after receiving his own
private signal (and does not update it at all if the belief is degenerate). In the
experiment, instead, as we will see, subjects lower their probability quite sub-
stantially once they receive a contradicting (bad, in our example) signal. The
results of this treatment are against Bayesian updating and support our theory.
Subjects update in a non-Bayesian fashion since they change their view about
the rationality of others in a way that is incompatible with Bayes�s formula. It
is, instead, compatible with a model in which agents do not have a unique prior
belief, and select it using the new information they receive, like in our LRTU
model.
The paper is organized as follows. After brie�y discussing the related liter-

ature, in Section 2 we describe the theoretical model and its (Perfect Bayesian)
equilibrium predictions. Section 3 presents the experiment. Section 4 contains
the results of the �rst treatments. Section 5 illustrates how multiple priors can
theoretically lead to asymmetric updating, and presents the results of a com-
plementary treatment. Section 6 illustrates the econometric analysis. Section
7 o¤ers further discussion of our �ndings. Section 8 concludes. An Appendix
contains additional material.

1.1 Related literature

The idea that one uses the data to select the prior from a set of priors is well and
long established in statistics. It dates back to the Type-II maximum likelihood
of Good (1965), in which new observations are used to estimate a prior for
an unknown parameter (see, e.g., Berger 1985). Selecting the prior is at the
root of the debate in Bayesian statistics and, in particular, in empirical Bayes
procedures (see, also Cox and Hinkley, 1979; Good, 1983; Berger and Beliner,
1986). In this methodology, the set of priors from which one prior is estimated
is invariant to the arrival of new information, similarly, as we will see, to our
LRTU rule.
In the economics literature, this idea has been recently revived in a con-

tribution by Ortoleva (2012) who axiomatizes the related Hypothesis Testing
model in an attempt to deal with the important question of belief updating

5Speci�cally, subjects are asked to choose a number between 0 and 100. The number is
the probability (expressed as a percentage) that the �rst subject has observed a good signal.

5



after observing unexpected events.6 In his Hypothesis Testing model, the de-
cision maker has a prior over possible priors (referred to as theories to avoid
confusion). Initially, the theory with the highest prior probability is selected.
When a new event occurs, if the likelihood of that event is lower than a speci�c
threshold, the prior over priors is updated on the basis of the likelihood of the
event, and the theory with the highest posterior probability is selected. Ortol-
eva�s hypothesis testing model is closely related to the spirit of our LRTU model
even if there are some di¤erences that we will discuss in Section 7. Perhaps,
the most important di¤erence is that the change of prior needed to explain our
experimental data cannot be con�ned to unexpected or even unlikely events
(observing a contradciting signal in our experiment is not a rare event).
Two decades before, maximum likelihood updating had been introduced in

economic theory in the literature on ambiguity aversion. It is, indeed, one
of the two main families of updating with ambiguous beliefs (see Gilboa and
Marinacci, 2013 for a survey). Gilboa and Schmeidler (1993) axiomatized the
Maximum Likelihood Updating (MLU) rule. We will discuss the similarities
and di¤erences between our model and Gilboa and Schmeidler (1993)�s theory
in Section 7. For the moment, we note that while we use the idea of ambiguous
beliefs (in the sense of multiple priors), in our experiment ambiguity aversion
does not seem to play a big role.
Finally, note that our experiment is based on the well known theorerical

model of social learning of Lee (1993). It is worth mentioning that in the
experimental social learning literature various papers (e.g., Nöth and Weber,
2003; Çelen and Kariv, 2004; Goeree et al., 2007) have reported that subjects
overweigh their own signal. Our results are clearly in line with this �nding. In
those experiments, though, the behavior we document and explain could not be
observed, because each subject only made one decision and typically in a binary
action space. When subjects had a signal in agreement with the previous history
of actions, they typically followed it and chose the same action. This decision
is essentially uninformative for the experimenter on how subjects update their
private information. In fact, on the basis of previous experimental results, one
could have thought that overweighing private information is a general feature of
human subjects�updating in this type of experiments. Our work shows that this
is not the case, since it only happens when the private information contradicts
the �rst belief.

2 The Theoretical Framework

2.1 The Basic Model

In our economy there is a good that can take two values, V 2 f0; 100g. The
two values are equally likely. There are two agents assumed to be risk neutral
who make a decision in sequence. The decision consists in choosing a number in

6 In another recent contribution, Weinstein (2017) also proposes that agents may be non
Bayesian when something unexpected happens and the agent decides for a �paradigme shift.�
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the interval [0; 100]. Each agent t (t = 1; 2) receives a symmetric binary signal
st 2 f0; 100g distributed as follows:

Pr(st = 100 j V = 100) = Pr(st = 0 j V = 0) = 0:7.

Conditional on the value of the good, the signals are identically and independ-
ently distributed over time, with precision 0:7. Since the signal st = 100 in-
creases the probability that the value is 100, we will also refer to it as the good
signal, and to st = 0 as the bad signal.

Speci�cation 1
In the �rst model speci�cation, agent 1 observes the signal s1 and takes an

action a1 to maximize a quadratric payo¤ equal to 100�0:01(V �a1)2. At time
2, agent 2 observes a1 and takes a �rst action a12. He then observes the private
signal s2 and takes a second action a22. The agent�s payo¤ from each choice
j = 1; 2 is equal to 100�0:01(V �aj2)2. That is, agent 2 is asked to report what
he thinks about the binary value of the good, �rst based on agent 1�s action a1
only, then after additionally receiving s2.

Speci�cation 2
In the second model speci�cation, agent 1 still observes the signal s1 and

takes an action a1 to maximize 100 � 0:01(V � a1)2. Agent 2, instead, after
observing a1 chooses a �rst action x12 to maximize the quadratic payo¤ 100 �
0:01(s1�x12)2. He then observes the private signal s2 and takes a second action
x22 to maximize a payo¤ equal to 100� 0:01(s1� x22)2. That is, agent 2 is asked
to report what he thinks about the binary signal received by agent 1, �rst based
on agent 1�s action a1 only, then after additionally receiving s2.

2.1.1 Theoretical Predictions of the Basic Model

Let us start with the �rst speci�cation. Given the quadratic payo¤ function,
both agents optimally state their belief (expressed as a percentage) that the
value is 100. For given information Ijt , the agent chooses a

j
t to maximize his ex-

pected payo¤E[100�0:01(V �at)2jIjt ], that is, he chooses a
j�
t = E

�
V jIjt

�
.7 In

the Perfect Bayesian Equilibrium (PBE), agent 1 chooses 70 upon observing
s1 = 1 and 30 upon observing s1 = 0. After observing a1 = 30 or 70,
agent 2 chooses as his �rst action a12 = a1. After observing the private sig-
nal s2, the agent updates his belief and chooses a22 = E (V ja1 = 70; s2 = 100) =
84:48, a22 = E (V ja1 = 30; s2 = 0) = 15: 52 and a22 = E (V ja1 = 30; s2 = 100) =
E (V ja1 = 70; s2 = 0) = 50. In the �rst two cases, the signal points in the same
direction as the predecessor�s action, therefore, we refer to them saying that
the signal is �con�rming;� in the last two cases, instead, the signal points in
the opposite direction to the predecessor�s action, and we say that the signal is
�contradicting.�Note that when the signal is contradicting, the agent�s belief is

7The superscript j is immaterial when t = 1 since agent 1 acts only once.
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equal to the prior belief, since the two pieces of information the agent receives
�cancel out�.
In the second model speci�cation, agent 2 chooses his optimal action xj�2 =

E
�
s1jIj2

�
, whereas nothing changes for agent 1. In the PBE, agent 2 chooses

x12 = 100 after observing a1 = 70 and x12 = 0 after observing a1 = 30, since
action a1 = 70 (respectively, 30) perfectly reveals that the signal observed by
agent 1 is s1 = 100 (respectively, s1 = 0). After observing the private sig-
nal s2, the agent does not update his degenerate beliefs on the signal observed
by agent 1 and so, after observing a1 = 70, x22 = E (s1ja1 = 70; s2 = 100) =
E (s1ja1 = 70; s2 = 0) = 100 and after observing a1 = 30, x22 = E (s1ja1 = 30; s2 = 100) =
E (s1ja1 = 30; s2 = 0) = 0.8

2.2 An Extended Model

In the experiment, we can expect to see actions a1 other than 30 or 70. We
propose interpreting an agent 1 who chooses such actions as attaching subjective
precisions to the signals, possibly di¤erent from the objective ones.9 We also
wish to consider the possibility that agent 2 may �distrust�agent 1 by allowing
agent 2 to believe that agent 1 did not understand the signal correctly, that is,
he updated in the �wrong direction.�
Speci�cally, we let agents have subjective views about the signal precisions:

qS1 2 (0:5; 1] and qjS2 2 (0:5; 1], where qS1 stands for the subjective precision
attached by agent 1 to the signal at time 1 and qjS2 stands for the subjective
precision attached by agent 2 to signals at times j = 1; 2.10 We also let agent
2 have subjective beliefs on the �rationality�of agent 1, that is, to think that
agent 1 may be of two types, rational (tr) or irrational (ti). A rational agent
always chooses an action greater than 50 upon observing a good signal and an
action lower than 50 upon observing a bad signal. An irrational agent updates
in the wrong direction and chooses an action lower than 50 upon observing a
good signal and an action higher than 50 upon observing a bad signal. We are
de�ning an agent at time 1 as �rational� as long as he updates in the correct
direction, since the only thing that agent 2 has to learn from agent 1 is, indeed,
the signal realization (given that the objective precisions of the signals are
known and do not have to be learned), and this is revealed under the minimal
requirement that agent 1 updates in the right direction. We assume that, after
observing a1, agent 2 thinks that agent 1 is rational with probability �1(a1).

11

8Actions a1 other than 30 and 70 cannot arise, and one need not specify the actions of
agent 2 after such o¤-the-equilibrium-path actions.

9We could equivalently consider the possibility that agent 1 makes mistakes in implement-
ing the action. We �nd the subjective precision approach simpler.
10The superscript S stands for �subjective.�Note that we are restricting qS1 to be greater

than 0:5, since, as we shall see, rarely in the experiment we observe subjects to update in
the �wrong direction.� Relaxing this assumption would not change the following analysis.
Morevover, we let agent 2 assign a di¤erent precision to signal 1 (that he does not observe)
and to signal 2. Finally, notice that we maintain the assumption of symmetric signals.
11Observe that we let agent 2�s belief on the rationality of the predecessor depend on

the observed action, without specifying the exact model from which this posterior belief is
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Given the subjective precisions and rationality beliefs, in the �rst speci�c-
ation, given his information Ijt , agent i chooses a

j
t to maximize his expected

payo¤ ES [100 � 0:01(V � at)2jIjt ], and his optimal action is a
j�
t = ES

�
V jIjt

�
.

Similarly, in Speci�cation 2, agent 2 chooses xj�2 = ES
�
s1jIj2

�
.

2.2.1 Theoretical Predictions of the Extended Model

The predictions of the extended model are qualitatively similar to the basic
model�s. Since qS1 > 0:5, agent 1 updates in the �correct direction� although
not necessarily as in the PBE. Given �1(a1) and q

1S
2 , in Speci�cation 1 agent 2

computes his expected value of the good, which he expresses by stating a12. In
particular, a12 is such that

a12
100� a12

=
PrS (V = 100ja1)
PrS (V = 0ja1)

=

8<:
�1(a1)q

1S
2 +(1��1(a1))(1�q1S2 )

(1��1(a1))q1S2 +�1(a1)(1�q1S2 )
if a1 > 50,

�1(a1)(1�q1S2 )+(1��1(a1))q1S2
(1��1(a1))(1�q1S2 )+�1(a1)q

1S
2

if a1 < 50.

(1)
Once he has stated this belief, he then updates it, using his subjective pre-

cision q2S2 . A key aspect that we wish to highlight is how the second action a
2
2

of agent 2 relates to his �rst action a12 and the signal s2 he observes. Simple
application of Bayes law yields:

PrS (V = 100ja1; s2)
PrS (V = 0ja1; s2)

=
PrS (s2jV = 100; a1)
PrS (s2jV = 0; a1)

PrS (V = 100ja1)
PrS (V = 0ja1)

. (2)

Given the conditional independence of the signals, the expression simpli�es to

PrS (V = 100ja1; s2)
PrS (V = 0ja1; s2)

=
PrS (s2jV = 100)
PrS (s2jV = 0)

PrS (V = 100ja1)
PrS (V = 0ja1)

, (3)

that is, to

PrS (V = 100ja1; s2)
PrS (V = 0ja1; s2)

=

�
q2S2

1� q2S2

�2 s2
100�1 a12

100� a12
. (4)

The multiplier in the updating of the likelihood ratio is either q2S2
1�q2S2

or

its inverse, 1�q2S2
q2S2

depending on whether s2 = 100 or 0. Thus, the �weight�
attached by agent 2 to the informativeness of the signal is the same, whether
agent 2 observes a signal that contradicts agent 1�s action (e.g., s2 = 0 after an
a1 > 50) or a signal that con�rms agent 1�s action (e.g., s2 = 100 after a1 > 50).

derived. This is mostly to simplify the exposition of the arguments. One model would be
agent 2 having 1) a prior belief on the predecessor�s rationality; 2) a belief on the precision
of the rational predecessor�s signal, as well as on that of the irrational predecessor. In the
econometric analysis of the experimental results we will develop a model with these features
and estimate it.
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The fundamental reason for this �symmetric�updating is that conditional on
the value of the good the signal at t = 2 is independent of the signal at t = 1
(by experimental design) as well as of the rationality of agent 1, which appear
to derive from principles of logic.
As we discussed in the Introduction, such a conclusion may seem at odds

with the following intuition. After observing a contradicting signal (e.g., s2 = 0
after an a1 > 50), an agent would seem right in updating down his belief on
the rationality of the predecessor, revising the belief previously stated and,
as a result, infering more from his own private signal, compared to the case
of a con�rming signal (e.g., s2 = 100 after a1 > 50). To understand why
this intuition is incorrect, let us study how agent 2 forms his belief about the
rationality of agent 1, by considering the second model speci�cation. After
observing an action greater than 50, agent 2 chooses his �rst action as follows:

x12 = Pr
S(s1 = 100ja1) = (5)

PrS(s1 = 100ja1; tr) Pr(trja1) + PrS(s1 = 100ja1; ti) Pr(tija1) = Pr(trja1) = �1(a1).

Similarly, in the case in which a1 < 50,

x12 = Pr
S(s1 = 100ja1) = 1� �1(a1).

Therefore, his �rst action simply re�ects his belief �1(a1).
Regarding agent 2�second action, let us stick to the case in which a1 > 50

and discuss how the agent updates his beliefs and chooses x22 after observing a
�contradicting�signal s2 = 0 or a �con�rming�signal s2 = 100.12 In the case
of s2 = 0, with a slight abuse of notation, we have

x22(a1; s2 = 0) =: Pr
S(s1 = 100ja1; s2 = 0) =

PrS(s1 = 100ja1; s2 = 0; tr) PrS(trja1; s2 = 0)+
PrS(s1 = 100ja1; s2 = 0; ti) PrS(tija1; s2 = 0) =

PrS(trja1; s2 = 0) := �2(a1; s2 = 0),

and, after a few simpli�cations, we obtain

x22(a1; s2 = 0) = Pr
S(trja1; s2 = 0) = (6)

[q1S2 (1� q2S2 ) + q2S2 (1� q1S2 )]�1(a1)
[q1S2 (1� q2S2 ) + q2S2 (1� q1S2 )]�1(a1) +

��
q1S2 q

2S
2

�
+ (1� q1S2 )(1� q2S2 )

�
(1� �1(a1))

.

Similar computations show that

x22(a1; s2 = 100) = Pr
S(trja1 > 50; s2 = 100) = (7)��

q1S2 q
2S
2

�
+ (1� q1S2 )(1� q2S2 )

�
�1(a1)

[q1S2 (1� q2S2 ) + q2S2 (1� q1S2 )]�1(a1) +
��
q1S2 q

2S
2

�
+ (1� q1S2 )(1� q2S2 )

�
(1� �1(a1))

.

12The analysis for the case in which a1 < 50 is analogous.
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An agent who believes that the predecessor is certainly rational (�1(a1) = 1)
or certainly irrational (�1(a1) = 0) does not update x12 (= �1(a1)), of course.
Otherwise, the agent updates up this probability after observing a con�rming
signal and down after a contradicting signal.13

The updating on the rationality of the predecessor can also be expressed as

�2(a1; s2)

1� �2(a1; s2)
=:
PrS(trja1; s2)
PrS(tija1; s2)

=
PrS(s2ja1; tr)
PrS(s2ja1; ti)

�1(a1)

1� �1(a1)
. (8)

Although the agent updates on the rationality of the predecessor, still, as
explained, the updating on the value of the good follows (4). To see how the
two updating formulas �t together, observe that the posterior likelihood ratio
on the value of the good (2) can be expressed as

Pr(V = 100ja1; s2)
Pr(V = 0ja1; s2)

=
Pr(V = 100ja1; s2; tr) Pr(trja1; s2) + Pr(V = 100ja1; s2; ti) Pr(tija1; s2)
Pr(V = 0ja1; s2; tr) Pr(trja1; s2) + Pr(V = 0ja1; s2; ti) Pr(tija1; s2)

=

(9)

1� q2S2
q2S2

Pr(V = 100ja1; tr) + Pr(V = 100ja1; ti)Pr(s2ja1;tr)Pr(s2ja1;ti)
1��2(a1;s2)
�2(a1;s2)

Pr(V = 0ja1; tr) + Pr(V = 0ja1; ti)Pr(s2ja1;tr)Pr(s2ja1;ti)
1��2(a1;s2)
�2(a1;s2)

.

Similarly,

Pr(V = 100ja1)
Pr(V = 0ja1)

=
Pr(V = 100ja1; tr)�1(a1) + Pr(V = 100ja1; ti)(1� �1(a1))
Pr(V = 0ja1; tr)�1(a1) + Pr(V = 0ja1; ti)(1� �1(a1))

=

Pr(V = 100ja1; tr) + Pr(V = 100ja1; ti) 1��1(a1)�1(a1)

Pr(V = 0ja1; tr) + Pr(V = 0ja1; ti) 1��1(a1)�1(a1)

. (10)

After substituting (8) into (10) and then (10) into (9), one reobtains (4).
In other words, in a Bayesian setting, while it is true that agent 2 does

update on the rationality of the predecessor after observing his private signal,
his posterior belief on the value of the good follows expression (4), as results
from the statistical property that conditional on the value of the good, the signal
at t = 2 is independent of the action at t = 1.
Perhaps, an even simpler way to understand this point is to observe that the

updating on the rationality of the predecessor only occurs through the updating

13To understand why, it is perhaps useful to consider the limit case in which the signal
is almost perfectly informative. In such a case, after observing the signal, the agent knows
(almost with certainty) the value of the good and, therefore, that the predecessor received his
same signal. If the predecessor chose an action that the signal contradicts, it must be that
he is irrational (since the probability of him receiving the other signal is almost zero). If the
predecessor chose an action that the signal con�rms, it must be that he is rational (since the
probability of him receiving the same signal is almost 1).
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on the value of the asset (rather than the other way around):

�2(a1; s2)

1� �2(a1; s2)
=

P1
i=0 Pr

S(trja1; s2; V = i) PrS(V = ija1; s2)P1
i=0 Pr

S(tija1; s2; V = i) PrS(V = ija1; s2)
= (11)P1

i=0 Pr
S(trja1; V = i) PrS(V = ija1; s2)P1

i=0 Pr
S(tija1; V = i) PrS(V = ija1; s2)

.

If instead agent 2 after seeing a1 and s2 �rst updated on the rationality of
agent 1 and then plugged �2(a1; s2) into (1) to form a belief on V as in (4), he
would violate Bayesian updating (as he would make the mistake of using the
posterior belief � after observing a1 and s2� about the rationality of agent 1
as if it were the belief after observing a1 only).
As we shall see, this basic implication of Bayesian updating is not consistent

with our experimental data in Speci�cation 1. After we present some summary
statistics of our experimental �ndings, we will enrich the above setting by al-
lowing agent 2 to select a belief about the rationality of agent 1 from a set of
multiple prior beliefs. For expositional motives, we �nd it convenient to post-
pone the description of this model to Section 5. Here we note that this model
is non-Bayesian, to the extent that it allows for multiple priors, rather than for
a unique prior, on the rationality of the predecessor. This model allows us to
explain the asymmetric updating observed in our data. Furthermore, we will
directly test this model through an experiment based on Speci�cation 2.

3 The Experiment and the Experimental Design

3.1 The Experiment

We ran the experiment in the Experimental Laboratory for Finance and Eco-
nomics (ELFE) at the Department of Economics at University College London
(UCL) in 2009, 2010, 2011, 2014 and 2018.14 The subject pool mainly consisted
of undergraduate students in all disciplines at UCL. They had no previous ex-
perience with this experiment. In total, we recruited 323 students. Each subject
participated in one session only.
The sessions started with written instructions given to all subjects. We

explained to participants that they were all receiving the same instructions.
Subjects could ask clarifying questions, which we answered privately. The ex-
periment was programmed and conducted with a built-on-purpose software.
Here we describe the baseline treatment (SL1). In the next section, we will

explain the experimental design. We ran �ve sessions for this treatment. In
each session we used 10 participants. The procedures were the following:

1. Each session consisted of �fteen rounds. At the beginning of each round,
the computer program randomly chose the value of a good. The value was

14This is the new name of the laboratory, formerly known as ELSE Laboratory.
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equal to 0 or 100 with the same probability, independently of previous
realizations.

2. Participants were not told the value of the good. They knew, however,
that they would receive information about the value, in the form of a
symmetric binary signal. If the value was equal to 100, a participant
would receive a �green ball� with probability 0:7 and a �red ball� with
probability 0:3; if the value was equal to 0, the probabilities were inverted.
That is, the green signal corresponded to st = 100 and the red signal to
st = 0.

3. A subject was randomly chosen to make a decision. He received a signal
and chose a number between 0 and 100, up to two decimal points. The
other subjects observed the decision made by the �rst subject on their
screen. The identity of the subject was not revealed.

4. In a second period, another subject was randomly chosen and asked to
choose a number between 0 and 100, having observed the �rst subject�s
choice only.

5. After he had made that choice, he received a signal and had to make
a second decision. This time, therefore, the decision was based on the
observation of the predecessor�s action and of the private signal.

6. The experiment then continued with a third, fourth, ..., tenth period, until
all 10 subjects had acted.15

7. At the end of the round, after all 10 subjects had made their decisions,
subjects observed a feedback screen, in which they observed the value of
the good and their own payo¤ for that round. The payo¤s were computed
as 100� 0:01(V � at)2 of a �ctitious experimental currency called �lira.�
After participants had observed their payo¤s and clicked on an OK button,
the software moved to the next round.

Note that essentially we asked subjects to state their beliefs. To elicit the be-
liefs, we used a quadratic scoring function, a quite standard elicitation method.
In the instructions, we followed Nyarko and Schotter (2002) and explained to
subjects that to maximize the amount of money they could expect to gain, it
was in their interest to state their true belief.16

As should be clear from this description, compared to the existing experi-
mental literature on social learning / informational cascades / herd behavior,
we made two important procedural changes. First, in previous experiments sub-
jects were asked to make a decision in a discrete (typically binary) action space,

15The experiment was designed to address many research questions. The data collected on
periods beyond 2 are not relevant for this paper�s research question.
16This explanation helps the subjects, since they do not have to solve the maximization

problem by themselves (and to which extent they are able to do so is not the aim of this
paper). For a discussion of methodological issues related to elicitation methods, see the recent
survey by Schotter and Trevino (2014).
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whereas we ask subjects to choose actions in a very rich space which practic-
ally replicates the continuum. This allows us to elicit their beliefs, rather than
just observing whether they prefer one action to another.17 Second, in previous
experiments subjects made one decision after observing both the predecessors
and the signal. In our experiment, instead, they made two decisions, one based
on public information only and one based on the private information as well.18

To compute the �nal payment, we randomly chose (with equal chance) one
round among the �rst �ve, one among rounds 6�10 and one among the last �ve
rounds. For each of these rounds we then chose either decision 1 or decision 2
with equal chance (with the exception of subject 1, who was paid according to
the only decision he made in the round). We summed up the payo¤s obtained in
these decisions and, then, converted the sum into pounds at the exchange rate
of 100 liras for 7 GBP. Moreover, we paid a participation fee of $5. Subjects
were paid in cash, in private, at the end of the experiment. On average, in this
treatment subjects earned $21 for a 2 hour experiment.

3.2 Experimental Design

Social Learning (SL). In addition to the social learning treatment (SL1) just
described, we ran a second treatment (SL2) which only di¤ered from the �rst
because the signal had a precision which was randomly drawn in the interval
[0:7; 0:71] (instead of having a precision always exactly equal to 0:7). Each sub-
ject observed not only the ball color but also the exact precision of his own
signal.19 A third treatment (SL3) was identical to SL2, with the exception
that instead of having sequences of 10 subjects, we had sequences of 4 subjects.
Given the smaller number of subjects, each round lasted less time, obviously; for
this reason, we decided to run 30 rounds per session, rather than 15. The results
we obtained for times 1 and 2 for these three treatments are not statistically
di¤erent (as we show in the next section and in the Appendix). For the pur-
poses of this paper, we consider the three treatments as just one experimental
condition. We will refer to it as the SL treatment.
Individual Decision Making (IDM). In the social learning treatments

subjects make decisions after observing private signals and the actions of others.

17Within the discrete action space experiments, exceptions to the binary action space are
the �nancial market experiments of Cipriani and Guarino (2005, 2009) where subjects can
choose to buy, to sell or not to trade. In the interesting experimental design of Celen and
Kariv (2004), subjects choose a cut o¤ value in a continuous signal space: depending on the
realization of the signal, one of the two actions is implemented (as in a Becker, DeGroot and
Marschak, 1964, mechanism). That design allows the authors to distinguish herd behavior
from informational cascades.
18Cipriani and Guarino (2009) use a quasi strategy method, asking subject to make decisions

conditional on either signal they might receive. Still, at each time, a subject never makes a
decision based only on the predecessors�decisions.
19Drawing the precision from the tiny interval [0:7; 0:71], instead of having the simpler set

up with �xed precision equal to 0:7, was only due to a research question motivated by the
theory of Guarino and Jehiel (2013), where the precision is, indeed, supposed to di¤er agent
by agent; this research question, however, is not the object of this paper (since it becomes
relevant only for periods beyond the second).
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Clearly, we may expect departures from the PBE even independently of the
social learning aspect if subjects do not update in a Bayesian fashion. To control
for this, we ran a treatment in which subjects observed a sequence of signals
and made more than one decision.20 Speci�cally, a subject received a signal
(as subject 1 in the SL treatments) and had to make a choice in the interval
[0; 100]. Then, with a 50% probability, he received another signal and had to
make a second decision (similarly to the second decision of subject 2 in the SL
treatments). Note that, at the cost of collecting less data, we decided not to
ask subjects to make a second decision in all rounds. In this way, since the �rst
decision was made without knowing whether there would be a second decision,
the subject was in a condition, we believe very similar to that of subject 1 in
the SL treatments; once the subject was given another signal and was asked to
make another decision, he was in a situation, we believe, comparable to that of
subject 2 in the SL treatments.
Guess the Color (GC). In the social learning treatments, subject 2 ob-

serves subject 1�s action, can infer his signal, and, presumably, on the basis of
this, state the value of the good. We also ran a treatment in which we ask sub-
ject 2 to report his belief on the signal observed by his predecessor. Speci�cally,
subject 1 had exactly the same task as in all other treatments, that is, to state
his belief in the interval [0; 100] after observing a signal. Subject 2 observed this
choice and was asked to choose a number in [0; 100], expressing the probability
that the �rst subject had observed a good signal (green ball). Then he received
a signal and had to make the same choice again. The elicitation method was
identical to the other treatments. In particular, the payo¤s for subject 2 were
computed as 100�0:01(s1�xj2)2. We ran 5 sessions for this treatment, using the
same protocol as in Treatment SL and with a sequence of only two subjects. In
each session there were 10 or 12 subjects and in each round they were randomly
matched in pairs: one would be the �rst in the sequence and one the second.21

Finally, to study the robustness of our results to di¤erent speci�cations, we
also ran a treatment in which subjects received signals of stochastic precision in
(0:5; 1]. In the interest of space, we discuss the details of this other treatment
in the Appendix. Here we just notice that we used sequences of only two sub-
jects (like in the GC treatment) and that each subject received a signal whose
precision was drawn from a uniform and was known to him but not to the other
participant.

20This treatment was programmed and conducted with the software z-Tree (Fischbacher,
2007) in the fall 2014. The payment followed the same rules. The exchange rate was appropri-
ately modi�ed before each treatment so that, in expectation, subjects could receive a similar
amount of money per hour spent in the laboratory.
21The total number of participants was 56 since in two sessions we recruited 10 subjects

and in three sessions we recruited 12 subjects (which made the probability of a subject being
matched with the same other participant even lower). The exchange rate for this treatment
was 100 liras for 6 GBP.
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Treatments
Signal
Precision

Sequence
Subjects
in a group

Groups
Partici-
pants

Rounds

SL1 0.7 10 10 5 50 15
SL2 [0.7,0.71] 10 10 5 49 15
SL3 [0.7,0.71] 4 4 5 20 30
IDM 0.7 1 or 2 - - 36 30
GC 0.7 2 10 5 56 15

Table 1: Treatments�features. SL: Social Learning; IDM: Individual Decision
Making.
Note that in SL2 there are 49 subjects since onse session was run with 9 participants rather

than 10 due to a last minute unavailability of one subject.

4 Results of the SL and IDM treatments

Our main interest is in understanding how human subjects weigh private and
public information. To this aim, we will focus on subjects�second decisions at
time 2, that is, after they have observed both their predecessor�s action and their
private signal. Before doing so, however, we will brie�y discuss the decisions of
subjects at time 1 (when they have only observed a private signal) and the �rst
decisions of subjects at time 2, based on the observation of their predecessor�s
choice only.

4.1 How do subjects make inference from their own signal
only?

At time 1, a subject makes his decision on the basis of his signal only. His
task� to infer the value of the good from a signal drawn from an urn� is the
same in the SL and in the IDM treatments; for this reason we pool all data
together (for a total of 1380 observations).22

Figure 1 shows the frequency of decisions at time 1, separately for the cases
in which the signal the subject received was good or bad. The top panel refers
to the case of a good signal. A high percentage of decisions (34:5%) are in
line with Bayesian updating, deviating from it by less than 5 units; 19:5% of
actions are smaller than the Bayesian one and 43:3% of actions are larger. Note,
in particular, that in 9:4% of the cases subjects did not update their belief at
all after seeing the signal, choosing an action exactly equal to 50. On the
other hand, in 13% of the cases, subjects went to the boundary of the support,
choosing the action 100. Finally, there is a small proportion (2:8%) of actions
in the wrong direction (i.e., updating down rather than up).

22We ran a Mann-Witney U test (Wilcoxon rank-sum test) on the medians of each session
(the most conservative option to guarantee independence of observations) for the SL treatment
and on the medians of each individual�s decisions in the IDM treatment; we cannot reject the
null hypothesis that they come from the same distribution (p-value = 0:47). Note that we
also ran the same test to compare the three SL treatments and we cannot reject the same
hypothesis (at the 5% signi�cance level) when we compare SL1 with SL2 (p-value = 0:5), SL1
with SL3 (p-value = 0:08), or SL2 with SL3 (p-value = 0:22).
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Figure 1: Distribution of actions at time 1. The top (bottom) panel refers to
actions upon receiving s1 = 100 (s1 = 0).

The bottom panel refers to the bad signal. The picture looks almost like the
mirror image of the previous one, with the mode around 30, masses of 12:8% in
50 and of 12:4% in 0, and other actions distributed similarly to what explained
above.
One interpretation of these results is that subjects put di¤erent weights

on the signal they receive (which is equivalent to subjects attaching to signals
di¤erent, subjective precisions). A simple model that allows to quantify this
phenomenon is the following:

a1i = 100

�
s1i
100

0:7�1i

0:7�1i + (1� 0:7)�1i + (1�
s1i
100

)
(1� 0:7)�1i

0:7�1i + (1� 0:7)�1i
�
, (12)

where a1i and s1i are the action and signal at time 1 for observation i, �1i 2 R
is the weight put on the signal in observation i and 0:7 is the precision of the
signal.23 Note that for �1i = 1 expression (12) gives the Bayesian updating
formula, and so �1i = 1 is the weight that a Bayesian agent would put on
23Recall that a subject made many choices in the same experiment, since he participated in

several rounds; the index i refers to the observation i at time 1, and not to the subject acting at
that time. Clearly, the same subject could have chosen di¤erent weights in di¤erent decisions.
Moreover, recall that in some sessions the exact precision of the signal was randomly drawn
from [0:7; 0:71] rather than being identical to 0:7. By using the exact precision we obtain
almost identical results, with di¤erences at most at the decimal point. We prefer to present
the results for q = 0:7 for consistency with our analysis at time 2. In the expression (12) the
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the signal. A value higher (lower) than 1 indicates that the subject overweights
(underweights) the signal. For instance, for �1i = 2, the expression is equivalent
to Bayesian updating after receiving two conditionally independent signals and
can, therefore, be interpreted as the action of a Bayesian agent acting upon
receiving two signals (with the same realization). A subject that does not put
any weight on the signal (�1i = 0) does not update at all upon observing it
(a1i = 50), whereas a subject who puts an in�nite weight on it chooses an
extreme action (a1i = 0 or a1i = 100), as if he were convinced that the signal
fully reveals the value of the good. Finally, a negative value of �1i indicates
that the subject misreads the signal, e.g., interpreting a good signal as a bad
one.
Table 2 reports the quartiles of the distribution of the computed �1i.24

Note that the median �1i is 1, indicating that the median subject is actually
Bayesian.25

1st Quartile Median 3rd Quartile
�1i 0:73 1:00 2:05

Table 2: Distribution of weights on private signal for actions at time 1.
The table shows the quartiles of the distribution of weights on private signal for actions at

time 1.

As we said in the Introduction, in previous social learning experiments, de-
viations from equilibrium have been interpreted sometimes as subjects being
overcon�dent in their own signal. Our analysis shows that there is much hetero-

signal is divided by 100 since it can take two values, either 0 (for the bad signal � �red ball�
in the experiment) or 100 (for the good signal � �green ball� in the experiment).
24When a1i = 0 or 100, we compute �1i by approximating a1i = 0 with " and a1i = 100

with 100� " (with " = 0:01). We prefer to report the quantiles rather than the mean or other
statistics whose computations are a¤ected by the approximation of �1i.
25 In this analysis, we have allowed for heterogeneous weights on the signal and assumed that

subjects did state their beliefs correctly. Another approach would be to take into account that
subjects could have made mistakes while reporting their beliefs, as in the following model:

a1i = 100

�
s1i

q�1

q�1 + (1� q)�1
+ (1� s1i)

(1� q)�1
q�1 + (1� q)�1

�
+ "1i,

where the weight on the signal is the same for all subjects but each subject makes a random
mistake "1i. It is easy to show that, as long as the error term has zero median, the estimated
median �1 in this model coincides with the median �1i computed above.
Other interpretations are possible. One may, for instance, argue that the fact that a subject

chooses 70, while compatible with Bayesian updating, is not necessarily indication that he is a
proper Bayesian: he may be choosing 70 simply because that is the precision of his signal. The
fact that the median subject is Bayesian for a bad signal too, however, lends some credibility
to the fact that the subjects are doing more than just inputting their signal precision. Action
50 may also be the result of di¤erent heuristics. A subject may feel that one signal alone is not
enough for him to make any update; or perhaps he is happy to choose the least risky action.
The extreme actions, on the other hand, may be the expression of a �guessing type� who,
despite the incentives given in the laboratory, simply tries to guess the most likely outcome.
It should be noticed, though, that of all subjects who acted at time 1 more than once, only
one chose an extreme action (0 or 100) every time; similarly, only 5:7% of them chose the
action 50 every time. We will comment more on risk preferences in Section 4:3.
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geneity in the way subjects update their beliefs after receiving a signal. Despite
these subjective beliefs, there is no systematic bias to overweight or underweight
the signal: the median belief corresponds to Bayesian updating.

4.2 How do subjects make inference from their prede-
cessor�s action?

We now turn to the question of whether and how subjects infer the value of the
good from the predecessor�s action only. For that purpose, we focus on the �rst
decision at time 2 (denoted by a12) since it is based on the observation of that
action only. Here we only consider the data from the SL treatment.
A subject at time 2 has to infer which signal his predecessor received on the

basis of the action he took. We know from the previous analysis that only rarely
(in 3:5% of the cases), subjects at time 1 updated in the �wrong direction�(i.e.,
chose an action greater (lower) than 50 after observing a bad (good) signal).
Therefore, subjects at time 2 could have simply considered an action strictly
greater (or lower) than 50 as a good (or bad) signal.
We have pooled together all cases in which the observed choice at time 1

was greater than 50 and, similarly, all cases in which it was lower than 50 (see
Figure 2). Compared to Figure 1, Figure 2 shows a higher mass for a12 = 50 and
a lower one around 70 or 30 (for the case of a1 > 50 and a1 < 50, respectively).
When the subject at time 1 had chosen a1 = 50, perhaps not surprisingly, the
distribution has a large mass at 50.
We replicated the model discussed in the previous section, by replacing the

case in which the subject observed a good signal with the case in which the
subject observed a1 > 50, and so chose a12i such that

a12i = 100
0:7�

1
2i

0:7�
1
2i + (1� 0:7)�

1
2i

; (13)

analogously, for the case in which he observed a1 < 50, he chose a12i such that

a12i = 100
(1� 0:7)�12i

0:7�
1
2i + (1� 0:7)�

1
2i

. (14)

Essentially, in this model we are assuming that a subject considers actions higher
(or lower) than 50 as good (bad) signals with the same precision 0:7. By applying
this model, we obtain the results reported in Table 3. The median weight is
(slightly) lower than 1 and the �rst and third quartiles are 0:13 and 1:4 (versus
0:81 and 2:05 at time 1) re�ecting the fact that subjects in these treatments
seem to �discount�to some extent the information contained in the predecessor�s
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Figure 2: Distribution of �rst actions at time 2 (the top panel refers to a1 > 50,
the middle to a1 = 50 and the bottom to a1 < 50).
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action.26 27

It should be noticed that we could expect to observe the same distribution
at time 1 and at time 2 under two di¤erent models. One model is that subjects
at time 2 perfectly infer the signal from the observed action at time 1 and weigh
the signal in the same heterogenous ways at time 1 and time 2. The other is
that subjects simply imitate the predecessors�actions. Clearly both models are
rejected by our data. To explain the data we need a model in which a subject
acting at time 2 has subjective beliefs on how trustworthy the predecessor is
(i.e., on how frequently the predecessor decision to update up or down from 50
re�ects a good or bad signal).
To investigate this issue further, we computed the weights separately for

di¤erent classes of a1, as illustrated in Table 3.28

1st Quartile Median 3rd Quartile
�12 0:13 0:94 1:4

�12 (upon observing 50 < a1i � 66:7) 0 0:48 0:9

�12 (upon observing 66:7 < a1i � 83:4) 0 0:89 1:33

�12 (upon observing a1i > 83:4) 0:9 1:31 2:8

Table 3: Distribution of weights for �rst actions at time 2.
The table shows the quartiles of the distribution of weights for �rst actions at time 2. The

action at time 1 is considered as a signal (of precision 0.7) for the subject at time 2.

As one can see, subjects have the tendency to �discount�the actions close
to 50 (50 < a1i � 66:7) and, although less, those in a neighborhood of the
Bayesian one (66:7 < a1i � 83:4). They do not discount, instead, more ex-
treme actions. This behavior is in line with a model of subjective beliefs
in which subjects expect error rates to be inversely proportional to the cost
of the error, since the expected cost of an action against the signal is in-
creasing in the distance from 50. A well known model in which errors are
inversely related to their costs is the Quantal Response Equilibrium (which
also assumes expectations are rational). Our results are, however, not com-
patible with such a theory in that expectations about time 1 error rates are
not correct. Indeed, the error rate at time 1 is very small. With subjects
at time 1 choosing an action against their signal in 3:5% of the cases only, a
Bayesian agent would have a belief on the value of the good being 100 equal to

26We considered the medians of each session for the SL treatment and of each individual�s
decisions in the IDM treatment for a1; and the medians of each session for the SL treatment
for a12; we reject the null hypothesis that they come from the same distribution (p-value =
0:014). We repeated the same test considering only the IDM treatment for a1; again, we reject
the null hypothesis (p-value = 0:015).
27Discounting the predecessor�s action is found, in a stronger way, in the experiment by

Çelen and Kariv (2004). They ask subjects at time 2 to report a threshold value that depends
on what they learn from the �rst subject�s choice. Çelen and Kariv (2004, p.493) �nd that
�subjects tend to undervalue sharply the �rst subjects�decisions.�
28We have chosen the cut-o¤ points 66:7 and 83:4 simply to obtain intervals of equal length.

We tried alternative cut-o¤ points and did not �nd signi�cant di¤erences in the results.

21



Pr(V = 100ja1 > 50) = (0:7)(0:965)+(0:3)(0:035)
(0:7)(0:965)+(0:3)(0:035)+(0:7)(0:035)+(0:3)(0:965) = 69, which

barely changes from the case of no mistakes. Essentially, to explain our data, we
need a model of incorrect subjective beliefs in which, as illustrated in Section 2,
agent 2 entertains a subjective belief about the rationality of agent 1. We will
come back to such a model in Section 6.

4.3 How do subjects weigh their signal relative to their
predecessor�s action?

Now we move to study how subjects update their beliefs upon receiving the
signal at time 2. To this end, we focus on the second action made at time 2.
We will refer to the �rst action that subjects take at time 2 as their ��rst

belief� and to the second as their �posterior belief.� Figure 3 shows the fre-
quency of posterior beliefs conditional on whether the subject received a signal
con�rming his �rst belief (i.e., s2i = 100 after an action a12i > 50 or s2i = 0 after
an action a12i < 50) or contradicting it (i.e., s2i = 100 after an action a

1
2i < 50

or s2i = 0 after an action a12i > 50).
29 The �gure is obtained after transforming

an action a12i < 50 into 100�a12i and the corresponding signal s1i into 100�s1i.
If subjects acted as in the PBE, in the case of con�rming signal we would

observe the entire distribution concentrated on 84. The empirical distribution
shows much more heterogeneity. Nevertheless, the median action as well as the
mode are indeed close to the PBE. For the contradicting signal, the picture is
rather di¤erent. Whereas in the PBE we would observe the entire distribution
concentrated on 50, the empirical distribution looks very asymmetric around
50, with more than 70% of the mass below 50. To quantify these observations,
we compute the weight that the subject puts on his signal by using our same
model of updating as the one discussed above:

a22i = 100
0:7�

2
2i
a12i
100

0:7�
2
2i
a12i
100 + (1� 0:7)

�22i
�
1� a12i

100

� , (15)

when the subject observed s2i = 100 and, analogously,

a22i = 100
(1� 0:7)�

2
2i a

1
2i

100

(1� 0:7)�
2
2i
a12i
100 + 0:7

�22i

�
1� a12i

100

� , (16)

when he observed s2i = 0.

29 In this analysis we exclude the cases in which the action at time 1 was a1i = 50, since
observing a 50 is uniformative. We do study the case in which a subject at time 2 observed an
informative action at time 1 and chose a12i = 50; in this case we distinguish whether the action
observed at time 1 con�rmed or contradicted the realization of the signal s2i. Note that an
alternative de�nition of con�rming and contradicting signal would be in reference to a1 rather
than to a12: This would not a¤ect our results, since the di¤erence is in one observation only
(in which a12 > 50 and a1 < 50).
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Figure 3: Distribution of a22 for con�rming (top panel) or contradicting (bottom
panel) s2.

Table 4 reports the results.30 While in the case of a con�rming signal the
median subject puts only a slightly lower weight on the signal than a Bayesian
agent would do, in the case of a contradicting signal, the weight is considerably
higher, 1:70.31 The di¤erent weight is observed also for the �rst and third
quartiles. Essentially, subjects update in an asymmetric way, depending on
whether the signal con�rms or not their �rst beliefs: contradicting signals are
overweighted with respect to Bayesian updating.32

One may wonder whether this result is due to the social learning aspect
of our experiment or, instead, is just the way human subjects update upon
receiving two consecutive signals. To tackle this issue, we consider subjects�
behavior in the IDM treatment, as reported in Table 5. As one can see, the
asymmetry and the overweight of the contradicting signal disappear in this case:
the median weight is equal to 1 for the contradicting signal and a bit higher for
the con�rming signal (it should be observed, though, that the order for the
�rst quartile is reversed). We can conclude that the asymmetric updating we

30The value of �22i is undetermined when a
1
2i = 100, therefore we exclude these cases. When

a22i = 100 we use the same approximation as previously discussed.
31We ran a Mann-Witney U test (Wilcoxon rank-sum test) on the median weight for the

con�rming and contradicting signal; we can reject the null hypothesis that their distribution
is the same (p-value =0:000003).
32As we said, our results do not change if we de�ne the signal as contradicting or con�rming

with respect to the action a1 rather than with respect to the �rst belief a12, since the di¤erence
is for one observation only. Moreover, we cannot reject the hypothesis that the results, both
for con�rming and contradicting signals, are the same for the three treatments SL1, SL2 and
SL3. (see the Appendix for details).
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1st Quartile Median 3rd Quartile
�22 0:68 1:16 2:04

�22 (upon observing con�rming signal) 0:54 0:96 1:35

�22 (upon observing contradicting signal) 1:00 1:70 2:73

Table 4: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the
second action at time 2 in the SL treatment. The data refer to all cases in which the �rst

action at time 2 was di¤erent from 50.

1st Quartile Median 3rd Quartile
�22 0:64 1:08 2:07

�22 (upon observing con�rming signal) 0:64 1:30 2:48

�22 (upon observing contradicting signal) 0:93 1:00 1:76

Table 5: Distribution of weights on the own signal in the IDM treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the
action at time 2 in the IDM treatment. The data refer to all cases in which the action at

time 1 was di¤erent from 50.

observe in the SL treatment does not just come from the way subjects update
on a signal after having observed a �rst piece of information.33

To sharpen our description of the behavior in the SL treatment, we now look
at how the weight on the signal changes with the �rst belief. Table 6 reports
the quartiles for �22 for three di¤erent classes of a

1
2i. As one can immediately

observe, the asymmetry occurs for the last two classes, but not for the �rst.34

As we know from the previous analysis, the median subject chose an action
a12 > 67 mainly when he observed an action at time 1 greater than the the-
oretical Bayesian decision. These are cases in which the subject �trusted�the
predecessor. These are also the cases in which subjects update in an asymmetric
way. Table 7 reports the same analysis, but based on classes of predecessor�s
action, a1i. Again, there is no asymmetry for the class 50 < a1i � 0:67, whereas
there is for the extreme class. The middle class o¤ers a less clear interpretation.
In the next section we will o¤er an explanation for this phenomenon. Before

33 It is also interesting to see the di¤erence in behavior when subjects have �rst stated a
�rst belief of 50 (after observing an informative action or signal). In the SL experiment, the
median subject puts approximately the same weight on the signal, independently of whether it
is con�rming or contradicting (Table 11 in the Appendix). In the IDM treatment, instead, he
updates as a Bayesian agent would do (after receiving just one signal) if the signal is con�rming
and puts no weight at all on it if it is contradicting (Table 12 in the Appendix). The latter
result has a simple interpretation. A subject choosing a1 = 50 in the IDM treatment is not
con�dent in one piece of information (e.g., ball color) only, he needs two to update. When
the second ball color is in disagreement with the �rst, the subject states again a belief of
50, which is quite natural, since he has received contradictory information; when instead, the
second ball has the same color, he updates as if it were the �rst signal he received.
34The 3rd quartile of 4:87 when a12i > 83 and the signal is con�rming is of course in�uenced

by subjects choosing 100 after having already chosen a number greater than 83.
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1st Quartile Median 3rd Quartile
�22 (upon observing con�rming signal)
Conditional on 50 < a12i � 66:7 0:65 0:97 1:16

Conditional on 66:7 < a12i � 83:4 0:18 0:91 1:57

Conditional on a12i > 83 0:43 2:10 4:87

�22 (upon observing contradicting signal)
Conditional on 50 < a12i � 66:7 0:55 0:96 1:96

Conditional on 66:7 < a12i � 83:4 1:02 1:68 2:11

Conditional on a12i > 83:4 2:53 3:34 4:26

Table 6: Distribution of weights for second actions at time 2 in the SL treatment.
The table shows the quartiles of the distribution of weights for second actions at time 2,

conditional on di¤erent values of the �rst belief.

1st Quartile Median 3rd Quartile
�22 (upon observing con�rming signal)
Conditional on 50 < a1i � 66:7 0:70 0:97 1:28

Conditional on 66:7 < a1i � 83:4 0:43 1:06 1:37

Conditional on a1i > 83:4 0:50 1:01 2:36

�22 (upon observing contradicting signal)
Conditional on 50 < a1i � 67 0:96 1:06 2:72

Conditional on 66:7 < a1i � 83:4 0:49 1:20 2:11

Conditional on a1i > 83:4 1:18 2:00 3:88

Table 7: Distribution of weights for second actions at time 2 in the SL treatment.
The table shows the quartiles of the distribution of weights for second actions at time 2,

conditional on di¤erent values of the action at time 1.

we do so, let us make some observations.
First, our result cannot be explained in terms of risk preferences. As a matter

of fact, risk aversion would push subjects receiving two contradicting pieces of
information towards choosing 50, which makes our result even more striking.
Moreover, the IDM treatment serves to control for risk preferences too, and we
do see a striking di¤erence of behavior between SL and IDM. Finally, a model
in which subjects choose actions according to their risk preferences would not
be able to predict asymmetric updating, unless risk preferences were correlated
with the signal subjects receive, which sounds implausible.35

Second, if one thinks that the only inference subjects had to make from
the predecessor�s action was the predecessor�s signal realization (and not the
precision, since it was known), it is even more surprising that subjects simply did
not choose 50 after a contradicting signal, since the fact that a good and a bad
piece of information �cancel out�does not require sophisticated understanding
of Bayes�s rule.
Third, and relatedly, one could observe that if a subject chose, e.g., a12i = 84

35The proof of the claim is simple and available upon request.
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and then, after receiving a bad signal, a22i = 50, the corresponding �
2
2i would be

2, which is compatible with the overweight we documented. It must be noticed,
though, that if we exclude the cases in which a22i = 50, the asymmetry remains
and is actually even stronger (see Table 13 in the Appendix). In other words,
the asymmetry is not driven by subjects choosing a22 = 50.

36

Fourth, our result cannot be explained by and does not fall into categories
of psychological biases sometimes invoked in decision making under uncertainty
such as the base rate neglect or the con�rmatory bias. Base rate neglect in our
experiment would mean neglecting the �rst belief once the new piece of inform-
ation (the private signal) is received. With such a bias, we should expect that
the median choice of subjects �rst observing an action a1 > 50 and then a signal
s2 = 100 should be equal to that at time 1 after observing a signal s1 = 100,
which is not the case (this would be equivalent to �22 equal to 0, whereas it
is slightly greater than 1). Moreover, such a bias should appear in the IDM
treatment too, since it is not related to how the base rate is formed in the �rst
place. As for the con�rmatory bias, if subjects had the tendency to discard
new information in disagreement with their original view, and only accept in-
formation con�rming their original opinion (the de�nition of con�rmatory bias)
they should ignore (i.e., not update upon receiving) a contradicting signal, in
sharp contrast with our results. Note that had we inverted the order in which
information is presented (i.e., �rst the private signal and then the predecessor�s
action) we would not have been able to rule out this possibility.37

Finally, as we mentioned in Section 3, as a robustness check, we ran another
treatment in which the precision of the signals is randomly drawn from (0:5; 1].
A subject knows the precision of his own signal, but not the precision of the
other subject�s signal. The result of this treatment is again that subjects update
in a non-Bayesian, asymmetric way. We describe the procedures and results of
this treatment in Appendix B.

5 Explaining the asymmetric updating

5.1 No asymmetry in Bayesian Updating

As we have discussed in Section 2, a Bayesian agent puts the same weight on the
signal, independently of its realization. This is true even allowing the agent to
have subjective signal precisions for the signals at times 1 and 2 and entertain
a subjective belief about the rationality of agent 1, as we did in our extended

36 In the econometric analysis that will follow, this type of concern is well taken into account,
since we allow and elicit (from a control treatment) subjective beliefs.
37Finally, it is worth mentioning that whereas in the social learning literature, as in much

psychological literature, researchers have talked about �overncon�dence,� in other experi-
mental studies subjects show �undercon�dence.� In particular, in experiments on decision
making with naive advice, it has been observed that �when given a choice between getting
advice or the information upon which the advice is based, subjects tend to opt for the advice,
indicating a kind of undercon�dence in their decision making abilities [...]� (Schotter, 2003).
Our result is again not explained by this type of bias.
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model. The only requirement for this simple implication of Bayesian updating is
that, conditional on the value of the good, signals are independently distributed
and that the signal realization (a draw from an urn) of agent 2 is independent of
the rationality of the predecessor, which is hard to dispute on logical grounds.
It should be stressed that in the experiment subjects know that the signals
are conditionally independent. The results of the IDM treatment showing no
asymmetry are perfectly in line with subjects understanding it.

5.2 Multiple priors and asymmetric updating

The intuition that observing a signal contradicting the �rst belief makes an
agent update down on the predecessor�s rationality and put more weight on his
own signal, while in contradiction with Bayesianism, is, however, compatible
with a model of updating in which an economic agent has multiple priors on the
predecessor�s rationality. In such a model, the own signal serves two purposes:
it makes the agent select the prior on the predecessor�s rationality; and, once
this is done, to update on the �rst belief.
Speci�cally, suppose a subject at time 2 believes that the predecessor can

be of two types: either �rational�or �noise.�A rational type always chooses an
action greater than 50 after observing a good signal and an action lower than 50
after observing a bad signal. A noise type, instead, chooses any action between
0 and 100 independently of the signal. Let us denote these types by T 2 ftr; tng
and the probability that the subject is noise by Pr(T = tn) � �. Whereas a
Bayesian agent has a unique prior �, a subject at time 2 has ambiguous belief
on �, that is, multiple priors belonging to the set [��; �

�] � [0; 1].
Note that in Section 2, for illustration, we found it more convenient to present

the Extended Model with two types, one rational and one irrational, whereas
here we prefer to present it in terms of rational and noise. This is just a matter
of presentation, one model can easily be mapped into the other. In particular,
the relation between the two parameterizations is given by � = 2��

2 .
38

To update his belief upon observing an event E, �rst the subject selects one
of the priors in the set. If he is su¢ ciently con�dent that the event could occur
conditional on the predecessor being rational, he will pick up the lowest prior
��, in the complementary case, he will pick up �

�. In other words,

if
Pr(EjT = tr)
Pr(EjT = tn)

� c, then � = ��, and (17)

if
Pr(EjT = tr)
Pr(EjT = tn)

< c, then � = ��,

where c 2 [0;1).
38We prefer this di¤erent parameterization here to be consistent with the econometric model

of the next section. In that model, an action is either taken by a rational agent or a noise
agent, and the noise is modelled as a truncated normal distribution centered in 50.
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In our experiment subject 2 makes such a decision twice, �rst after observing
the event E � fa1g and then after observing the event E � fa1; s2g.39 Thus,
there are two events in which subject 2 updates his belief about the rationality
of subject 1. Note also that after observing fa1; s2g the subject also uses the
signal realization s2 to update on the �rst belief.
We refer to this model of updating based on the likelihood ratio Pr(EjT=tr)

Pr(EjT=tn)
as Likelihood Ratio Test Updating (LRTU) rule. It can be seen as a simple
generalization of the Maximum Likelihood Updating (MLU) model, in which
the time 2 subject estimates � to be the value in [��; �

�] that maximizes the
likelihood of observing the event E. Indeed, since

Pr(E) = Pr(EjT = tr) Pr(T = tr) + Pr(EjT = tn) Pr(T = tn),

that is,
Pr(E) = Pr(EjT = tr)(1� �) + Pr(EjT = tn)�,

according to the MLU rule, the subject chooses either �� or �
�, depending on

whether the event is more likely conditional on the predecessor being rational
or noise. That is,

if
Pr(EjT = tr)
Pr(EjT = tn)

� 1, then � = ��, and (18)

if
Pr(EjT = tr)
Pr(EjT = tn)

< 1, then � = ��.

The LRTU model generalizes the MLU model to take into account that subjects
may need stronger or weaker evidence in favor of one type in order to select a
speci�c prior. This is equivalent to assuming that the subject acts as if he
received another signal ' about the predecessor�s type (and uncorrelated with
the event). In this case, he would choose the prior to maximize the following
probability:

Pr(E;') = Pr(E;'jT = tr) Pr(T = tr) + Pr(E;'jT = tn) Pr(T = tn).

That is, he would select � = �� (or � = �
�) if the following inequality is (or is

not) satis�ed:
Pr(E;'jT = tr)
Pr(E;'jT = tn)

� 1,

that is,
Pr(EjT = tr)
Pr(EjT = tn)

Pr('jT = tr)
Pr('jT = tn)

� 1,

or
Pr(EjT = tr)
Pr(EjT = tn)

� Pr('jT = tn)
Pr('jT = tr)

. (19)

39Since a1 is a continuous variable, Pr(fa1gjT = tr) should be read as a conditional density
function.
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By setting Pr('jT=tn)
Pr('jT=tr) � c, one obtains the LRTU model.

To understand why the LRTU model can generate the type of asymmetric
updating, let us consider a simple example.

5.3 An Example

Suppose that subject 2 has multiple priors [��; �
�] = [0; 1] on the predecessor�s

type. Suppose that he observes a1 = 70 and then the signal s2 = 0. Let us
consider �rst the LRTU model and suppose the threshold is c = 1, so that the
model is equivalent to the MLU model.
Suppose that subject 2 has expectations on the rational and noise types�

actions at time 1 such that Pr(a1=70jT=tr)
Pr(a1=70jT=tn) � 1. In this case, the subject selects

the prior �� = 0. The subject is con�dent on the predecessor�s rationality,
and, therefore, chooses a12 = 70. After receiving the signal s2 = 0, the subject
now reassesses the predecessor�s rationality. The probability of observing an
action greater than 50 and a negative signal conditional on the predecessor
being rational is now lower. If, in particular, Pr(a1=70;s2=0jT=tr)

Pr(a1=70;s2=0;jT=tn) < 1, then the
subject chooses �� = 1. Being now con�dent that the predecessor was a noise
type, the subject considers a1 = 70 completely uninformative, which would
imply a belief of 0:5 on V = 100. On top of this, the subject has observed a bad
signal: by applying Bayes�s rule to a belief of 0:5, the subject obtains a posterior
belief of 0:3 on the value being 100 and, as a result, chooses a22 = 30. In terms
of our previous analysis, this is equivalent to a subject overweighting the signal,

with �22 = 2, since 30 = 100
(1�0:7)2 70

100

(1�0:7)2 70
100+0:7

2(1� 70
100 )

. A similar analysis applies

to the case in which the subject observes a signal s2 = 100. It is easy to see
that if Pr(a1=70jT=tr)Pr(a1=70jT=tn) � 1, then a fortiori

Pr(a1=70;s2=100jT=tr)
Pr(a1=70;s2=100jT=tn) � 1. Therefore,

in this case the subject sticks to the prior �� = 0. Since the subject is still
con�dent that the predecessor was rational, he does not change his �rst belief
on V = 100, which remains 0:7. Since the subject has observed a good signal,
by applying Bayes�s rule to a belief of 0:7, he obtains a posterior belief of 0:84
on the value being 100 and, as a result, chooses a22 = 84. This is equivalent to
a subject weighing the signal as a Bayesian agent would do, with �22 = 1. This
way of updating, thus, generates the asymmetry we observe in our data.

5.4 Results of the GC Treatment

To test the hypothesis that subjects change their mind about the predecessors�
rationality in a Bayesian fashion (or not), we ran the GC treatment. Recall
that in that treatment, subject 2 is asked to state his belief that the predecessor
observed the good signal (the green ball) �rst after observing the predecessor�s
action only and, then, after receiving the private signal too. The stated belief is
equivalent to the stated belief that the �rst decision maker is rational, according
to the de�nitions used in Section 2.
Figure 4 reports the frequencies of the stated beliefs after observing the

predecessor�s action only (x12i). Similarly to Figure 2, we have pooled together
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Figure 4: Distribution of �rst decisions (beliefs on the predecessor�s signal) at
time 2 (the top panel refers to a1 > 50, the middle to a1 = 50 and the bottom
to a1 < 50).

all the cases in which the observed choice at time 1 was greater than 50, all
the cases in which it was lower than 50 and, for completeness, all the cases in
which it was equal to 50.40 In the vast majority of the cases subjects do believe
the action re�ects the signal the predecessor received. In 30% of the cases, they
attribute probability 1 to the predecessor having received the signal s1 = 100
(or s1 = 0) after observing an action greater (lower) than 50. In more than 30%
of the cases, the belief, although not 1, di¤ers from certainty by at most 0:15
(i.e., upon observing an action greater than 50, the subject states at least 85).
In less than 5% of the cases, subjects do not update at all, reporting 50, after
observing an action di¤erent from 50, and in some rare instances they update
in the wrong direction.
In Table 8 we describe how x12i varies with a1. The median probability

attached to the predecessor�s receiving the good signal increases with a1, in line
with our �ndings from the SL treatments.
Figure 5 reports the distributions of beliefs after the subject has also received

40Recall that at time 1 the treatment was identical to the SL treatments. For this reason,
in the interest of space, we refrain from reporting the results about action 1. Mann-Whiteny
U tests on the medians show that we cannot reject the hypothesis that the decisions at time
1 are the same as in the SL1, SL2, SL3 and IDM treatments (p-values: 0:90, 0:14, 0:42, 0:84).
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1st Quartile Median 3rd Quartile
x12 0:70 0:90 1

x12 (upon observing 50 < a1i � 66:7) 0:50 0:70 0:90

x12 (upon observing 66:7 < a1i � 83:4) 0:80 0:90 1:00

x12 (upon observing a1i > 83:4) 0:90 0:95 1:00

Table 8: Distribution of �rst decisions at time 2 in the CG Treatment.
The table shows the quartiles of the distribution of �rst decisions at time 2 in the GC

Treatment. The action at time 1 is considered as a signal (of precision 0.7) for the subject at
time 2.

the private signal (x22i), distinguishing the cases of contradicting and con�rming
signals.41 Analogously to the previous analysis, the �gure is obtained after
transforming an action x12i < 50 into 100 � x12i and the corresponding signal
s1i into 100 � s1i. For each case, we plot two frequencies. The left bar in
each bin shows the empirical frequency of x22; the right bar, instead, shows the
frequency of the theoretical beliefs (denoted by x̂22i) that subjects would have
reported, had they updated in a Bayesian way (with signal precisions equal to
the objective precisions). In other words, for each reported �rst belief x12i we
have computed the corresponding updated belief, x̂22i, from expressions (7) and
(6) using q1S2 = q2S2 = 0:7.42

The empirical and theoretical frequencies are remarkably di¤erent in the
contradicting signal case, whereas they are remarkably similar in the con�rm-
ing signal case. For the contradicting case, the theoretical belief distribution
�rst-order stochastically dominates the empirical belief distribution: subjects�
beliefs about their predecessors�signals (equivalent to their predecessors�ration-
ality, according to the de�nitions of Section 2) shift more drastically than what
Bayesian updating predicts. Note, in particular, that the mode of the empirical
distribution is 50, that is, after a contradicting signal, subjects give equal chance
to the predecessor having received a green or red ball.
For con�rming signals, the theoretical, Bayesian, belief distribution matches

the empirical belief distribution remarkably well, indicating that subjects up-
date their beliefs in line with Bayesian updating. We performed two-sample
Kolmogorov-Smirnov tests and we reject the null hypothesis of equivalence of
the distributions (p-value = 0) for the contradicting signal case, whereas we
cannot reject the null for the con�rming signal case (p-value = 0:22).
To quantify the departure from Bayesian updating in GC treatment, we also

de�ned �i, a subject�s weight on the signals in observation i, as in the following
expressions:

41The signals are de�ned as con�rming or contradicting with respect to a1. There are no
relevant di¤erences when the de�nition of con�rming or contradicting is with respect to x12.
42We also computed the updated beliefs using subjective precisions q1S2 and q2S2 , elicited as

we discuss below. The results are very similar and presented in the Appendix.
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Figure 5: Distribution of second decisions (beliefs on the predecessor�s signal)
at time 2: The top panel refers to con�rming signals. The bottom panel refers
to contradicting signals. In each panel, we report the frequency of the actual
decisions (left bars) and of the simulated ones (right bars).
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x22i
100� x22i

=

�
0:72 + 0:32

2(0:7)(0:3)

��i x12i
100� x12i

, (20)

when the subject observed s2i = 100 and, analogously,

x22i
100� x22i

=

�
2(0:7)(0:3)

0:72 + 0:32

��i x12i
100� x12i

, (21)

when he observed s2i = 0.
For a given x12i, the two formulas are equivalent to Bayesian updating when

�i = 1 (and indicate an overweight of the signals for �i > 1 and underweight
for �i < 1).

43 Table 9 reports the results.

1st Quartile Median 3rd Quartile
�22

�22 (upon observing con�rming signal) 0 1:01 4:39

�22 (upon observing contradicting signal) 0 2:63 5:55

Table 9: Distribution of � in the GC treatment.
The table shows the quartiles of the distribution of � in the GC treatment. The data refer

to all cases in which the �rst decision at time 2 was di¤erent from 0 or 100.

In the case of a con�rming signal the median action coincides with the
Bayesian one, con�rming the �nding highlighted in Figure 3. In the case of
a contradicting signal, the weight for the median action is considerably higher,
2:63.
Overall, the results of this treatment show how subjects change their view

about the predecessors�rationality in a direct way. The changes are not in line
with Bayesian updating, but in line with the LRTU, the theoretical model we
proposed to explain the asymmetric updating observed in the SL treatments.
Finally, for the sake of comparison with the previous treatments, we simu-

lated the a12i and a
2
2i resulting from this treatment, using the same subjective

precisions, as elicited in the SL and IDM treatments. Let us start with a12i. For,
e.g., a1 > 50, we can write it as

a12 = Pr
S(V = 100ja1) = (22)

PrS(V = 100ja1; s1 = 100)PrS(s1 = 100ja1) + PrS(V = 100ja1; s1 = 0)PrS(s1 = 0ja1) =
q1S2 x

1
2 + (1� q1S2 )(1� x12).

To simulate these actions, we used the subjective precisions q1S2i are the
same as in the SL and IDM treatments (the eliciting procedure is described in
detail in the next Section) and independent of x12. The simulated distributions,
conditional on a1 < 50, a1 = 50, a1 > 50 are shown in Figure 6. They are
remarkably similar to those in Figure 2.

43Clearly, the parameter � does not have the same interpretation as �. Moreover, note that
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Figure 6: Distribution of simulated �rst actions (a12) at time 2 (the top panel
refers to a1 > 50, the middle to a1 = 50 and the bottom to a1 < 50).
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Figure 7: Distribution of simulated a22 for con�rming (top panel) or contradict-
ing (bottom panel) s2.

Similarly, in Figure 7 we report the frequencies of the simulated a22i by using
the subjective precisions (q1S2i ,q

2S
2i ). The �gure is again remarkably similar to

Figure 3.

6 Econometric analysis

We now perform a formal statistical comparison to quantify the evidence in
favor of the LRTU model against the Bayesian Updating (BU) model. For both
updating rules, in our econometrics models, we explicitly consider the individual
heterogeneity observed in the data. As we have seen in the previous sections,
the reported beliefs both at time 1 and at time 2 are quite heterogeneous, with
non-regular features (e.g., multi-modal, asymmetric distributions). To take this
into account, we use the IDM treatment observations to obtain a nonparametric
estimator for the distribution of the unobservable heterogeneity, and develop a
model comparison procedure that does not rely on parametric speci�cations.
Our purpose is to understand which model explains the behavior of subjects at
time 2 best. The models will have two common ingredients:
i) subjective beliefs on the informativeness (precision) of the private signal;

the value of �i is undetermined when x
1
2i = 100, therefore we exclude these cases. When

x22i = 100 we use the same approximation as previously discussed.
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ii) subjective beliefs on the rationality of the subject acting at time 1.
The models will instead di¤er in the way a subject at time 2 updates his

beliefs.
Let us start discussing point i above. We know that there is heterogeneity

in how subjects update their beliefs on the basis of their private signal. To
take this into account, in our analysis we let the subjective precisions q1S2i =
Pr(s1i = 100jV = 100) = Pr(s1i = 0jV = 0) and q2S2i = Pr(s2i = 100jV =
100) = Pr(s2i = 0jV = 0) vary for each observation i. Recall that in both the
SL and the IDM treatments, we observe the distribution of stated beliefs at time
1, which are based on the observation of one signal only. Furthermore, in the
IDM treatment, in 50% of the rounds, we observe the joint distribution of stated
beliefs at times 1 and 2. From these stated beliefs, we can recover q1S2i , and q

2S
2i ,

since there is a one-to-one map between beliefs and precisions (e.g., a1i = 73
after observing s1i = 100 is equivalent to q1S2i = 0:73; in the IDM treatment,
a2i = 80 after a1i = 73 and s2i = 100 is equivalent to q2S2i = 0:60). We will use
the empirical distribution of q1S2i so recovered, as representing the distribution
of the subjective precision of a signal at time 1. When, for estimation, we will
need the joint distribution of precisions, we will use the empirical distribution
obtained by considering the sample of observations i�s for which both (q1S2i ; q

2S
2i )

can be recovered in the IDM treatment.44

Let us move to point ii. In line with the above discussion, we assume that a
subject at time 2 believes that the predecessor is of two types: either �rational�
(tr) or �noise�(tn), with Pr(tn) � �. As we said, a rational type is de�ned as
someone who always chooses an action strictly greater than 50 after observing
a good signal and an action lower than 50 after observing a bad signal. A
noise type, instead, chooses any action between 0 and 100 independently of the
signal.45 The BU model assumes a unique �; in the LRTU model, instead, the
beliefs on the predecessor�s rationality consists in a set of priors [��; �

�]. We will
estimate the unique � or the lower and upper bounds ��and �

� by �tting the
models to the data. For the LRTU model, we will also estimate the threshold
parameter c.
As we know from Section 4, the empirical distribution of actions at time 1

conditional on a good signal is almost the mirror image (with respect to 50) of
the distribution conditional on a bad signal. For this reason, we now pool all
the observations by transforming a1i into 100 � a1i whenever s1i = 0. We can
then focus our analysis on actions strictly greater than 50. In particular, given
this transformation, a rational subject always chooses an action greater than
50.
In the spirit of the descriptive analysis, we divide the interval (50; 100] into

44 In our estimations, we assume that the distribution of subjective signal precisions be inde-
pendent of the signal realization. In another speci�cation, we also considered the distribution
conditional on the realization: the results do not change.
45As we explained in Section 2, we use this de�nition of rationality since the only thing that

subject 2 has to learn from subject 1 is, indeed, the signal realization, and this is revealed
under the minimal requirement that the subject updates in the right direction. Also recall,
our discussion at the beginning of Section 5:2 for the relation between this model and that in
which one type is irrational.
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three �bins�B1 = (50; 66:7], B2 = (66:7; 83:4] and B3 = (83:4; 100]. As high-
lighted by the previous analysis, subjects react di¤erently to a predecessor�s
choice of an action below the Bayesian one, in the neighborhood of the Bayesian
one, or more extreme than it. We want to understand this behavior more in
depth in our econometric analysis. By pooling the data together for these in-
tervals of actions, we also have enough data to estimate our models.
For the noise type, we assume that (subject 2 believes that) his actions follow

a distribution g(a1) symmetric around 50. We construct a histogram density in
the following way. Let �� (B) be the probability assigned to an interval B by a
normal distribution with mean 50 and variance �2. Then,

g�(a1) =
1

�� ([0; 100])

3X
l=1

�� (Bl)

jBlj
� 1 fa1 2 Blg , for a1 > 50, (23)

where jBlj denotes the width of Bl. In words, we construct the histogram
by considering a truncated normal distribution, and computing the resulting
density for the three chosen bins.
To estimate the parameter � we use the cases in which subjects at time

1 updated their beliefs in the wrong direction. Indeed we estimate it by the

empirical standard deviation b� =q 1
#fi:a1i2�g

P
i2�(a1i � 50)2, where � is the

set of actions a1i < 50 (> 50) taken after the observation of a good (bad)
signal.46 We obtain the estimate b� = 0:273 (with a standard error � computed
by delta method� of 0:006). Given this estimated value of �, we re-denote the
distribution g�(a1) by g(a1). Note that, since g(a1) is symmetric, the probability
of observing a mistake (i.e., updating in the wrong direction) from the point of
view of subject 2 is given by Pr(a1 > 50js1 = 0) = Pr(a1 < 50js1 = 100) = �

2 .
As for the rational type, we assume that subjects at time 2 have correct ex-

pectations on the distribution of actions at time 1 by rational subjects. Consider
the empirical distribution of time 1 subject�s actions. The histogram density
for the actions greater than 50 is

h(a1) =
3X
l=1

b̂l1 fa1 2 Blg for a1 > 50, (24)

where b̂l = 1
jBlj

P
i 1fa1i2BlgP
i 1fa1i>50g

. This means that b̂1; b̂2; b̂3 are the histogram density

estimates for the three intervals we are considering.47 Note, however, that not
all observed actions greater than 50 can be considered as coming from rational
subjects, since noise type subjects choose correct decisions half of the time. To
correct for the proportion of irrational actions, we consider the distribution of

46Of course, given the above transformation of data, all incorrect actions are below 50.
47Note that, of course, we exclude a1i = 50. This action is uninformative and, therefore,

has a di¤erent status from any other action.
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Figure 8: Histograms f(a1) (solid line) and g(a1) (dotted line) for rational and
noise actions at time 1.

rational actions to be48

f(a1) =
h(a1)� (0:07)g(a1)

0:93
.

Figure 8 shows the estimated histograms.
Given these histograms, a (rational) subject i at time 2, observing an action

a1i > 50, has the following conditional beliefs (density functions):

Pr(a1ijV = 100; tr) = (25a)

Pr(a1ijs1i = 100; V = 100; tr)q1S2i + Pr(a1ijs1i = 0; V = 100; tr)(1� q1S2i ) = q1S2i f(a1i),
Pr(a1ijV = 0; tr) = (1� q1S2i )f(a1i),

Pr(a1ijV = 100; tn) = Pr(a1ijV = 0; tn) = g(a1i).

While subjects are constrained to have correct expectations on the distribu-
tion of rational actions (and on the standard deviation of the noise actions), they
have subjective beliefs on the precisions of signals as well as on the proportion
of the noise type (�) and of the rational type (1� �).
Given these common ingredients, we can now describe how a subject forms

his belief on the value of the good depending on the updating model.

The BU model
48Recall that we observed 3:5% of incorrect updating at time 1. Given the symmetry of

g(a1), they must result from a 7% of noise type�s actions.
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According to the BU model, given a prior belief � on the proportion of noise
type subjects at time 1, a subject applies Bayes�s rule to determine his �rst
action,

a12i;B
�
�; q1S2i

�
� 100Pr(V = 100ja1i) = 100

(1� �)q1S2i f(a1i) + g(a1i)�
(1� �)f(a1i) + 2g(a1i)�

(26)

= 100
(1� �)q1S2i

f(a1i)
g(a1i)

+ �

(1� �) f(a1i)g(a1i)
+ 2�

.

To simplify notation, let us denote the log-likelihood ratio by l(:), that is,
l(x) =: ln x

1�x . Then, after receiving a con�rming signal (s2i = 100), a subject
chooses an action a22i;B such that the following equality holds:

l

 
a22i;B

�
�; q1S2i ; q

2S
2i

�
100

!
= l(

a12i;B
�
�; q1S2i

�
100

) + l(q2S2i ); (27)

similarly, after a contradicting signal, action a22i;B will satisfy

l

 
a22i;B

�
�; q1S2i ; q

2S
2i

�
100

!
= l(

a12i;B
�
�; q1S2i

�
100

) + l(1� q2S2i ). (28)

Note that a22i;B is fully determined by a
1
2i;B and q

2S
2i given that the depend-

ence on � is summarized by a12i;B
�
�; q1S2i

�
.

The LRTU model

In this model, subject 2 starts with a set of priors [��; �
�] on the proportion of

noise type subjects. He selects one prior in [��; �
�] on the basis of the likelihood

ratio
Pr(a1ijT = tr)
Pr(a1ijT = tn)

=
1
2q
1S
2i f(a1i) +

1
2 (1� q

1S
2i )f(a1i)

g(a1i)
=
f(a1i)

2g(a1i)
. (29)

In particular, he selects �12i as follows:

�12i =

(
�� if

f(a1i)
g(a1i)

� 2c,
�� if f(a1i)g(a1i)

< 2c.
(30)

He then applies Bayes�s rule to determine his �rst action, a12i;L
�
�12i; q

1S
2i

�
, which

is identical to expression (26), after substituting �12i to �. Note that a
1
2i;L

�
�12i; q

1S
2i

�
varies from 100q1S2i to 50 as �

1
2i varies from 0 to 1. Moreover, note that although

the same q1S2i was used both in (29) and in (26), (29) does not depend on q
1S
2i .

Now, consider the second action at time 2 and suppose the subject receives
a con�rming signal (s2i = 100). Then,

Pr(a1i; s2i = 100jtr) =
1

2

�
q1S2i q

2S
2i + (1� q1S2i )

�
1� qS2i

��
f(a1i),

Pr(a1i; s2i = 100jtir) =
1

2
g(a1i).
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Therefore,

�22i;confirm =

8<: �� if
f(a1i)
g(a1i)

� c

q1S2i q
2S
2i +(1�q1S2i )(1�q2S2i )

,

�� if f(a1i)g(a1i)
< c

q1S2i q
S
2i+(1�q1S2i )(1�q2S2i )

.
(31)

Given �22i;confirm and q2S2i , a
2
2i;L satis�es

l

 
a22i;L

�
�22i;confirm; q

1S
2i ; q

2S
2i

�
100

!
� l(

a12i;L
�
�22i;confirm; q

1S
2i

�
100

) + l(q2S2i ), (32)

where a12i;L
�
�22i;confirm; q

1S
2i

�
is equal to (26) with the exception that �12i is

replaced by �22i;confirm.
Note that the threshold in (31) is lower than that in (30).
For the contradicting signal case, the analysis is analogous; we have

Pr(a1i; s2i = 0jtr) =
1

2

�
q1S2i (1� q2S2i ) + (1� q1S2i )q2S2i

�
f(a1i),

Pr(a1i; s2i = 0jtir) =
1

2
g(a1i),

and, therefore,

�22i;contradict =

(
�� if

f(a1i)
g(a1i)

� c
q1S2i (1�q2S2i )+(1�q1S2i )q2S2i

,

�� if f(a1i)g(a1i)
< c

q1S2i (1�q2S2i )+(1�q1S2i )q2S2i
.

(33)

Given �22i;contradict and q
2S
2i , a

1
2i;L satis�es

l

 
a12i;L

�
�22i;contradict; q

1S
2i ; q

2S
2i

�
100

!
� l(

a12i;L
�
�22i;contradict; q

2S
2i

�
100

) + l(1� q2S2i ).

(34)
Note that the threshold in (33) is higher than that in (30): a con�rming signal
lowers the threshold to trust the predecessor�s rationality, whereas a contradict-
ing signal raises it.

6.1 Estimation methodology and results

We estimate the two models by the Generalized Method of Moments (GMM).
In each of our models, the heterogeneity in the subjective precision of signals
induces a distribution of actions at time 2 or any �xed value of the parameters.
The estimation strategy consists in �nding the parameter values such that the
distribution of actions predicted by a model is closest to the actual distribution.
With maximum likelihood, we would need to specify a parametric distribution
for (q1S2i ; q

2S
2i ). In our experiment, however, we do observe the empirical distribu-

tion of (q1S2i ; q
2S
2i ). With GMM, we can use it without parametric assumptions.
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We have a gain in terms of robustness of the estimates, with a potential sacri�ce
in terms of e¢ ciency.
Speci�cally, in the descriptive analysis, we have reported the three quartiles

of the empirical distribution of the weights ��s for a) the �rst action at time 2;
b) the second action at time 2, conditional upon receiving a con�rming signal;
c) the second action at time 2, conditional upon receiving a contradicting signal.
For each model, we now match the value of the cumulative distribution functions
of ��s at each of these quartiles, for all these three cases (for a total of nine
moment conditions). We do so separately for each of the three intervals in
which we have divided (50; 100]. In other words, we estimate the parameters
that make a model generate data whose distribution is as close as possible to
the true dataset�s in terms of the three observed quartiles, conditional on a
subject at time 2 having observed a1i belonging to either B1 = (50; 66:7], or
B2 = (66:7; 83:4] or B3 = (83:4; 100]. The estimate will, therefore, result from
27 moment conditions (nine for each type of action).49

Since our models predict the behavior of a rational type, we restrict our
analysis to the dataset consisting of rational actions only. In other words, we
eliminate the (few) cases in which a subject updated in the �wrong direction�
after receiving a piece of information (e.g., updating down after receiving a good
signal). Consistently, we also restrict the sample of q1S2i and q

2S
2i to those that

are weakly greater than 0:5.
We refer the readers to the Appendix for a detailed illustration of the es-

timation procedure. Here we simply observe that for the BU model we must
estimate one parameter, that is, the proportion of noise type subjects, �. For
the LRTU model, we must estimate three parameters: the bounds of the support
for the prior on the proportion of noise type subjects, �� and �

�, as well as the
threshold c. Finally, for the FBU model, we must only estimate �� and �

�.
Table 10 reports the results of the second stage GMM estimation (non-

parametric bootstrapped standard errors in parenthesis).

Model � �� �� c

BU 0:30
(0:053)

LRTU 0
(0:019)

0:30
(0:045)

[1:65; 1:73]
(0:073)

Table 10: Parameter Estimates
The table shows the parameter estimates of the three models. The standard errors in

parenthesis are computed by non-parametric bootstrap with 1000 bootstrap samples. The
standard error for c refers to 1.65.

The estimated proportion of noise type subjects in the BU model is � = 0:3.
This re�ects the tendency of subjects at time 2 to �discount� the actions a1i,
in particular those in bins B1 and B2, when choosing a12i, as documented in

49For the BU model, as observed above, given a12i;B
�
�; q1S2i

�
, action a22i;B

�
�; q1S2i ; q

2S
2i

�
only

depends on q2i. For this reason, the estimate of � is only based on the �rst action at time 2
(i.e., on 9 moment conditions).
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Section 4. Given the densities f(a1) and g(a1) clearly they did not discount
more extreme actions too much.
It should be mentioned that � = 0:3 implies a belief that in 15% of the cases

a subject at time 1 updated in the wrong direction, which is higher than the
actual (3:5%) proportion of mistakes we observed at time 1, thus showing that
subjects at time 2 did not have rational expectations on the proportion of noise
and rational predecessors.
Let us now look at the LRTU model. First of all note that the GMM

objective function does not have a unique minimizer for the parameter c: c 2
[1:65; 1:73]. Nevertheless, the other parameters have the same estimate for any
c 2 [1:65; 1:73]. This parameter c co-determines the thresholds to trust or not
the predecessor. It is clear that the inequalities in (30), (32), (34) may be
satis�ed for a set of parameter values. The estimates show that to �trust� a
predecessor�s action, a subject needs the likelihood ratios to be greater than
a threshold equal to 1:65, that is, he requires stronger evidence of rationality
than what assumed in the MLU model (in which c = 1). When this threshold
is reached, the subject considers the observed action as fully rational (since
the estimated lower bound for proportion of a noise type is �� = 0). When,
instead, the threshold is not reached, he updates as if the probability of a noise
predecessor were �� = 0:3. Note that this is actually the estimate for the single
prior in the BU model. Essentially, according to our estimates, when the subject
observes an action that he trusts, he fully does so; when, he does not trust it,
he attaches a probability of 0:30 to it coming from a noise type. It is interesting
to see the implications of these parameter estimates for subjects�s behavior.
Let us consider �rst a12i. Given the parameter estimates, when choosing a

1
2i,

subjects do not trust an action a1i 2 (50; 66:7] or a1i 2 (66:7; 83:4] (that is,
they pick the prior �� = 0:3); they do trust an action a1i 2 (83:4; 100]. Let
us consider now a22i. The decision to trust or not the predecessor depends
on the subjective precisions of signals, in this case, as one can notice from
(31) and (33). After receiving a con�rming signal, they keep not trusting an
action a1i 2 (50; 66:7], whereas in 72:7% of the cases they become trusting
of an action a1i 2 (66:7; 83:4].50 They keep trusting a more extreme action
a1i 2 (83:4; 100]. After receiving a contradicting signal, they keep not trusting
an action a1i 2 (50; 66:7] or a1i 2 (66:7; 83:4], and in 68:9% of the cases they
stop trusting an action a1i 2 (83:4; 100].
The �nal question is whether the LRTU model provides a better explana-

tion for the observed behavior than the BU model. A simple comparison of
the minimized GMM objective functions for the two models would not be an
appropriate way of measuring their relative �tness, since one model allows for
more degree of freedom (has more parameters) than the other. There is a large
literature on model speci�cation test that accounts for over-�tting of the models
with extra parameters within the framework of GMM (see Newey and McFad-
den, 1994). No existing test, however, can be readily applied to our case, due
50This is in fact a feature we did not observed in our descriptive analysis, an instance in

which this model does not �t the data well. Despite this, the model is the best predictor of
the distribution of actual actions, as we will show.
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to the non-standard features of our moment conditions. In particular, note that
(i) the GMM objective function for the LRTU model is discontinuous and non-
di¤erentiable; (ii) for one parameter of the LRTU we have multiple maxima; and
(iii) the LRTU nests the BU model at the boundary of the parameter space (e.g.,
�� = �

�). Instead of developing a new asymptotically valid model selection test
that can overcome all these issues, we consider a model comparison test based
on the idea of resampling p-value, which heuristically quanti�es the strength of
evidence against a null model without relying on an asymptotic theory (at the
cost of being computationally intensive). We refer the reader to the Appendix
for the details. Here we note that in the model comparison test, we set up the
null hypothesis �the BU model with parameter value � = 0:3 is the true data
generating process.�We simulate 1000 datasets from the BU model with � = 0:3,
resampling

�
q1S2i ; q

2S
2i

�
from the empirical distribution, as discussed above. For

each of these data sets, we then estimate the BU and LRTU models by GMM
and let L̂jBU and L̂jLRTU be the resulting minimized values of the GMM ob-
jective function for sample j = 1; 2; : : : ; 1000. Note that �L̂j = L̂jBU � L̂

j
LRTU

is non-negative since the LRTU model nests the BU model, and hence repres-
ents a gain in model �tness solely due to �over-parametrization�of the LRTU
model relative to the BU model. We take the empirical distribution of �L̂j

(j = 1; : : : ; 1000) as the null distribution of the model �tness criterion. We
compute �L̂ = L̂BU � L̂LRTU as the di¤erence between the minimized GMM
objective functions of the BU and LRTU models for our dataset. To measure
how unlikely �L̂ is in terms of the null distribution, we compute the p-value by

1

1000

1000X
j=1

1
n
�L̂j � �L̂

o
;

where 1 fg is the indicator function. The p-value, so computed, is 0:008, that
is, we can reject the null hypothesis and consider our evidence in support of
the LRTU model. The LRTU model �ts the data signi�cantly better than
the BU model after we have properly taken into account the gain of over-
parametrization. Moreover, in our approach we did not impose any parametric
restriction on the heterogeneity of subjective precisions: the evidence in favor of
the LRTU model is robust to individual heterogeneity (i.e., it does not depend
on a parametric assumption on heterogeneity).

7 Discussion

We now want to discuss some features of our LRTU model, and how they relate
to other approaches in the literature.
First, it is closely related to the theory proposed by Ortoleva (2012), who

is interested in modeling the idea of paradigm shifts in the case of unforeseen
events. In his theory, the decision maker has a prior over possible priors (referred
to as theories to avoid confusion). Initially, the theory with the highest prior
probability is selected. When a new event occurs, if the likelihood of that event
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is higher than a speci�c threshold, then the theory is maintained; otherwise,
the prior over priors is updated on the basis of the likelihood of the event, and
the theory with the highest posterior probability is selected. Ortoleva highlights
the case in which paradigm shift would occur essentially after unforeseen events
(which amounts to setting the threshold probability to 0), but the general ver-
sion of his theory is very similar in spirit to our approach, here applied to the
modelling of an agent�s belief about the rationality of another agent. Our para-
meter c can be viewed as playing a role similar to that of the prior over priors in
Ortoleva�s model (since in both set ups, an agent can be a priori biased in favour
of a particular theory). We have not attempted to estimate Ortoleva�s model.
In an attempt to �t the data better, one could possibly estimate a richer model
including a parameter for the threshold as in Ortoleva (2012). Nevertheless,
the main objective of our experiment and statistical analysis was to establish
the need to go beyond the Bayesian model. Whether our version or Ortoleva�s
version provides a better �t is not the main purpose of this paper. Obviously,
given that our LRTU model outperforms the BU model, so would Ortoleva�s
model.
Another important literature to which our approach relates is that on mul-

tiple priors, typically associated with the idea of ambiguity aversion (following
Ellsberg�s famous paradox). That literature has mostly considered one shot
decision problems, noting important conceptual di¢ culties when dealing with
the arrival of new information and belief updating. Two main models of up-
dating have been considered: the Maximum Likelihood Updating (MLU) model
and the Full Bayesian Updating (FBU) model. The �rst corresponds to our
LRTU model when c = 1. In their axiomatization of the MLU model, Gilboa
and Schmeidler (1993) do not consider a multi-period problem. In their MLU
framework an agent only updates once, therefore the problem of how to update
once new information arrives is not immediately relevant. Nevertheless, in their
analysis, implicitly the choice of the prior is once and for all. This would be
equivalent, in our experiment, to the subject having to stick to the prior he
has selected after observing the predecessor�s action only. In the FBU model,
instead, all prior beliefs are updated according to Bayes�s rule and then, con-
sidering the set of all beliefs, decisions are made according to the preferences.
Although our experiment was not designed to test di¤erent models updating
under ambiguity aversion, for completeness, we also estimated the FBU model,
with maxmin preferences (Gilboa and Schmeidler, 1989), the only one that, to
the best of our knowledge, has been axiomatized (by Pires, 2002). We present
the FBU model and the results of our estimation in the Appendix. In short,
the FBU model with maxmin preferences does not perform better than the
BU model for our dataset and thus peforms less well than LRTU. In the Ap-
pendix we also illustrate a more general criterion than the maxmin preferences
as proposed by Hurwicz (1951), in which an agent considers the best and worst
outcomes of his decision and then makes his choice weighing the two extreme
outcomes on the basis of his preferences. This more general model does not
perform better than the BU model either.
Gilboa and Marinacci (2013) describe the MLU and FBU models as two
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extremes: one in which only one prior is used and one in which all are. Perhaps,
our model can be seen somehow in between these two extremes. In the LRTU
model, the subject does pick one prior, but this does not eliminate the other
priors for ever, since the subject can pick another prior after new information
arrives.51 As we emphasized already before, we view this as being very much in
the tradition of the statistics literature dating back to the Type-II maximum
likelihood of Good (1965).

8 Conclusion

In many economic and social situations we make decisions having our own in-
formation about which action may be the best one and also observing the de-
cisions of others who faced a similar problem in the past. An investment decision
or the purchase of a new product or service are just among the many examples
of these situations. It is in fact di¢ cult to think of cases in which we are the �rst
to make a decision and have no information about how others have decided in
the past. Observing the decision of others is useful, since we learn what others
thought the best action was on the basis of the information they had.
Given the pervasiveness of the phenomenon, it is of course of crucial im-

portance to answer questions such as: how do people make inferences from the
decision of other agents? How do they combine the information coming from that
observation with their own private information? How is this related to their view
about others�rationality? In our experiment we have tried to answer some of
these questions, and found that human subjects update in a non-Bayesian way
about the rationality of others. Private information contradicting the public in-
formation contained in the decision of a predecessor, makes the subject update
down on the rationality of the predecessor by more than what can be accoun-
ted for by Bayesian updating. This non-Bayesian updating creates a form of
asymmetry in the way subjects use their con�rming or contradicting private
information to update their belief on the value of a good. We have explained
this form of updating by using existing theories of updating with multiple priors.
We have discussed some theoretical di¢ culties when updating occurs more than
once. Certainly, more experimental and theoretical work is suggested by our re-
search. The way subjects update, as we have observed it in our study, may also
have many interesting implications for social and economic applications.52 For
instance, in a �nancial market, after a period of boom (recession), the arrival of
new, negative (positive) information may trigger a stronger reation by traders
and so higher price volatility. More empirical work to explore such applications

51A model in which the agent picks di¤erent priors every time new information arrives
exhibits a form of time inconsistency. In such a model preferences are not stable, which may be
problematic from a normative view point (similar objections apply to Epstein and Schneider,
2007). For a theoretical investigation of dynamically consistent updating of ambiguous beliefs
see Hanany et al. (2007). Nevertheless, from a descriptive viewpoint, the model that best �ts
the data lets the subjects choose the prior every time (from a set that we estimate).
52 In a recent study, Giustinelli and Pavoni (2017) use survey measures of ambiguous beliefs

in the context of high school track choice.
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would be, we believe, very valuable.
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APPENDIX
(FOR ONLINE PUBLICATION ONLY)

9 Appendix A: additional descriptive statistics

9.1 Behavior after choosing 50 at time 2

1st Quartile Median 3rd Quartile
�22 0:00 1:02 2:38

�22 (upon observing con�rming signal) 0:25 1:06 2:41

�22 (upon observing contradicting signal) 0:00 0:98 2:06

Table 11: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the
second action at time 2 in the SL treatment. The data refer to all cases in which the �rst

action at time 2 was equal to 50.

1st Quartile Median 3rd Quartile
�22 0:00 0:00 1:22

�22 (upon observing con�rming signal) 0:00 1:00 1:84

�22 (upon observing contradicting signal) 0:00 0:00 0:00

Table 12: Distribution of weights on the own signal in the IDM treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the
action at time 2 in the IDM treatment. The data refer to all cases in which the action at

time 1 was equal to 50.

9.2 More descriptive statistics in the second action at time
2

One could observe that if a subject chose, e.g., a12i = 84 and then, after receiving
a bad signal, chose a22i = 50, the corresponding �

2
2i would be 2, which is com-

patible with the overweight we documented. It must be noticed, though, that
if we exclude the cases in which a22i = 50, nevertheless the asymmetry remains,
as one can appreciate by looking at Table 13.

9.3 Social Learning treatments: tests

The social learning treatments SL1, SL2 and SL3 di¤er in some dimensions
(lenght of the sequence, precision of the signal). Our results, however, are not
signi�cantly di¤erent across treatments. Speci�cally, we ran a Mann-Witney
U test (Wilcoxon rank-sum test) on the medians of each session (the most
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1st Quartile Median 3rd Quartile
�22 0:72 1:16 2:11

�22 (upon observing con�rming signal) 0:55 0:96 1:36

�22 (upon observing contradicting signal) 1:30 2:07 2:98

Table 13: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the
second action at time 2 in the SL treatment. The data refer to all cases in which the �rst
action at time 2 was di¤erent from 50; moreover, cases in which the second action at time 2

was equal to 50 are excluded.

conservative option to guarantee independence of observations) for time 1, as
well as for the �rst decision at time 2 and the second decision at time 2 (for
con�rming and contradicting signals). The p-values are reported in Table 14.

Time 1 Time 2:1 Time 2:2 - con�rming Time 2:2 - contradicting
SL1 versus SL2 0:50 0:09 0:84 0:10

SL1 versus SL3 0:08 0:008 0:30 0:14

SL2 versus SL3 0:22 0:69 0:29 1:00

Table 14: Tests for the SL treatments.
The table shows the results of Mann-Witney U test (Wilcoxon rank-sum test). The null

hypothesis is that the medians come from the same distribution. In the table we report the
p-values.

Ignoring the multiple hypothesis testing issue, we would reject the null hypo-
thesis for one case (equivalence of SL1 versus SL3 at Time 2.1, i.e., for the �rst
action at time 2) at signi�cance level 5%. The simple Bonferroni correction for
multiple hypothesis tests controlling the family-wise error rate at 5%, however,
lowers the critical p-value to 0:004, and we do not reject the joint null after this
correction.

9.4 GC Treatment: distribution of second decisions (sim-
ulated decisions based on subjective signal precisions)

See Figure 9.

10 Appendix B: Estimation of the LRTU and
BU models

Let us illustrate the details of the GMM estimation and of the model speci�ca-
tion test.

49



Figure 9: Distribution of second decisions (beliefs on the predecessor�s signal)
at time 2: The top panel refers to con�rming signals. The bottom panel refers
to contradicting signals. In each panel, we report the frequency of the actual
decisions (left bars) and of the simulated ones (right bars). The simulated
decisions are based on subjective signal precisions.

50



10.1 GMM estimation

10.1.1 Estimating the LRTU model

Let us consider �rst the estimation of the LRTU model. The parameters to
be estimated are � � (��; �

�; c), 0 � �� � �� � 1; and c � 0. To make the
dependence on the parameters explicit, we express the LRTU model actions
obtained in the main text as a12i

�
�12i; q

1S
2i ; �

�
, a22i

�
�22i;confirm; q

1S
2i ; q

2S
2i ; �

�
, and

a22i
�
�22i;contrdict; q

1S
2i ; q

2S
2i ; �

�
. For given �, a1i, and s2i = 1, the heterogeneity in

subjective signal precisions generates the joint distribution of the time 2 actions�
a12i
�
�12i; q

1S
2i ; �

�
; a22i

�
�22i;confirm; q

1S
2i ; q

2S
2i ; �

��
. If the LRTU model were the

true data generating process, then, at the true value of �, the conditional dis-
tribution of

�
a12i
�
�12i; q

1S
2 ; �

�
; a22i

�
�22i;confirm; q

1S
2 ; q

2S
2 ; �

��
given (a1i; s2i = 100)

generated from heterogeneous
�
q1S2i ; q

2S
2i

�
would coincide with the actual condi-

tional distribution of
�
a12i; a

2
2i

�
. This implies that, for any integrable function

h(a12i; a
2
2i),

E
�
h(a12i; a

2
2i)� EQ

�
h
�
a12i
�
�12i; q

1S
2 ; �

�
; a22i

�
�22i;confirm; q

1S
2 ; q

2S
2 ; �

���
ja1i; s2i = 100

�
= 0

holds at the true � for every a1i, where the inner expectation EQ [�] is the
expectation with respect to the joint distribution Q of

�
q1S2 ; q

2S
2

�
, which we

assume be independent of (a1i; s2i), and the outer expectation is with respect
to the actual sampling distribution of (a12i; a

2
2i) conditional on a1i and s2i = 100.

Speci�cally, as we said, for Q we use the empirical distribution of precisions.
Hence,

EQ
�
h
�
a12i
�
�12i; q

1S
2 ; �

�
; a22i

�
�22i;confirm; q

1S
2 ; q

2S
2 ; �

���
� 1

J

X
j

h
�
a12i
�
�12i; q

1S
2j ; �

�
; a22i

�
�22i;confirm; q

1S
2j ; q

2S
2j ; �

��
;

where the index j indicates an observation of
�
q1S2j ; q

2S
2j

�
and J is the num-

ber of observations of
�
q1S2j ; q

2S
2j

�
available in our dataset. Speci�cally, when

h (�; �) involves only a12i, the marginal distribution of q1S2 su¢ ces to compute
EQ

�
h(a12i)

�
. Therefore, we construct the empirical distribution of q1S2 by pool-

ing the rational actions at time 1 (a1i � 50) in the SL and IDM treatments
(J = 1331). When h (�; �) involves both a12i and a22i, we construct the empirical
distribution of

�
q1S2 ; q

2S
2

�
using the observations (a1i; a2i) in the IDM treatment

only, restricted to 50 � a1i < 100 and a2i � 50.53 The total number of ob-
servations used to construct the empirical distribution of

�
q1S2 ; q

2S
2

�
amounts to

J = 440.
Similarly, for the contradicting signal case we have that

E
�
h(a12i; a

2
2i)� EQ

�
h
�
a12i
�
�12i; q

1S
2 ; �

�
; a22i

�
�22i;contradict; q

1S
2 ; q

2S
2 ; �

���
ja1i; s2i = 0

�
= 0

holds for any a1i.

53We drop observations a1i = 100 since we cannot impute a unique value of q2S2i on the
basis of the observed a2i.
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These moment conditions imply the following unconditional moment condi-
tions:

E
�
s2i �

�
h(a12i; a

2
2i)� EQ

�
h
�
a12i
�
�12i; q

1S
2 ; �

�
; a22i

�
�22i;confirm; q

1S
2 ; q

2S
2 ; �

�����
= 0;

(35)

E
�
(1� s2i) �

�
h(a12i; a

2
2i)� EQ

�
h
�
a12i
�
�12i; q

1S
2 ; �

�
; a22i

�
�22i;contradict; q

1S
2 ; q

2S
2 ; �

�����
= 0:

(36)

When h(a12i; a
2
2i) only depends on a

1
2i, s2i plays no role and the moment condi-

tions (35) and (36) reduce (with a slight abouse of notation) to

E
�
h(a12i)� EQ

�
h
�
a12i
�
�12i; q

1S
2 ; �

����
= 0. (37)

Given a speci�cation for h(�), we estimate � by applying GMM to the uncondi-
tional moment conditions (35) - (37).
Speci�cally, our approach is to match the cumulative distribution functions

(cdfs) of � predicted by the models with the empirical distributions. Recall that�
�12i; �

2
2i

�
can be written in terms of

�
a12i; a

2
2i

�
as

time 2.1: �12i =
l(a12i=100)

l(0:7)
,

time 2.2-con�rming: �22i =
l
�
a22i=100

�
� l(a12i=100)

l(0:7)
,

time 2.2-contradicting: �22i =
l
�
a22i=100

�
� l(a12i=100)

l(0:3)
.

To match the cdfs of ��s evaluated at t 2 [0;1), we specify h (�; �) as

h(a12i) = 1

�
l(a12i=100)

l(0:7)
� t
�
,

when we match the cdf of �12i, and specify h (�; �) as

h(a12i; a
2
2i) = 1

(
l
�
a22i=100

�
� l(a12i=100)

l(0:7)
� t
)
and

h(a12i; a
2
2i) = 1

(
l
�
a22i=100

�
� l(a12i=100)

l(0:3)
� t
)
,

when we match the cdf of �22i for the con�rming and contradicting signal case,
respectively.
Since we discretise the action space of a1i into three intervals (�bins�)

B1 = (50; 66:7], B2 = (66:7; 83:4] and B3 = (83:4; 1] and the theoretical predict-
ive distribution of � vary over a1i only across these thee bins, we focus on the
distributions of �12i and �

2
2i conditional on a1i being in each of these three bins.
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We compute the distributions of � for time 2:1 as well as for time 2:2, distin-
guishing between the con�rming and the contradicting signal case. Overall, we
obtain nine empirical distributions of � (three for each bin) to be matched with
the corresponding distributions of ��s predicted by the theoretical model.
We match the cdfs of � at the three points of the support corresponding to

the empirical quartiles of � conditional on a1i 2 B, with B 2 fB1; B2; B3g. For
p 2 f0:25; 0:5; 0:75g and B 2 fB1; B2; B3g, we denote the p-th quartile of �12i
conditional on action a1i 2 B by t12;p;B , the p-th quartile of �

2
2i conditional on

action a1i 2 B and s2i = 1 by t22;conf;p;B , and the p-th quartile of �22i conditional
on action a1i 2 B and s2i = 0 by t22;cont;p;B .
Given the underlying parameter vector � and the signal precisions

�
q1S2 ; q

2S
2

�
,

the theoretical ��s can be written as
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;
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time 2.2-contradicting :
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2

�
=

l
�
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�22i;contradict; q
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=100

�
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�
� l(a12i

�
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2 ; �

�
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The predicted distributions of � given a1i 2 B (and s2i for the second action
at time 2) is obtained by viewing �12i

�
�; q1S2

�
and �12i

�
�; q1S2 ; q

2S
2

�
as random

variables with their probability distributions generated from the empirical dis-
tribution of the heterogeneous signal precisions (q1S2 ; q

2S
2 ) � Q.

Since we match the 9 distributions of � at three points of the support, we
have in total the following 27 moment conditions:

mL
i (�)| {z }
27�1

=

0@ mL
1i(�)

mL
2i;conf (�)

mL
2i;cont(�)

1A ;
where mLRT

1i (�) is a 9 � 1 vector of moment conditions concerning the cdfs of
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(38)
andmL
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L
2i;cont(�) are 9�1 vectors of moment conditions concern-

ing the cdfs of �22i for con�rming and contradicting signal cases, respectively:
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Since the number of moment conditions is greater than the number of un-
known parameters, we obtain a point estimator of � by minimizing the overiden-
ti�ed GMM objective function in two steps. In the �rst step, we solve

�̂ = argmin
�

 
nX
i=1

mL
i (�)

!0 nX
i=1

mL
i (�)

!
,
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and, in the second step, we solve

�̂GMM = argmin
�
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,

where

Ŵ =
1

n

nX
i=1

mL
i (�̂)m

L
i (�̂)

0.

The optimization for �̂ and �̂GMM is carried out by grid search with grid size
0:01.

10.1.2 Estimating the BU model

The BU model is a special case of the LRTU model in which �� = �� = �:
In this case c becomes an irrelevant parameter, and the only parameter to
estimate is � = � 2 [0; 1]. Furthermore, note that the theoretical �22i is given by
s2il

�
q2S2
�
+ (1� s2i) l(1� q2S2 ) (which is independent of the parameters) when

�� = �� = �. Hence, the identifying information for � only comes from the
cdf of �12i. Nevertheless, in the two-step GMM procedure, we make use of the
full set of moment conditions (27 � 1), since the �rst-stage estimate does not
necessarily equal to the second-stage estimate due to the non-block-diagonal
weighting matrix. The set of moment conditions is given by

mB
i (�)| {z }
27�1

=

0@mB
1i(�)

mB
2i;conf

mB
2i;cont

1A ,
where these moment conditions are the moment conditions of the LRTU model
constrained to �� = �� = �. Since only the �rst set of moment conditions
mB
1i(�) depends on �, an initial GMM estimator minimizes

�̂ = argmin
�
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!
. (39)

The optimal 2-step GMM estimator then minimizes the variance weighted GMM
objective functions with the full set of moment conditions,

�̂GMM = argmin
�
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Ŵ =
1

n

nX
i=1

mB
i (�̂)m

B
i (�̂)

0 with �̂ = �̂:

Again, a grid search with grid size 0:01 is used to �nd �̂ and �̂GMM .
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10.2 Resampling-based model comparison

We now turn to presenting the details of the implementation of the model com-
parison procedure shown in Section 6.
We consider as the null model the BU model with parameter value �̂GMM

(as reported in Table 10). As usual, we sample
�
q1S2i ; q

2S
2i

�
randomly and with

replacement from the empirical distribution. We then plug them into the for-
mulae of the theoretical ��s, with (a1i; s2i) set at the values observed in the
actual dataset. Having a random draw of

�
q1S2i ; q

2S
2i

�
for each observation and

computing the �12i and �
2
2i for each i, we obtain a simulated sample from the

null BU model with the same size as the actual data. We generate 1000 such
samples and index them by j = 1; 2; ::; 1000.
For each simulated dataset, we minimize the GMM objective functions in

the BU model and the LRTU model. The minimized values of the objective
functions are denoted by L̂jB and L̂jL, j = 1; : : : ; 1000, respectively. To keep
the weights on the moment conditions identical in the estimation of the BU
and the LRTU models, we construct the GMM objective functions by choosing
the weighting matrix used to obtain �̂GMM for the actual data. We keep this
weighting matrix �xed across samples.
We then approximate the null distribution of the di¤erence of the GMM

objective functions by the empirical distribution of �L̂j = L̂jL � L̂
j
B , for j =

1; : : : ; 1000. To obtain the p-value for the null model (the BU model) against the
LRTU model, we compute �L̂, the di¤erence of the GMM objective functions
for our actual data. Of course, we use the same weighting matrix as the one
used to compute �L̂j , j = 1; : : : ; 1000. The p-value is then obtained by the
proportion of �L̂j�s that are greater than �L̂. A small p-value (e.g., less than
5%) indicates that the LRTU model �ts the actual data signi�cantly better
than the BU model, even taking into account the �tness gain only due to the
over-parametrization of the LRTU model.

10.3 The Full Bayesian Updating (FBU) model and its
estimation

In Section 7 we discussed the FBU model. Here we illustrate it in detail, discuss
how we stimated it and present the results. As we said in Section 7, we consider
the FBU model with maxmin preferences, axiomatized by Pires (2002).
Before we go into the formal analys, let us consider an illustrative ex-

ample.Suppose a subject at time 2 has a prior � ranging from �� = 0 to �
� = 1.

Suppose the predecessor chooses a1 = 70. The subject updates his belief on
the value of the good using each prior � 2 [0; 1]. This means that his posterior
beliefs on V = 100 lie in [0:5; 0:7]. Therefore, he chooses a12 = 50, the action
that maximizes the minimum payo¤ he can obtain. After receiving the signal
s2 = 0, the subject updates his set of beliefs to [0:3; 0:5]. This implies that again
he chooses a22 = 50, which is equivalent to �22 = 0. After receiving the signal
s2 = 1, instead, the subject updates his set of beliefs to [0:7; 0:84]. He will then
maximize his utility by choosing a22 = 70, which is equivalent to �

2
2 = 1. Note
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that in this example this updating rule implies no updating at all (rather than
overweighting the signal) after receiving a contradicting signal, and updating as
a Bayesian after observing a con�rming signal, aan asymmetric way of updating
that sharply di¤ers from that we observe. Anyway, to see how the model �ts
the data, let us move to the general analysis.
Suppose a subject at time 2 starts with a set of priors [��; �

�] on the propor-
tion of noise type subjects at time 1. The subject applies Bayes�s rule for each
prior �12i in [��; �

�] and obtains a belief

p12i(�; q
1S
2i ) � Pr(V = 1ja1i; �; q1S2i ) =

(1� �)q1S2i f(a1i) + g(a1i)�
(1� �)f(a1i) + 2g(a1i)�

, (41)

where f(�) and g(�) are the distribution of actions of rational and noise-type
agents, respectively, as speci�ed in the main text. In FBU, the range of � spans
a range of beliefs on the value of the good being 100:

�
p12i(�

�; q1S2i ); p
1
2i(��; q

1S
2i )
�
.

After receiving a con�rming signal case, the subject updates his range of
beliefs so that�
l(p22i(�

�; q1S2i ; q
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2i )); l(p

2
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1
2i(��; q
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2i ))

�
+l(q2S2i ),
(42)

where b+ [c; d] means [b+ c; b+ d]. Similarly, in the contradicting signal case,�
l(p22i(�
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(43)

A maxmin expected utility agent with a set of beliefs
h
p
i
; �pi

i
chooses the

optimal action ai;maxmin such that

ai;maxmin = argmax
a

min
p2[p

i
;�pi]
Ep
�
100� 0:01(V � a)2

�
,

that is,

ai;maxmin =

8<:
100p

i
; if p

i
> 1

2 ,
50; if p

i
� 1

2 and �pi �
1
2 ,

100�pi; if �pi < 1
2 .

Therefore, in the FBU model, since p12i(�
�; qS1i) � 1

2 , the subject�s �rst action is
based on the most pessimistic prior, � = ��:

a12i;F = a
1
2i

�
��; q1S2i

�
= 100p12i(�

�; q1S2i ).

Similarly, the second action is
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10.3.1 Estimating the FBU model

Adopting the GMM approach used to estimate LRTU and BU models in the
main text, we can estimate the unknown parameters � = (��; �

�), 0 � �� �
�� � 1; in the FBU model. Since we only consider the realization of q1S2i greater
than 0:5, the range of beliefs for the �rst action at time 2 is a subset of

�
1
2 ; 1
�

(see expression (41)), and the maximin action a12i;maxmin is the Bayes�s action
with the implied prior ��. Hence, the moment conditions for the FBU model
concerning the cdf of �12 are obtained by replacing �

1
2

�
�; q1S2

�
in (38) with

�12i;F
�
�; q1S2

�
=
l
�
a12i
�
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�
=100

�
l(0:7)

.

We then denote the resulting 9 moment conditions by mF
1i(�).

As for the moment conditions for the cdfs of �22, we cannot �x the im-
plied prior as it depends on the individual�s

�
q1S2 ; q
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�
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�; q1S2i ; q
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, the maxmin action can be pinned down according to the formula

of a22i;F given above. Let us denote by a
2
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the second action of

ambiguity averse subject 2 predicted by FBU. Accordingly, we can obtain the
moment conditions concerning the cdfs of �22 by
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for time 2.2-con�rming :
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The estimation of � = (��; �
�) then proceeds by forming the moment vector

mF
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mF
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1A
and running the same estimation procedure as in the LRTU model.
The optimal two-step GMM estimates show �̂� = �̂

�
= 0:30 with their (non-

parametric bootstrap) standard errors estimated as 0:070 and 0:069, respect-
ively. That is, under FBU speci�cation, the estimates indicate that subject 2
does not have multiple priors for the predecessor�s rationality. Furthermore, if
we compare this result to that for the BU model, we note that the FBU model�s
estimates coincide with the estimated BU, despite that FBU model has an extra
degree of freedom. In other words, adding multiple priors and assuming FBU
does not improve the �tness of more restrictive BU model.
So far we have estimated the FBU model joint with maxmin preferences.

It is sometimes claimed that maxmin preferences imply that agents are very
pessimistic (since they consider the worst outcome), and one may think that
they imply that subjects are too pessimistic in the context of our experiment.
It should be noticed, however, that we did estimate the bounds [��; �

�] and in
this sense we did not constrain our subjects to be overly pessimistic (as it would
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have been the case had we imposed �� = 1). Nonetheless, we also considered a
more general criterion, proposed by Hurwicz (1951), in which an agent considers
the best and worst outcomes of his decision and then makes his choice weighing
the two extreme outcomes on the basis of his preferences. If he put all the
weight, represented by a parameter �, on the worst outcome, he would behave
as in our FBU model; if he chose � = 0, he would be extremely optimistic;
intermediate values of � indicate intermediate values of pessimism. Optimism
in this model may help to explain our data. For instance, if �� = 0 and �

� = 1
and � = 0, an agent would choose 70 (the most extreme belief in the support)
as a �rst action, and then 30 (again the most extreme belief) after receiving a
contradicting signal, which is in line with the observed asymmetric updating.
On the other hand, from a behavioral viewpoint, this is not the most appealing
explanation: being optimistic means trusting the predecessor after observing
him (�being optimistic that the predecessor is rational�), and, then distrusting
him after receiving a contradicting signal (�being optimistic that the predecessor
is a noise type�). Nevertheless, we estimated the model and obtained � = 0:17,
�� = 0:2, �

� = 0:68, indicating some form of optimism. Using the same test for
model selection explained above, we obtain a p-value of 0:6: that is, this model
does not �t the data signi�cantly better than the BU model.54

A di¤erent approach to the problem would be to use the principle of indif-
ference or insu¢ cient reason. According to this principle, typically attributed
to Jacob Bernoulli or Laplace, in the absence of a convincing reason, the sub-
ject would give the same probability to di¤erent events. In the context of our
experiment, this would mean that a subject at time 2, not having any reason to
attach a speci�c weight to the probability � that the predecessor is noise, would
simply use a uniform as a distribution of �. In such a case, however, he would
behave as in the Bayesian model. Clearly, this model cannot perform better
than our BU model, in which we have estimated the parameter �.

11 Appendix C: Treatment with stochastic sig-
nal precision

This treatment di¤ers from the SL treatments presented in the text in that the
signal precision is random. Each time, the computer draws a signal precision
from a uniform distribution on [0:5; 1] in addition to the signal realization, that
is, each agent t (t = 1; 2) receives a symmetric binary signal st 2 f0; 100g
54Another approach considered in the literature is the so-called minimax regret theory, �rst

proposed by Savage (1954). An agent would compute, for each action, his maximum regret
and then choose the action to minimize it. Intuitively, given that the action set is �xed, the
predictions of this model would not be very di¤erent from the Hurwicz (1951)�s model for
an intermediate value of � (as the resulting behavior would be a good way to minimize the
largest distance to the optimal action when varying the prior belief). It should be noticed
that in the context of our experiment, regret modeled in such a way would represent a purely
subjective construction in subjects�mind. Subjects never had access to information about the
predecessor�s type, actually not even to the signal the predecessor received. It is, therefore,
not very compelling to assume that subjects could feel such mentally constructed regret.
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distributed as follows:

Pr(st = 100 j V = 100) = Pr(st = 0 j V = 0) = qt,

with qt � U [0:5; 1]. Conditional on the value of the good, the signals are in-
dependently (but not identically) distributed over time. The subject receiving
the signal is informed of the signal precision. Both signal precision and signal
realization are private information. We used groups of 4 subjects and ramdomly
matched them in pairs at the beginning of each round (similarly to the proced-
ure for the GC treatment). The experiment was repeated for 30 rounds and
lasted, on average, more than 2 hours. The payo¤ for each round and the �nal
payment were computed as in all other treatments. Table 15 summarizes the
main feature of the study.

Treatment
Signal
Precision

Sequence
Subjects
in a group

Groups
Partici-
pants

Rounds

SL4 (0:5; 1] 2 4 11 44 30

Table 15: Treatment�s features.

11.1 Results

At time 1, a Bayesian agent would choose a1 = 100q1 upon receiving a good
signal and a1 = 100(1 � q1) upon receiving a bad signal. To evaluate how
subjects did in the laboratory, we used the following model:

a1i = 100

�
s1i
100

q�1i1i

q�1i1i + (1� q1i)�1i
+ (1� s1i

100
)

(1� q1i)�1i
q�1i1i + (1� q1i)�1i

�
, (44)

Table 16 shows the quartiles of the distribution of weights on the signal
subjects received. The median weight is 1, indicating that the median action
was in line with Bayesian updating.

1st Quartile Median 3rd Quartile
�1i 0:89 1:00 1:85

Table 16: Distribution of weights on private signal for actions at time 1.
The table shows the quartiles of the distribution of weights on private signal for actions at

time 1.

As for time 2, let us consider the �rst action taken by the subjects. Similarly
to the analysis in the main text, we illustrate the subjects�behavior by means
of the following simple model: when the subject observed a1 > 50, he chose a12i
such that

a12i = 100
q
�12i
1i

q
�12i
1i + (1� q1i)�

1
2i

; (45)
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analogously, when he observed a1 < 50, he chose a12i such that

a12i = 100
(1� q1i)�

1
2i

q
�12i
1i + (1� q1i)�

1
2i

. (46)

Table 17 reports the results. The weights for all the three quartiles are not
dissimilar from those at time 1, suggesting that subjects typically followed the
predecessor�s action.55

1st Quartile Median 3rd Quartile
�12 0:59 1:15 2:25

Table 17: Distribution of weights on private signal for actions at time 1.
The table shows the quartiles of the distribution of weights for �rst actions at time 2. The
action at time 1 is considered as a signal (of precision equal to that of the signal received by

subject 1) for the subject at time 2.

Finally, let us illustrate how subjects at time 2 updated their beliefs after
receiving their private signal. We compute the weight that the subject puts on
his signal by using the usual model of updating:

a22i = 100
q
�22i
2i

a12i
100

q
�22i
2i

a12i
100 + (1� q2i)

�22i
�
1� a12i

100

� , (47)

when the subject observed s2i = 100 and, analogously,

a22i = 100
(1� q2i)�

2
2i a

1
2i

100

(1� q2i)�
2
2i
a12i
100 + q

�22i
2i

�
1� a12i

100

� , (48)

when he observed s2i = 0.
Table 18 reports the results.

1st Quartile Median 3rd Quartile
�22 0:00 0:90 3:65

�22 (upon observing con�rming signal) 0:00 0:78 2:02

�22 (upon observing contradicting signal) 1:01 2:47 7:18

Table 18: Distribution of weights on the own signal in the SL treatment.
The table shows the quartiles of the distribution of the weight on the own signal for the
second action at time 2. The data refer to all cases in which the �rst action at time 2 was

di¤erent from 50.

For all quartiles, the weight is higher for contradicting than for con�rming
signals. The median weight for the contradicting signal case, in particular, is
55We ran a Mann-Witney U test (Wilcoxon rank-sum test) on the median weight for the

action by subject 1 and the �rst action by subject 2; we cannot reject the null hypothesis that
their distribution is the same (p-value =0:95).
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2:47, as if the subject double counted the private signal.56 This con�rms the
asymmetric updating result we illustrated in the main text.

12 Appendix D: Instructions for the SL Treat-
ment

Welcome to our experiment! We hope you will enjoy it.

You are about to take part in a study on decision making with 9 other par-
ticipants. Everyone in the experiment has the same instructions. If something
in the instructions is not clear and you have questions, please, do not hesitate
to ask for clari�cation. We will be happy to answer your questions privately.
Depending on your choices, the other participants� choices and some luck

you will earn some money. You will receive the money immediately after the
experiment.

12.1 The Experiment

The experiment consists of 15 rounds of decision making. In each round you
will make two consecutive decisions. All of you will participate in each round.

What you have to do
In each round, you have simply to choose a number between 0 and 100. You

will make this choice twice, before and after receiving some information. The
reason for these choices is the following. There is a good whose value can be
either 0 or 100 units of a �ctitious currency called �lira.�You will not be told
whether the good is worth 0 or 100 liras, but will receive some information about
which value is more likely to have been chosen by a computer. We will ask you
to predict the value of the good, that is, to indicate the chance that the value
is 100 liras.

The value of the good
Whether the good will be worth 0 or 100 liras will be determined randomly

at the beginning of each round: there will be a probability of 50% that the value
is 0 and a probability of 50% that it is 100 liras, like in the toss of a coin. The
computer chooses the value of the good in each round afresh. The value of the
good in one round never depends on the value of the good in one of the previous
rounds.

What you will know about the value
Although you will not be told the value of the good, you will, however,

receive some information about which value is more likely to have been chosen.

56We ran a Mann-Witney U test (Wilcoxon rank-sum test) on the median weight for the
con�rming and contradicting signal; we can reject the null hypothesis that their distribution
is the same (p-value =0:00014).
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For each of you, the computer will use two �virtual urns�both containing green
and red balls. The proportion of the two types of balls in each urn, however,
is di¤erent. One urn contains more red than green balls, whereas the other
urn contains more green than red balls. If the value of the good is 0, you will
observe a ball drawn from an urn containing more red balls. If the value is 100,
instead, you will observe a ball drawn from an urn containing more green balls.
To recap:

� If the value is 100, then there are more GREEN balls in the urn.

� If the value is 0, then there are more RED balls in the urn.

Therefore, the ball color will give you some information about the value of
the good. Below we will tell you more about how many balls there are in the
urns. First, though, let us see more precisely what will happen in each round.

12.2 Procedures for each round

In each of the 15 rounds you will make decisions in sequence, one after the other.
There will be 10 periods. Each of you will make her/his two choices only in one
period, randomly chosen. Since there are 10 participants, this means that all of
you will participate in each round.
The precise sequence of events is the following:

First: the computer program will decide randomly if the good for that round
is worth 0 or 100 liras. You will not be told this value. On your screen you will
read �Round 1 of 15. The computer is deciding the value of the good by �ipping
a coin.�
Second: the computer program will randomly select who is the �rst person

who has to make a choice. Each of you has the same (1=10th) chance of being
selected.
Third: the computer will draw a ball from the �virtual urn�and inform the

�rst person (only the �rst person) of the drawn ball color. The �rst person will
see this information on the screen. No one else will see it. The other participants
will be waiting.
Fourth: after the person sees this information, (s)he has to choose a number

between 0 and 100. This can be done by moving a slider on the screen (to select
a precise number, please, use the arrows on your keyboard). The decision made
will be visible to all participants.
Fifth: the computer will now randomly choose another person. Again, all

the remaining 9 people have the same (1=9th) chance of being chosen.
Sixth: this second person, having observed the �rst person�s prediction, will

be asked to make her/his prediction, choosing a number between 0 and 100.
This decision will not be visible to other participants.
Seventh: after the decision, the computer will draw a ball from the �virtual

urn�and inform (only) the second person of its color.
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Eighth: the second person, after observing the ball color, will now make
a new prediction, choosing again a number between 0 and 100. This choice is
visible to all participants.
Ninth: the computer will choose a third person. This person will have to

make two predictions, before and after receiving information, exactly as the
second person. The �rst decision is after having observed the �rst two persons�
predictions. The second prediction is after having observed the ball color too.
The decision made after seeing the ball color will be visible to everyone. Then
the computer will choose the fourth person and so on, until all ten people have
had the opportunity to participate.
Tenth: the computer will reveal the value of the good for the round and the

payo¤ you earned in the round.

Observation 1: All 10 participants have to make the same type of decision,
predicting the value of the good. However, the �rst person in the sequence is
asked to make only one prediction, while the others will make two. The reason
is simple. Since the �rst person knows nothing, the only sensible prediction
is 50, given that there is a 50 � 50 chance that the value is 0 or 100 liras.
Therefore, if you are the �rst, we do not ask you to make the prediction before
seeing the ball color. Instead, if you are a subsequent person, we will ask you to
make a prediction even before seeing the ball color, just after observing the pre-
decessors�predictions. Always recall that the predecessors�predictions
that you will observe are the second predictions that they made, that
is, the predictions they made after receiving information about the
ball color.

Observation 2: As we said, when it is your turn, the computer will draw a
ball from one of two virtual urns: the urn containing more red than green balls
if the value is zero; and the urn containing more green than red balls if the value
is 100. But, exactly how many red and green balls are there in the urns? If the
value is 0, then there are 70 red balls and 30 green balls. If the value is 100,
then there are 70 green balls and 30 red balls.

12.3 Your per-round payo¤

Your earnings depend on how well you predict the value of the good. If you are
the �rst person in the sequence, your payo¤ will depend on the only prediction
that you are asked to make. If you are a subsequent decision maker, your payo¤
will depend on the �rst or the second prediction you make, with the same chance
(like in the toss of a coin).
If you predict the value exactly, you will earn 100 liras. If your prediction

di¤ers from the true value by an amount x, you will earn 100 � 0:01x2. This
means that the further your prediction is from the true value, the less you will
earn. Moreover, if your mistake is small, you will be penalized only a small
amount; if your mistake is big, you will be penalized more than proportionally.
To make this rule clear, let us see some examples.
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Example 1: Suppose the true value is 100. Suppose you predict 80. In this
case you made a mistake of 20. We will give you 100 � 0:01 � 202 = 96:0 liras.

Example 2: Suppose the true value is 0. Suppose you predict 10. In this
case you made a mistake of 10. We will give you 100 � 0:01 � 102 = 99 liras.

Example 3: Suppose the true value is 100. Suppose you predict 25. In this
case you made a mistake of 75. We will give you 100� 0:01 � 752 = 43:75 liras.

Example 4: Suppose the true value is 0. Suppose you predict 50. In this
case you made a mistake of 50. We will give you 100� 0:01 � 502 = 75 liras.

Note that the worst you can do under this payo¤ scheme is to state that you
believe that there is a 100% chance that the value is 100 when in fact it is 0,
or you believe that there is a 100% chance that the value is 0 when in fact it is
100. Here your payo¤ from prediction would be 0. Similarly, the best you can
do is to guess correctly and assign 100% to the value which turns out to be the
actual value of the good. Here your payo¤ will be 100 liras.

Note that with this payo¤ scheme, the best thing you can do to
maximize the expected size of your payo¤ is simply to state your
true belief about what you think the true value of the good is. Any
other prediction will decrease the amount you can expect to earn. For
instance, suppose you think there is a 90% chance that the value of the good is
100 and, hence, a 10% chance that value is 0. If this is your belief about the
likely value of the good, to maximize your expected payo¤, choose 90 as your
prediction. Similarly, if you think the value is 100 with chance 33% and 0 with
chance 67%, then select 33.

12.4 The other rounds

We will repeat the procedures described in the �rst round for 14 more rounds.
As we said, at the beginning of each new round, the value of the good is again
randomly chosen by the computer. Therefore, the value of the good in round 2
is independent of the value in round 1 and so on.

12.5 The �nal payment

To compute your payment, we will randomly choose (with equal chance) one
round among the �rst �ve, one among the rounds 6�10 and one among the last
�ve rounds. For each of these round we will then choose either prediction 1 or
prediction 2 (with equal chance), unless you turn was 1, in which case there is
nothing to choose since you only made one prediction. We will sum the payo¤s
that you have obtained for those predictions and rounds. We will then convert
your payo¤ into pounds at the exchange rate of 100 liras = $7. That is, for
every 100 liras you earn, you will get 7 pounds. Moreover, you will receive a
participation fee of $5 just for showing up on time. You will be paid in cash,
in private, at the end of the experiment.
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13 Appendix E: Instructions for the GC Treat-
ment

Welcome to our experiment! We hope you will enjoy it.

You are about to take part in a study on decision making. If something in
the instructions is not clear and you have questions, please, do not hesitate to
ask for clari�cation. We will be happy to answer your questions privately.
Depending on your choices and some luck you will earn a di¤erent amount

of money. You will receive the money immediately after the experiment.

13.1 The experiment

The experiment consists of 15 rounds of decision making. There are several
participants in the laboratory. In each round you will be randomly matched
with one other participant only. You have the same chance of being matched
with any other participant. You will be randomly re-matched with another
participant at the beginning of every round.

A good with two possible values
In each round, you will have to make some predictions, but your task will

be di¤erent depending on whether you happen to be the �rst or the second in
the pair to make a decision. Before we explain this, let us start by saying that
in each round there will be a good whose value is either 0 or 100 units of a
�ctitious currency called �lira.�Whether the good is worth 0 or 100 liras will
be determined randomly at the beginning of each round: there will be a chance
of 50% that the value is 0 and a chance of 50% that it is 100 liras, like in the
toss of a fair coin. The computer chooses the value of the good in each round
randomly. The value of the good in one round never depends on the value of
the good in one of the previous rounds.

What you will know about the value
Although you will not be told the value of the good, you will receive some

information about which value is more likely to have been chosen. The computer
will use one of two �virtual urns� both containing green and red balls. The
proportion of the two types of balls in each urn, however, is di¤erent. If the
value of the good is 0, you will observe a ball drawn from an urn containing
more red balls. If the value is 100, instead, you will observe a ball drawn from
an urn containing more green balls. To be precise:

� If the value is 100, the proportion of green balls is 70% and the proportion
of red balls is 30%, like in an urn with 70 GREEN balls and 30 RED balls.

� If the value is 0, the proportion of green balls is 30% and the proportion
of red balls is 70%, like in an urn with 30 GREEN balls and 70 RED balls.
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What you have to do
As we said, you will have to make some predictions.
If you are the �rst person to make a decision, we will ask you with which

chance you believe the value of the good is 100. You will �rst observe a ball
from the urn and then you will have to state the chance you attach to the value
of the good being 100.
If you are the second person to make the decision, we will ask you to make

two predictions. You will observe the decision made by the �rst person, and
then we will ask you with which chance you believe the �rst person observed
a green ball. After you have done this, you will observe a ball from the urn
and then we will ask you again with which chance you believe the �rst person
observed a green ball.

Let us now describe the precise procedures for each round.

13.2 Procedures for each round

The precise sequence of events is the following:

First: the computer program will randomly decide if the good for that round
is worth 0 or 100 liras. You will not be told this value. On your screen you will
read �Round 1 of 15, the computer is now choosing the value of the good by
�ipping a coin.�
Second: the computer program will randomly select who is the �rst person

who has to make a choice. You have the same (50%) chance of being selected.
Third: the computer will draw a ball from the �virtual urn�and inform the

�rst person (only the �rst person) of the drawn ball color. The �rst person will
see this information on the screen.
Fourth: after the person sees this information, (s)he has to choose a number

between 0 and 100 (the chance that the value is 100). The decision made will
be visible to the second person. Note that there will be two cells, one to input
integers and one to input decimal points.
Fifth: the second person will be asked to make her/his prediction about the

colour observed by the �rst person, choosing a number between 0 and 100 (the
chance that the �rst person saw a green ball).
Sixth: after the decision, the computer will draw a ball from the �virtual

urn�(always with 70% of one colour and 30% of the other) and inform (only)
the second person of its color.
Seventh: the second person, after observing the ball color, will now make a

new prediction about the colour, choosing again a number between 0 and 100
(the chance that the �rst person saw a green ball).
Eighth: the computer will reveal the value of the good for the round and

the payo¤ you earned (for each decision you made) in the round.
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13.3 Your per-decision payo¤

Your earnings depend on how well you make your prediction. When you are
the �rst decision maker, this means how well you predict the value of the good.
If you predict the value exactly, you will earn 100 liras. If your prediction
di¤ers from the true value by an amount x, you will earn 100 � 0:01x2. This
means that the further your prediction is from the true value, the less you will
earn. Moreover, if your mistake is small, you will be penalized only by a small
amount; if your mistake is big, you will be penalized more than proportionally.
To make this rule clear, let us see some examples.

Example 1: Suppose the true value is 100. Suppose you predict 80. In this
case you made a mistake of 20. We will give you 100 � 0:01 � 202 = 96:0 liras.

Example 2: Suppose the true value is 0. Suppose you predict 10. In this
case you made a mistake of 10. We will give you 100 � 0:01 � 102 = 99 liras.

Example 3: Suppose the true value is 100. Suppose you predict 25:30. In
this case you made a mistake of 74:70. We will give you 100�0:01�74:702 = 44:19
liras.

Example 4: Suppose the true value is 0. Suppose you predict 50. In this
case you made a mistake of 50. We will give you 100� 0:01 � 502 = 75 liras.

Note that the worst you can do under this payo¤ scheme is to state that you
believe that there is a 100% chance that the value is 100 when in fact it is 0,
or you believe that there is a 100% chance that the value is 0 when in fact it is
100. In this case, your payo¤ would be 0.

Exactly the same rules apply in case you are the second decision maker,
except that, of course, now you will earn money depending on the prediction
on the ball color. If you predict the color exactly, you will earn 100 liras. If
you make a mistake by an amount x, you will earn 100 � 0:01x2. This means
that the further your prediction is from the true value, the less you will earn.
Moreover, if your mistake is small, you will be penalized only by a small amount;
if your mistake is big, you will be penalized more than proportionally.
To make this rule clear, let us see two examples.

Example A: Suppose the true color observed by the predecessor is Green.
Suppose you predict 65 (that is, you attach a chance of 65% to the green ball).
In this case, you made a mistake of 35. We will give you 100 � 0:01�352 = 87:75
liras.
Example B: Suppose the true value is red. Suppose you predict 10 (that is,

you attach a chance of 10% to the green ball). In this case you made a mistake
of 10. We will give you 100 � 0:01 � 102 = 99 liras.
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Note that with this payo¤ scheme, the best thing you can do to
maximize the expected size of your payo¤ is simply to state your
true belief about what you think the true value of the good (for
decion maker 1) or the true color (for decision maker 2) is. Any
other prediction will decrease the amount you can expect to earn.
For instance, suppose you are the �rst decision maker and think there is a 90%
chance that the value of the good is 100 and, hence, a 10% chance that the
value is 0. If this is your belief about the likely value of the good, to maximize
your expected payo¤, choose 90 as your prediction. Similarly, if you think the
value is 100 with chance 33% and 0 with chance 67%, then select 33. Similarly,
suppose you are the second decision maker and think there is a 45% chance that
the color observed by the �rst decision maker is green and, hence, a 55% chance
that the color is red. If this is your belief, to maximize your expected payo¤,
choose 45 as your prediction. Similarly, if you think the ball color is green with
chance 33% and red with chance 67%, select 33.

13.4 The other rounds

We will repeat the procedures described in the �rst round for 14 more rounds.
As we said, at the beginning of each new round, the value of the good is again
randomly chosen by the computer. Therefore, the value of the good in round 2
is independent of the value in round 1 and so on.

13.5 The �nal payment

To compute your payment, we will randomly choose three rounds. The computer
will randomly choose one round among the �rst �ve, one among the rounds
6 � 10, and one among the last �ve rounds. If in the round you have made
one choice, we will use the payo¤ for that decision. If instead you have made
two decisions, we will randomly pick one of the two decisions and consider that
for your payo¤. We will sum the payo¤s that you have obtained for these three
decisions. We will then convert your payo¤s into pounds at the exchange rate of
100 liras = $6. That is, for every 100 liras you earn, you will obtain 6 pounds.
Moreover, you will receive a participation fee of $5 just for showing up on time.
You will be paid in cash, in private, at the end of the experiment.
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