
Multi-state choices with aggregate feedback on

unfamiliar alternatives

Philippe Jehiel ∗ and Juni Singh †

July 8, 2019

Abstract

This paper studies a multi-state binary choice experiment in which in
each state, one alternative has well understood consequences whereas the
other alternative has unknown consequences. Subjects repeatedly receive
feedback from past choices about the consequences of unfamiliar alter-
natives but this feedback is aggregated over states. Varying the payoffs
attached to the various alternatives in various states allows us to test
whether unfamiliar alternatives are discounted and whether subjects’ use
of feedback is better explained by similarity-based reinforcement learn-
ing models (in the spirit of the valuation equilibrium, Jehiel and Samet
2007) or by some variant of Bayesian learning model. Our experimental
data suggest that there is no discount attached to the unfamiliar alter-
natives and that similarity-based reinforcement learning models have a
better explanatory power than their Bayesian counterparts.
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1 Introduction

In many situations, the decision maker faces a choice between two alternatives
one of them being more familiar and thus easier to evaluate and another one
being less familiar and thus harder to assess. There is generally some informa-
tion about the less familiar alternative, but this information is typically coarse
not being entirely relevant to the specific context of interest.

To give a concrete application, think of the adoption of a new technology by
farmers. A farmer has a lot of information about the performance of the current
technology but not so much about the new one. The farmer may collect infor-
mation about the new technology by asking around other farmers who would
have previously adopted it. But due to the heterogeneity of the soil and/or
the heterogeneity in the ability of the farmers, what works well/poorly for one
farmer need not perform in the same way for another. Thus, the feedback re-
ceived about the new technology is coarse in the sense that it is aggregated over
different situations (states in the decision theoretic terminology) as compared
to the information held for the old technology.1 Another example may con-
cern hiring decisions.2 Consider hiring for two different jobs, one requiring high
skill going together with higher education level and the other requiring lower
skills, and assume potential candidates either come from a majority group or
a minority group (as determined by nationality, color, caste or religion, say).
Presumably, there is a lot of familiarity with the majority group allowing in this
group to distinguish the productivity as a function of education as well as past
experiences. However, in the minority group information is more likely to be
coarse and perceived productivity in that group may not be as easy to relate to
education or past experiences.

We are interested in understanding how decision makers would make their
decisions in multi-state binary decision problems in which decision makers would
have precise state-specific information about the performance of one alternative
and less precise information about the other alternative. The less precise in-
formation takes the form that the decision maker receives aggregate (not state-
specific) feedback about the performance of that alternative. Our interest lies
in allowing a set of agents to act repeatedly in such environments so as to un-
derstand the steady state effects of having agents provided with coarse feedback
about some alternatives.

To shed light on this, we consider the following experimental setting. There
are two states, s = 1, 2. In each state, the decision maker has to choose between
two urns identified with a color, Blue and Red in state s = 1, Green and Red in
state s = 2 where the Red urns have different payoff implications in states s = 1

1Ryan and Gross (1946) propose an early study of the diffusion of new technology adoption
in the farming context. See also Young (2009) for a study focused on the diffusion dimension.

2This example is inspired by Fryer and Jackson (2008)’s discussion of discrimination and
categorization.
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and 2. Each urn is composed of ten balls, black or white. When an urn is picked,
one ball is drawn at random from this urn (and it is immediately replaced af-
terwards). If a black ball is drawn this translates into a positive payment. If a
white ball is drawn there is no payment. One hundred initial draws are made
for the Blue and Green urns with no payoff implication for participants, and
all subjects are informed of the corresponding compositions of black and white
balls drawn from these urns. Thus, as seen in Table 1, subjects have a precise
initial view about the compositions of the Blue and Green urns (these urns cor-
respond to the familiar choices in the motivating examples provided above). In
the experiment, the Blue urn has 3 black balls out of ten and the Green urn has
7 black balls out of ten.

Blue 30 black (B) 70 white (W)
Green 68 black (B) 32 white (W)

Table 1 Information about the relative payoff of urns Blue and Green after 100
random draws is reported at the start of each session.

Concerning the Red urns, there is no initial information. The Red urns
correspond to the unfamiliar choices in the above examples. To guide their
choices, subjects are provided with feedback about the compositions of the red
urns as reflected by the colors of the balls that were previously drawn when a
red urn either in state s = 1 or 2 was chosen. More precisely, there are twenty
subjects and 70 rounds. In each round, ten subjects make a choice of urn in state
1 and the other ten make a choice of urn in state 2. There are permutations
of subjects between rounds so that every subject is in each state s = 1 or 2
the same proportion of time. Between rounds, subjects receive feedback about
the number of times the Green, Blue and Red urns were picked by the various
agents in the previous round, and for each color of urn, they are informed of
the number of black balls that were drawn. A typical feedback screen is shown
in Figure 1.

Figure 1 Feedback structure for treatment sessions
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Note that in the case of the Red urns, this number aggregates the number
of black balls drawn from both the Red urns picked in state s = 1 and the Red
urns picked in state s = 2 mimicking the kind of coarse information suggested in
the motivating examples. It should be highlighted that subjects were explicitly
told that the compositions of the Red urn in state s = 1 and in state s = 2
need not be the same.

We consider three treatments T1, T2, T3 that differ in the composition of the
Red urns as depicted in Figure 2, but note that we maintain the compositions of
the Blue and Green urns in all treatments. The initial conditions in these various
treatments are thus identical and any difference of behaviors observed in later
periods can safely be attributed to the difference in the feedback received by the
subjects across the treatments. In treatment 1, the best decision in both states
s = 1 and 2 would require the choice of the Red urn, but averaging the compo-
sition of the Red urns across the two states leads to a less favorable composition
than the Green urn. In treatment 2, the best decision would require picking the
Red urn in state 1 but not in state 2, but the average composition of the two Red
urns dominates that of both the Blue and Green urns. Finally, in treatment 3,
the best decision would require picking the Red urn in state 2 but not in state 1.

Figure 2 Set up of the different treatment sessions

Faced with such an environment, what could be the decision making process
followed by subjects? We see the following possible approaches.

First, in the tradition of reinforcement learning (see Barto and Sutton 1998
or Fudenberg and Levine 1998 for textbooks), subjects could assess the strength
of the various urns by considering the proportions of black balls drawn in the
corresponding urns (aggregating past feedback in some way). One key difficulty
in our context is that there is no urn specific feedback for the Red urns as the
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feedback is aggregated over states s = 1 and 2, and so the standard reinforce-
ment learning models which attach a different strength to every possible strategy
do not apply. But, following Jehiel and Samet (2007), one could extend the ap-
proach by considering similarity-based reinforcement learning models in which
a single valuation would be attached to the Red urns whether in state s = 1 or 2
(and reinforced accordingly) and the two Red urns would be considered alike in
terms of strength by the learning subjects. Jehiel and Samet (2007) have pro-
posed a solution concept called the valuation equilibrium aimed at capturing
the limiting outcomes of such similarity-based reinforcement learning models.
In our context, there would be a valuation for each color, Blue, Red and Green;
a subject would pick the urn with a color attached to the highest valuation;
the valuation attached to the Blue and the Green urns would be 0.3 and 0.7
respectively as reflected by the true compositions of these urns; the valuation
of Red would be an average of the proportion of black balls in the Red urns
in states s = 1 and s = 2 where the weight assigned to the Red urns in the
various states should respect the proportion of times the Red urn is picked in
states s = 1 and 2.3 The valuation equilibrium would predict that in treatment
1 (T1), the Red urn is picked in state 1 but not in state 2; in treatment 2 (T2),
the Red urns are picked both in states 1 and 2; in treatment 3 (T3), the Red
urns are picked neither in state 1 nor 2. In our estimation, we will consider a
noisy version of such a model in which subjects rely on noisy best-response in
the vein of the logit model (as popularized by McKelvey and Palfrey (1995) in
experimental economics).

Second, subjects could form beliefs about the compositions of the two Red
urns relying on some form of Bayesian updating to adjust the beliefs after they
get additional feedback. Note that being informed of the number of times the
Blue and the Green urns were picked in the last round is also informative so as
to determine if feedback about the Red urns concerns more state 1 or state 2
(as for example a strong imbalance in favor of the Green urns as opposed to the
Blue urns would be indicative that the previous red choices corresponded more
to state 1). Of course, such a Bayesian approach heavily depends on the initial
prior. When estimating such a model, we will assume that subjects consider a
uniform prior over a support that we will estimate, and as for the reinforcement
learning model we will assume that subjects employ a noisy best response of
the logit type.

Another key consideration is that the feedback concerning the Red urns is
ambiguous to the extent that it does not distinguish between states s = 1 and 2.
Following the tradition of Ellsberg (1961), one may suspect then that subjects
would apply an ambiguity discount to the Red urns (see Gilboa and Schmeidler
(1989) for an axiomatization of ambiguity aversion ). In the terminology of

3For the sake of illustration, if the Red urns are picked with the same proportion in states
s = 1 and 2, the valuation should be the unweighted average proportion of black balls in the
two Red urns. If the Red urn is only picked in state 1 (resp 2), the valuation of Red should
be the proportion of black balls of the Red urn in state 1 (resp 2).
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Epstein and Schneider (2007) or Epstein and Halevy (2019), the coarse feedback
about the composition of the Red urns can be viewed as an ambiguous signal.
To cope with the ambiguous nature of the feedback in a simple way, we propose
adding to the previous models (the similarity-based reinforcement learning and
the Bayesian model) an ambiguity discount to the assessment of the Red urns.
In the statistical exercise, the ambiguity discount is estimated for each learning
model on the basis of the observed data, and a key question of interest is whether
a non-null discount is applied to the Red urns in this context.

Beyond the estimation exercise within each approach, another objective is to
analyze which of the similarity-based reinforcement learning or the generalized
Bayesian learning model explains best the observed data.

Our main findings are as follows. First, in our estimation of the similarity-
based reinforcement learning model, we find that that there is no ambiguity
discount. That is, despite the inherent ambiguity of the feedback received about
the Red urns, the Red urns are not discounted more than the familiar urns.
This is similar to what is being assumed in the valuation equilibrium approach,
even if to account for the steady state of the learning model that we propose,
there is a need to extend the notion of valuation equilibrium to allow for noisy
best-responses. Second, we find that the similarity-based reinforcement learning
model explains much better the observed data than the generalized Bayesian
learning model. In the last part, we discuss various robustness checks of the
main findings.

To the extent that the valuation equilibrium has properties very different
from those arising with ordinary maximization (see Jehiel and Samet, 2007),
we believe our experimental finding calls for pursuing further the implications
of valuation equilibrium in economic contexts involving familiar and unfamiliar
choices beyond the stylized lab examples considered in our experiment.

2 Related Literature

While the experimental literature on ambiguity is vast, there are only few ex-
perimental papers looking at ambiguous signals as we do (beyond Epstein and
Halevy, we are only aware of Fryer et al (2019)). Note though that our ex-
periment has a distinctive feature not present in the previous experiments on
ambiguous signals. In our setting, the nature of the ambiguity of the received
signals (feedback) is endogenously shaped by the choice of subjects (if the Red
urn is only chosen in state 1, there is no ambiguity as the feedback about Red
urns is then clearly only informative about the composition of the Red urn in
state 1; by contrast ambiguity seems somehow maximal if the Red urn is picked
with the same frequency in the two states). This endogenous character of the
ambiguity has no counterpart in the previous experiments on ambiguity, as far
as we know.

Our paper is related to other strands of literature beyond the references
already mentioned. A first line of research related to our study is the framework
of case-based decision theory as axiomatized by Gilboa and Schmeidler (1995).
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Compared to case-based decision theory, in the valuation equilibrium approach,
the similarity weights given to the various actions in the various states happen
to be endogenously shaped by the strategy used by the subjects, an equilibrium
feature that is absent from the subjective perspective adopted in Gilboa and
Schmeidler.

Another line of research related to our study includes the possibility that
the strategy used by subjects would not distinguish behaviors across different
states (Samuelson (2001), Mengel (2012) for theory papers and Grimm and
Mengel (2012), Cason et al (2012) or Cownden et al. (2018) for experiments).
Our study differs from that line of research in that subjects do adjust their
behavior to the state but somehow mix the payoff consequences of some actions
(the unfamiliar ones) obtained over different states, thereby revealing that our
approach cannot be captured by a restriction on the strategy space.

Another line related to our study is that of the analogy-based expectation
equilibrium (Jehiel (2005) and Jehiel and Koessler (2008)) in which beliefs about
other players’ behaviors are aggregated over different states. Our study differs
from that literature in that we are considering decision problems and not games.
Yet, viewing nature as a player would allow to see closer connections between
the two approaches. To the best of our knowledge, no experiment in the vein of
the analogy-based expectation equilibrium has considered environments similar
to the one considered here.

Another related experimental literature includes a recent strand concerned
with selection neglect. Experimental papers in this vein include Esponda and
Vespa (2018), Enke (2019) or Barron et al. (2019). These papers conclude in
various applications that subjects tend to ignore that data they see are selected.
In our setting, the data related to Red are selected, and one can argue that
subjects by behaving in agreement with the (generalized) valuation equilibrium
do not seem to account for selection.

Another related recent strand of experimental literature is concerned with
the failure of contingent reasoning and/or some form of correlation neglect (see
Enke and Zimmerman (2019), Martinez-Marquina et al (2019) or Esponda and
Vespa (2019)). Some of these papers (see in particular Martinez-Marquina et
al.) conclude that hypothetical thinking is more likely to fail in the presence
of uncertainty, which somehow agrees with our finding that in the presence of
aggregate feedback, subjects find it hard to disentangle the value of choosing
Red in the two states.

There is a number of contributions comparing reinforcement learning mod-
els to belief-based learning models in normal form games. While some of these
contributions conclude that reinforcement learning models explain better the
observed experimental data than belief-based learning models (Roth and Erev
1998, Camerer and Ho 1999), others suggest that it is not so easy to cleanly
disentangle between these models (Salmon 2001, Hopkins 2002, Wilcox 2006).
Our study is not much related to this debate to the extent that we consider
decision problems and not games and that subjects do not immediately expe-
rience the payoff consequences of their choices (the feedback received concerns
all subjects in the lab and subjects are only informed at the end how much
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they themselves earned). Relatedly the feedback received about some possi-
ble choices is aggregated over different states, which was not considered in the
previous experimental literature. Despite these differences, relating Bayesian
learning models to belief-based learning models, our results suggest that these
perform less well than their reinforcement learning counterpart in our context,
as in these other works.

Finally, one should mention the experimental work of Charness and Levin
(2005) who consider decision problems in which, after seeing a realization of
payoff in one urn, subjects have to decide whether or not to switch their choices
of urns. In an environment in which subjects have a probabilistic knowledge
about how payoffs are distributed across choices and states (but have to infer
the state from initial information), Charness and Levin observe that when there
is a conflict between Bayesian updating and Reinforcement learning, there are
significant deviations from optimal choices. While the conclusion that subjects
may rely on reinforcement learning more than on Bayesian reasoning is somehow
common in their study and our experiment, the absence of ex ante statistical
knowledge about the distribution of payoffs across states in our experiment
makes it clearly distinct from Charness and Levin’s experiment. In our view,
the absence of ex ante statistical knowledge fits better the motivating economic
examples mentioned above.

3 Background and theory

In this Section we define in the context of our experiment a generalization of
the valuation equilibrium allowing for noisy best-responses in the vein of the
quantal response equilibrium (McKelvey and Palfrey, 1995). We next propose
two families of learning models, a similarity-based reinforcement learning model
(allowing for coarse feedback on some alternatives and an ambiguity discount
attached to those)4 as well as a generalized Bayesian model (also allowing for
noisy best -responses and a discount on alternatives associated to coarse feed-
back). The learning models will then be estimated and compared in terms of
fit in light of our experimental data.

3.1 Quantal valuation equilibrium

In the context of our experiment, there are two states s = 1 and 2 that are
equally likely. In state s = 1, the choice is between Blue and Red1. In state
s = 2, the choice is between Green and Red2. The payoffs attached to these
four alternatives are denoted by vBlue = 0.3, vRed1 , vRed2 and vGreen = 0.7
where vRed1 and vRed2 are left as free variables to accommodate the payoff
specifications of the various treatments.

A strategy for the decision maker can be described as σ = (p1, p2) where pi
denotes the probability that Redi is picked in state s = i for i = 1, 2. Following

4When there is no ambiguity discount, the long run properties of the similarity-based
reinforcement learning model correspond to the generalized valuation equilibrium.
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the spirit of the valuation equilibrium (Jehiel and Samet, 2007), a single valua-
tion is attached to Red1, Red2 so as to reflect that subjects in the experiment
only receive aggregate feedback about the payoff obtained when a Red urn is
picked either in state s = 1 or 2. Accordingly, let v(Red) be the valuation
attached to Red. Similarly, we denote by v(Blue) and v(Green) the valuations
attached to the Blue and Green urns, respectively.

In equilibrium, we require that the valuations are consistent with the em-
pirical observations as dictated by the equilibrium strategy σ = (p1, p2). This
implies that v(Blue) = vBlue, v(Green) = vGreen and more interestingly that

v(Red) =
p1 × vRed1 + p2 × vRed2

p1 + p2
(1)

whenever p1 + p2 > 0. That is, v(Red) is a weighted average of vRed1 and vRed2
where the relative weight given to vRed1 is p1/(p1 +p2) given that the two states
s = 1 and 2 are equally likely and Redi is picked with probability pi for i = 1, 2.

Based on the valuations v(Red), v(Blue) and v(Green), the decision maker
is viewed as picking a noisy best-response where we consider the familiar logit
parameterization (with coefficient λ). Formally,

Definition: A strategy σ = (p1, p2) is a quantal valuation equilibrium if
there exists a valuation system (v(Blue), v(Green), v(Red)) where v(Blue) =
0.3, v(Green) = 0.7, v(Red) satisfies (1), and

p1 =
eλv(Red)

eλv(Red) + eλv(Blue)

p2 =
eλv(Red)

eλv(Red) + eλv(Green)

It should be stressed that the determination of v(Red), p1 and p2 are the
results of a fixed point as the strategy σ = (p1, p2) affects v(Red) through (1)
and v(Red) determines the strategy σ = (p1, p2) through the two equations just
written.

We now briefly review how the quantal valuation equilibria look like in the
payoff specifications corresponding to the various treatments. In this review, we
consider the limiting case in which λ goes to ∞ (thereby corresponding to the
valuation equilibria as defined in Jehiel and Samet, 2007).

Treatment 1: vRed1= 0.4 and vRed2= 0.8
In this case, clearly v(Red) > v(Blue) = 0.3 (because v(Red) is some con-

vex combination between 0.4 and 0.8). Hence, the optimality of the strategy in
state s = 1 requires that the Red urn is always picked in state s = 1 (p1 = 1).
Regarding state s = 2, even if Red2 were picked with probability 1, the resulting
v(Red) that would satisfy (1) would only be 0.4+0.8

2 = 0.6, which would lead the
decision maker to pick the Green urn in state s = 2 given that v(Green) = 0.7.
It follows that the only valuation equilibrium in this case requires that p2 = 0
so that the Red urn is only picked in state s = 1 (despite the Red urns being
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payoff superior in both states s = 1 and 2). In this equilibrium, consistency
(i.e., equation (1)) implies that v(Blue) < v(Red) = 0.4 < v(Green).

Treatment 2: vRed1= 1 , vRed2= 0.6
In this case too, v(Red) > v(Blue) = 0.3 (because any convex com-

bination of 0.6 and 1 is larger than 0.3) and thus p1 = 1. Given that
vRed2 < vRed1 , this implies that the lowest possible valuation of Red corresponds
to 1+0.6

2 = 0.8 (obtained when p2 = 1). Given that this value is strictly larger
than v(Green) = 0.7, we obtain that it must that p2 = 1, thereby implying that
the Red urns are picked in both states. Valuation equilibrium requires that
p1 = p2 = 1 and consistency implies that v(Blue) < v(Green) < v(Red) = 0.8.

Treatment 3: vRed1= 0.1 , vRed2= 0.9
In this case, we will show that the Red urns are not picked neither in state

1 nor in state 2. To see this, assume by contradiction that the Red urn would
(sometimes) be picked in at least one state. This should imply that v(Red) ≥
v(Blue) (as otherwise, the Red urns would never be picked neither in state
s = 1 nor 2). If v(Red) < v(Green), one should have that p2 = 0, thereby
implying by consistency that v(Red) = vRed1 = 0.1. But, this would contradict
v(Red) ≥ v(Blue) = 0.3. If v(Red) ≥ v(Green), then p1 = 1 (given that
v(Red) > v(Blue)), and thus by consistency v(Red) would be at most equal to
0.1+0.9

2 = 0.5 (obtained when p2 = 1). Given that v(Green) = 0.7 > 0.5, we get
a contradiction, thereby implying that no Red urn can be picked in a valuation
equilibrium.

As explained above the value of v(Red) in the valuation equilibrium varies
from being below v(Blue) in treatment 3 to being in between v(Blue) and
v(Green) in treatment 1 to being above v(Green) in treatment 2, thereby offer-
ing markedly different predictions according to the treatment in terms of long
run choices. Allowing for noisy as opposed to exact best-responses would still
allow to differentiate the behaviors across the treatments but in a less extreme
form (clearly, if λ = 0 behaviors are random and follow the lottery 50 : 50
in every state and every treatment, but for any λ > 0, behaviors are different
across treatments).

3.2 Learning Models

We will consider two families of learning models to explain the choice data
observed in the various treatments of the experiment: A similarity-based version
of reinforcement learning model in which choices are made on the basis of the
valuations attached to the various colors of urns and valuations are updated
based on the observed feedback, and a Bayesian learning model in which subjects
update their prior belief about the composition of the Red urns based on the
feedback they receive. In each case, we will assume that subjects care only about
their immediate payoff and do not integrate the possible information content
that explorations outside what maximizes their current payoff could bring. This
is -we believe- justified to the extent that in the experiment there are twenty
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subjects making choices in parallel and that the feedback is anonymous making
the informational value of the experimentation by a single subject rather small
(it would be exactly 0 if we were to consider infinitely large populations of
subjects and we are confident it is negligible when there are twenty subjects).

3.2.1 Similarity-based reinforcement learning

Standard reinforcement learning models assume that strategies are reinforced as
a function of the payoff obtained from them. In the context of our experiment,
subjects receive feedback about how the choices made by all subjects in the
previous period translated into black (positive payoff) or white (null payoff)
draws. More precisely, the feedback concerns the number5 of Black balls drawn
when a Blue, Green or Red urn was picked in the previous period as well as
the number of times an urn with that color was then picked. Unlike standard
reinforcement learning, payoff obtained from some actions are coarse in our
setting and hence similarity- based reinforcement. Accordingly, at each time
t = 2, ...70, one can define for each possible color C = B,R,G (for Blue, Red,
Green) of urn(s) that was picked at least once at t− 1 :

UCt =
#(Black balls drawn in urns with color C at t− 1)

#(an urn with color C picked at t− 1)
. (2)

UCt represents the strength of urn(s) with color C as reflected by the feedback
received at t about urns with such a color. Note the normalization by #(an
urn with color C picked at t − 1) so that UCt is comparable to a single payoff
attached to choosing an urn with color C.

We will let BCt denote the value attached to an urn with color C at time
t and BCinit denote the initial value attached to an urn with that color. For
Green and Blue there is initial information and it is natural to assume that

BBinit =
30

100
= 0.3

BGinit =
68

100
= 0.68

whereas for Red, the initial value BRinit is a priori unknown and it will be
estimated in light of the observed choice data.

Dynamics of BCt:
Concerning the evolution of BCt, we assume that for some (ρU , ρF ), we

have:6

BRt = ρU ×BRt−1 + (1− ρU )× URt
BBt = ρF ×BBt−1 + (1− ρF )× UBt
BGt = ρF ×BGt−1 + (1− ρF )× UGt

5The symbol # is used to refer to number.
6In case no urn of color C was picked at t− 1, then UCt = BCt−1 so that BCt = BCt−1.
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In other words, the value attached to color C at t is a convex combination
between the value attached at t − 1 and the strength of C as observed in the
feedback at t. Observe that we allow the weight to be assigned to the feedback
to be different for the Red urns on the one hand and the Blue and Green urns
on the other to reflect the idea that when a choice is better known as is the
case for more familiar alternatives (here identified with urns Blue and Green)
the new feedback may be considered as less important to determine the value
of it. Accordingly, we would expect that ρF is larger than ρU , and we will be
concerned whether this is the case in our estimations.7

Choice Rule:
Given that the feedback concerning the Red urns is aggregated over states

s = 1 and 2, there is extra ambiguity as to how well BRt represents the valuation
of Red1 or Red2 as compared to how well BGt or BBt represent the valuations
of Blue and Green.

The valuation equilibrium (or its quantal extension as presented above) as-
sumes thatBRt is used to assess the strength ofReds whatever the state s = 1, 2.
In line with the literature on ambiguity aversion as experimentally initiated by
Ellsberg (1961), it is reasonable to assume that when assessing the urn Reds,
s = 1, 2, subjects apply a discount δ ≥ 0 to BRt.

8 Allowing for noisy best-
responses in the vein of the logit specification, this would lead to probabilities
p1t and p2t of choosing Red1 and Red2 as given by

p1t =
eλ(BRt−δ)

eλ(BRt−δ) + eλBBt

p2t =
eλ(BRt−δ)

eλ(BRt−δ) + eλBGt

The learning model just described is parameterized by (ρU , ρF , δ, λ, BRinit).
In the next Section, these parameters will be estimated pooling the data across
all three treatments using the maximum likelihood method. Particular atten-
tion will be devoted to whether δ > 0 is needed to explain better the data,
whether ρF > ρU as common sense suggests, as well as to the estimated value
of λ and the obtained likelihood for comparison with the Bayesian model to be
described next.9

7There are many variants that could be considered. For example, one could have made
the weight of the new feedback increase linearly or otherwise with the number of times an
urn with that color was observed. One could also have considered that the weight on the
feedback is a (decreasing) function of t so as to reflect that as more experience accumulates,
new feedback becomes less important. These extensions did not seem to improve how well we
could explain the data and therefore, we have chosen to adopt the simpler approach described
in the main text.

8One possible rationale following the theoretical construction of Gilboa and Schmeidler
(1989) is that the proportion of Black balls in Red1 and Red2 is viewed as being in the range
[BR - δ, BR + δ] and that subjects adopt a maxmin criterion, leading them to consistently
use BR− δ to assess both Red1 and Red2. More elaborate specifications of ambiguity would
be hard to estimate given the nature of our data.

9If δ = 0, it can be shown that (p1t, p2t) converges to the quantal valuation equilibrium
as defined in subsection 3.1.
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3.2.2 Generalized Bayesian Learning Model

As an alternative learning model, subjects could form some initial prior belief
regarding the compositions of Red1 and Red2, say about the chance that there
are ki black balls out of 10 in Redi, and update these beliefs after seeing the
feedback using Bayes’ law.

Let us call βinit(k1, k2) the initial prior belief of subjects that there are ki
black balls out of 10 in Redi. In the estimations, we will allow the subjects to
consider that the number of black balls in either of the two Red urns can vary
between kinf and ksup with 0 ≤ kinf ≤ ksup ≤ 10 and we will consider the uniform
distribution over the various possibilities. That is, for any (k1, k2) ∈ [kinf , ksup]2

βinit(k1, k2) =
1

(ksup − kinf + 1)2
,

and βinit(k1, k2) = 0 otherwise. The values of kinf and ksup will be estimated.

Dynamics of the beliefs:
To simplify the presentation a bit, we assume there is no learning on the

urns Blue and Green for which there is substantial initial information. At time
t+1, the feedback received by a subject can then be formulated as (b, g, n) where
b, g are the number of blue and green urns respectively that were picked at t,
and n is the number of black balls drawn from the Red urns. In the robustness
checks, we allow for Bayesian updating also on the compositions of the Blue and
Green urns, and obtain that adding learning on those urns does not change our
conclusion.

To further simplify the presentation, we assume that in the feedback subjects
are exposed to, there is an equal number of states s = 1 and s = 2 decisions as-
sumed by the subjects (allowing the subjects to treat these numbers as resulting
from a Bernoulli distribution would not alter our conclusions, see the robust-
ness check section for elaborations). In this case, the feedback can be presented
in a simpler way, because knowing (b, g, n) now allows subjects to infer that
m1 = 10− b choices of Red urns come from state s = 1 and m2 = 10− g choices
of Red urns come from state s = 2. Accordingly, we represent the feedback as
(m1,m2, n) where mi represents the number of Redi that were picked. Clearly,
the probability of observing m1,m2, n when there are k1 and k2 black balls in
Red1 and Red2 respectively is given by:

Pr(m1,m2, n|k1, k2) =
∑

n1≤m1
n2≤m2
n1+n2=n

(
m1

n1

)(
m2

n2

)
(k1/10)n1(1−k1/10)m1−n1(k2/10)n2(1−k2/10)m2−n2

where

(
a
b

)
= a!

(a−b)!b! for integers a, b with a ≥ b.
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The posterior at t+ 1 about the probability that there are k1 and k2 black
balls out of ten in Red1 and Red2 after observing (m1,m2, n) at t is then derived
from Bayes’ law by

βt+1(k1, k2) =
βt(k1, k2) · Pr(m1,m2, n|k1, k2)∑
r1,r2

βt(r1, r2) · Pr(m1,m2, n|r1, r2)
.

with β1(k1, k2) = βinit(k1, k2).

Define vBayest (Redi) =
∑
ki

ki
10βt(ki) where βt(ki) =

∑
k−i

βt(ki, k−i) as the
time t expected proportion of black balls in Redi given the distribution βt.

Choice Rule:
As for the similarity-based reinforcement learning model, we allow for noisy

best responses and we introduce an ambiguity discount δ for the evaluation of
the Red urns.10 Accordingly, the probabilities p1t and p2t of choosing Red1 and
Red2 at time t in the generalized Bayesian learning model are given by:

p1t =
eλ(v

Bayes
t (Red1)−δ)

eλ(v
Bayes
t (Red1)−δ) + eλv(Blue)

p2t =
eλ(v

Bayes
t (Red2)−δ)

eλ(v
Bayes
t (Red2)−δ) + eλv(Green)

where as our simplification implies we assume that v(Blue) = 0.3 and
v(Green) = 0.7.11

Studying the dynamics of the above Bayesian learning model is a bit cum-
bersome for general specifications of (kinf , ksup, λ, δ). But to illustrate how it
leads to predictions markedly different from those of the valuation equilibrium,
consider the case in which δ = 0, kinf = 0, ksup = 10 and λ = ∞ . Then
in all treatments, Red2 is not chosen to start with given that it is perceived
to deliver 0.5 in expectation, which is less than 0.7. As a result, subjects can
safely attribute the feedback they receive about Red to be coming from Red1.
This in turn implies that (considering the limiting case with large population
of subjects) subjects eventually learn the value of Red1 and never play Red2.
Thus, subjects play Red1 in treatments 1 and 2 but give up playing Red1 in
treatment 3, and they never play Red2 in any of the treatments (by contrast,
Red2 was played in treatment 2 in the valuation equilibrium).

More generally, the proposed (generalized) Bayesian learning model is pa-
rameterized by (kinf , ksup, λ, δ). In the next section, these parameters will be
estimated by the maximum likelihood method in light of the collected data.

10Some might dispute that the ambiguity discount is not so much in the spirit of the
Bayesian model in which case one should freeze this parameter to be 0.

11As previously mentioned, we present a model that allows subjects to update v(Blue) and
v(Green) according to Bayes rule in the robustness checks.
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4 Results

4.1 Further Description of the Experimental Design

The computerized experiments were conducted in the Laboratory at Maison de
Sciences Economiques (MSE) between March 2015 and November 2016, with
some additional sessions running in March 2017. Upon arrival at the lab, sub-
jects sat down at a computer terminal to start the experiment. Instructions
were handed out and read aloud before the start of each session.

The experiment consisted of three main treatments which varied in the pay-
offs of the Red urns as explained above. In addition we had two other treatments
referred to as controls in which subjects received state-specific feedback about
the Red urns, i.e the feedbacks for Red1 and Red2 appeared now in two different
columns, for the two payoff specifications of treatments 1 and 2. The purpose of
these control treatments was to check whether convergence to optimal choices
was observed in such more standard feedback scenarios.

Each session involved 18-20 subjects12 and four sessions were run for each
treatment and control. Overall, 235 subjects drawn from the participant pool
at the MSE -who were mostly students- participated in the experiment. Each
session had seventy rounds.

In all treatments, all sessions, and all rounds, subjects were split up equally
into two states, State 1 and State 2. Subjects were randomly assigned to a new
state at the start of each round. The subjects knew the state they were assigned
to, but did not know the payoff attached to the available actions in each state.13

In each state, players were asked to choose between two actions as detailed in
Figure 1. The feedback structure for the main treatments was as explained
above. For the control group, the information structure was disaggregated. We
use this as a baseline to show that under simpler feedback structure, individuals
learn optimally the best available option.

Subjects were paid a turn-up fee of 5 e. In addition to this, they were given
the opportunity to earn 10 e depending on their choice in the experiment.
Specifically, for each subject, two rounds were drawn at random and a subject
earned an extra 5 e for each black ball that was drawn from their chosen urn in
these two rounds. The average payment was around 11 e per subject, including
the turn-up fee. All of the sessions lasted between 1 hour and 1.5 hour, and
subjects took longer to consider their choices at the start of the experiment.

4.2 Results

We first present descriptive statistics and next present the structural analysis.

12Note that when 18 subjects participated in the session, Bayes updating was modified
accordingly.

13For urns Blue and Green, they had initial information, as explained in the Introduction.
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4.2.1 Preliminary findings

In Figure 3, we report how the choices of urns vary with time and across treat-
ments. Across all these sessions, initially, subjects are more likely to choose
the Red urn than the Blue urn in state 1 and they are more likely to choose
the Green urn than the Red urn in state 2. This is, of course, consistent with
most theoretical approaches including the ones discussed above given that the
Green urn is more rewarding than the Blue urn and the Red urns look (at least
initially) alike in states 1 and 2.

(a) Red1 across treatments (b) Red2 across treatments

Figure 3 Evolution of choice across treatments with aggregated feedback

The more interesting question concerns the evolution of choices. Roughly,
in state 1, we see toward the final rounds, a largely dominant choice of the Red
urns in treatments 1 and 2 whereas Red in state 1 is chosen less than half the
time in treatment 3.

Concerning state 2, we see that in the final rounds, the Red urns are rarely
chosen in treatments 1 and 3 and chosen with high frequency in treatment 2.

The qualitative differences of the choices in the final rounds among the three
treatments and the two states are in line with the prediction of the valuation
equilibrium even if some noise in the best-response is obviously needed espe-
cially for treatment 3 in state 1 to explain why about 40% of choices correspond
to Red.14

In Figure 4, with state-specific feedback for the Red urns, we see a clear
trend toward the optimal choices even if some noise would be needed to explain
why only 49% of choices correspond to Red in state 2 in Control 1. In contrast
to the feedback structure in the treatment group, we see that disaggregating
feedback on the Red urns across states, players learn the optimal choice. In line
with section 3.1, the fine feedback helps the agent attach a valuation v(Red1)
and v(Red2) separately for the Red urnsin the two states instead of a joint
valuation v(Red). Due to this finer feedback structure, the simple heuristic of
reinforcement learning leads to an optimal choice, unlike in the control treat-
ments in which an analogous reinforcement learning heuristic leads to valuation
equilibrium.

14We note that the large share of Red chosen in state 2 of treatment 2 is not in line with
the noisy version of the Bayesian learning model as explained above.
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(a) Red1 in control (b) Red2 in control

Figure 4 Evolution of choice across treatments with dis-aggregated feedback

4.2.2 Statistical estimations

Similarity-based reinforcement learning
The estimations of the parameters of the similarity-based reinforcement

learning model together with the corresponding log likelihood15 are given in
the following Table.

Table 2 Parameters for similarity-based reinforcement learning model

ρU ρF δ BRini λ L
0.43 0.599 0.00 0.42 5.24 7626.6

[0.4, 0.49] [0.55,0.64] [0, 0.0009] [0.38, 0.49] [5.04, 5.39] -

Note: Confidence interval at 95% are reported in brackets for the restricted estimators. (See
Ketz 2018 for details).

Concerning the likelihood, by way of comparison, a complete random choice
model where in every state, subjects would randomize 50:50 between the two
choices would result in a negative log likelihood of L=11402, which is much
higher than 7626.6. More generally, the similarity-based reinforcement learning
model explains data much better than any model in which behavior would not
be responsive to feedback. 16

We now discuss the most salient aspects of the estimations.
The finding that ρF > ρU seems natural as mentioned above, to the extent

that for the familiar urns, the feedback should affect less how the valuations are
updated.

The finding that BRinit is slightly below 0.5 may be interpreted along the
following lines. In the absence of any information, an initial value of 0.5 would
be the one dictated by the principle of insufficient reason, but the uncertainty
attached to the unfamiliar urns may lead to some extra discount in agreement

15Likelihood throughout the paper refers to the negative of the log likelihood. Thus,
the lower the likelihood, the better the model (See textbook Train 2003 for further details).
Standard errors are reported in brackets.

16Optimizing on the probability of Red1 vs Red2 in such a model, would lead to assume
that Red1 is chosen with probability p1=0.7 and Red2 is chosen with probability p2= 0.3 with
a negative log likelihood of L=9899.6 which is much higher than 7626.6
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with some form of ambiguity aversion as reported in Ellsberg.17

The most interesting observation concerns δ which is estimated to be 0. Even
though the feedback for the Red urns is ambiguous (because it is aggregated
over the two states), the valuations for Red are not discounted as if subjects
were ambiguous neutral from that perspective.

Thus, what our estimation suggests is that while there may be some (mild)
initial ambiguity aversion relative to the unfamiliar choices (as reflected by
BRinit being smaller than 0.5), no ambiguity discount seems to be applied
to the valuation of Red despite the ambiguity attached to the feedback received
about the Red urns.

Generalized Bayesian learning model :
The estimated parameters for the generalized Bayesian learning model are

given in the following Table.

Table 3 Parameter for Bayesian model with bounds

λ kinf ksup δ L
7.488 3 7 0.003 8816.2

[7.43, 7.52] - - [0.001, 0.005] -

The value of δ =0.003 implies that with the Bayesian model, the subjects
show some mild form of ambiguity aversion. However we cannot statistically
reject the hypothesis that δ = 0, which implies that with the Bayesian model
too, there is no significant ambiguity discount similarly to what we found in the
similarity-based reinforcement learning estimations. For the support of initial
prior, we found that kinf = 3 and ksup = 7.18 We also note that the value of λ
is slightly higher than that for the reinforcement model.

Comparing the two models:
Maybe the most important question is which of the Bayesian learning model
or the reinforcement learning model explains the experimental data best. We
consider three methods of comparisons, all establishing that the reinforcement
learning model outperforms the Bayesian learning model. First, looking at the
likelihood of the two models, we see that the Bayesian learning Model explains
less well the data than the similarity-based reinforcement learning model. Sec-
ond, we perform a Vuong test19 to compare the performance of the two models
statistically. Under the null hypothes H0 , that both models perform equally
well, we conclude that the null can be rejected in favor of the reinforcement

17The difference 0.5− 0.44 = 0.06 can be interpreted as measuring the ambiguity aversion
of choosing an unfamiliar urn when no feedback is available.

18The value of the bounds correspond to vBlue=0.3 and vGreen=0.7 respectively and so
one may speculate that maybe the compositions of the familiar urns serve as anchoring the
support of the priors. Observe that because best-responses are noisy, the derived support does
not imply that the Red urn is always picked in state 1 and never picked in state 2.

19See Merkel et al. 2016 for more details.
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model. Specifically,

H0 = E(L(θR;xd)) = E(L(θB ;xd))

Ha = E(L(θR;xd)) 6= E(L(θB ;xd))

where xd is the collection of observed individual data points, θR is the set of
parameters estimated via reinforcement learning, θB is the set of parameters
estimated via Bayesian learning, L(θR;xd) is the log likelihood under reinforce-
ment model and L(θB ;xd) is the log likelihood under Bayesian learning model
for each data point d. The Vuong statistics is then defined by

Vstat =
√
N
m̄

Sm

where m̄= E(L(θR;xd))- E(L(θB ;xd)) for each individual d, N is the total num-
ber of observations and Sm is the sample standard deviation.

Vstat tests the null hypothesis (H0) that the two models are equally close
to the true data generating process, against the alternative H1 that one of the
model is closer. 20 The obtained Vstat = 25.01 being large and positive implies
that the reinforcement model is a better fit to our experimental data than the
Bayesian model.

Finally, we use the Bayesian Information Criterion (BIC) or Schwarz crite-
rion (also SBC, SBIC) which is a criterion for model selection among a finite set
of models. The model with the lower BIC is closer to the data generating pro-
cess. It is based, in part, on the likelihood function to determine the goodness
of fit in the two models, formally defined as

BIC = ln(n)k − 2 ln(L∗)

where L∗ is value of maximized likelihood of model M, n is the number of
observations, k is the number of parameters estimated by the model.

As seen from table 4, we can conclude that the reinforcement model per-
forms better than the Bayesian one in explaining the data, which is in line with
the findings derived with the Vuong test.

Table 4 BIC values for the two competing models

Valuation model Bayesian model
1.52 x 104 1.763 x 104

20Vuong test compares the predicted probabilities of two non nested models. It computes
the difference in likelihood for each observation i in the data. A high positive Vstat implies
Model 1 is better than Model 2 where m̄= log(Pr(xi|Model1)-log(Pr(xi|Model2)
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4.3 Comparing the Reinforcement learning model to the
data

While we have established that the similarity-based reinforcement learning
model explains better the data than its Bayesian counterpart, it is of inter-
est to see how the obtained frequencies of choices as generated by such a model
with estimations as reported in Table 2 compare to the observed frequencies
from our experimental data. In Figure 5, we report the simulated frequencies
of urn choices using the reinforcement model across all time periods and treat-
ments. Across all these sessions, our simulated frequencies remain close to the

(a) Treatment 1: State 1 (b) Treatment 1: State 2

(c) Treatment 2: State 1 (d) Treatment 2: State 2

(e) Treatment 3: State 1 (f) Treatment 3: State 2

Figure 5 Simulated choices using the reinforcement model

actual frequencies with a slightly less good fit in Treatment 1. Allowing for a
different λ in Treatment 1, we improve significantly the fit in this treatment as
shown in Appendix C.

We also run estimations at the subject level. Using the parameters obtained
from the estimations as reported in Table 2, we calculated the likelihood of
obtaining the observed set of choices for every individual assuming the choices
of this individual are determined by the corresponding similarity-based rein-
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(a) T1: Distribution of likelihood (b) T2: Distribution of likelihood

(c) T3: Distribution of likelihood

Figure 6 Distribution of likelihood around the mean using the reinforcement
learning model

forcement learning model as defined above. In Figure 6, we plot the obtained
distribution of standardized likelihood across treatments.21 The distribution of
standardized likelihood is unimodal with roughly the same mode across treat-
ments, and it has a right tail in Treatments 2 and 3 but not in Treatment 1.
We note that if we allow for a different λ parameter in Treatment 1, we obtain
a distribution of likelihood in this treatment closer to the distributions in the
other treatments, as shown in Appendix C.

In summary, while the individual data analysis suggests that there is some
noise (as illustrated by the dispersion of likelihoods), the similarity of the dis-
tributions of likelihood across treatments observed for the similarity-based re-
inforcement learning model is we believe a desirable property to the extent that
it would be hard to make sense of very dissimilar distributions given that the
pool of subjects had very similar backgrounds across treatments.22

21The obtained likelihood for each individual was subtracted from the mean and divided
by the standard deviation of the sample to obtain the y axis. It represents the density as
approximated by the observed likelihood. The x axis simply represents the observed likelihood
across individuals.

22While the noise in the distribution of likelihood could be generated by the stochastic
nature of choice, another possibility is that it is driven by some heterogeneity of subjects (see
Cheung and Friedman (1997)).
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4.3.1 Robustness Checks

As many variants of reinforcement learning models and Bayesian models could
be considered, we review a few of these here and suggest that our basic conclu-
sions remain the same in these variants. In each case, the reported estimation
relies on the same methodology as above.

Similarity-based reinforcement learning model
Regarding reinforcement models, we consider the following variants. First,

we allow the speed of adjustment of the valuation of the Red urns to differ across
the two states as a large imbalance in the number of green urns as opposed to
blue urns in the feedback is indicative that the feedback concerned more Red
urns in state 1 than in state 2.23 Specifically, we now introduce a new parameter
µ and specify the weight on the previous valuation to satisfy

ρU1 = ρU × [1− µ · ( NB

NG+NB
− 0.5)]

ρU2 = ρU × [1− µ · ( NG

NG+NB
− 0.5)]

whereNB andNG are the respective numbers of Blue and Green urns appearing
in the feedback. Intuitively, one would expect that as NB < NG, more weight
on the feedback would be assigned to the new valuation of Red in state 1 so
that we expect µ > 0. The estimations of this extended model are reported in
the following table.

Table 5 Parameters for variant1 of similarity-based reinforcement learning
model

ρU ρF δ BRini λ µ L
0.45 0.6 0.00 0.45 5.2 0.108 7626.3

[0.40, 0.49] [0.55,0.64] [0, 0.001] [0.39, 0.5] [5.02, 5.37] [-0.26, 0.48] -

As expected, we find that µ > 0. There is no significant gain in likelihood
and µ = 0 cannot be rejected. Thus, this extended model does not explain the
data better than our previously proposed version.

A different idea somewhat related to the one just discussed is that subjects
would apply a different discount to the Red urn in state 1 and 2 maybe because
they would consider the feedback for the Red urns to be more indicative of Red
in state 1 than in state 2 (again maybe because of the imbalance of the number
of Blue and Green urns in the feedback). This leads us to consider an extended
version with two different discounts δ1 and δ2 for Red in state 1 and 2 while
keeping the other aspects of the dynamics unchanged as compared to the main
reinforcement learning model. That is, the only change in this variant is in the

23This is in some sense making use of some qualitative features of the Bayesian model to
improve the reinforcement learning model.
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choice rule.

Choice Rule:

p1t =
expλ(BRt−δ1)

expλ(BRt−δ1) + expλBBt

p2t =
expλ(BRt−δ2)

expλ(BRt−δ2) + expλBGt

The estimated parameters for this variant are reported in the following table.

Table 6 Parameters for variant2 of similarity-based reinforcement learning
model

ρU ρF δ1 δ2 BRini λ L
0.39 0.54 0.00 0.04 0.46 4.99 7610.6

[0.34, 0.44] [0.49,0.58] [0, 0.0007] [0.03, 0.05] [0.39, 0.52] [4.8, 5.17] -

In this variant, we see a slight discount for Red2 but not for Red1. The like-
lihood for this model is better than for the original model and the hypothesis
δ1 = δ2 = 0 is rejected under significance level 0.01. While this extension has
a slightly better explanatory power, we find only a modest level of ambiguity
aversion applied to the urn Red in state 2 when allowed to differ from the am-
biguity aversion to the urn Red in state 1.24

Generalized Bayesian learning model
For the Bayesian model, one could argue that instead of fixing v(Blue) = 0.3

and v(Green) = 0.7, the values of the Blue and Green urns could be updated
similarly to the Red urns.25 We have estimated such an extended model taking
the same prior parameterized by the support [kinf , ksup] for all the urns (see
Table 7).

This model performs better than the generalized Bayesian one in terms of
likelihood. However, this extended model is still statistically dominated by the
similarity-based reinforcement learning model.26

A more elaborate version of the Bayesian approach would be to take into
account the probability of having ri state i in the 20 observation of the feedback
(instead of assuming that in each round, there are exactly 10 subjects assigned

24We also considered the possibility that subjects would use a different slope to appreciate
payoffs above 0.5 and payoffs below 0.5 in the spirit of prospect theory (with a reference payoff
fixed at 0.5), but such a variant did not result in an improvement of the likelihood, hence we do
not report it here (see Tversky and Kahneman (1974), (1979) for the introduction of prospect
theory).

25The initial information provided about those urns would of course be used
26The Vuong test was conducted with the null hypothesis that both models explain the

data equally well. The null was rejected in favor of the similarity-based reinforcement learning
model with Vstat= 24.72.
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Table 7 Parameter for Bayesian model with Blue and Green updating

λ kinf ksup δ Likelihood
8.69 3 7 0.008 8583.8

[8.4, 8.9] ( - ) ( - ) [0.003, 0.013] ( - )

to each state). Accordingly, we now represent the feedback as (b, g, n) where b,
g are the number of draws from blue and green urns and n is the number of
black balls in Red. We modify the generalized Bayesian model by taking into
account the probability of having x states s = 1 out of 20. Formally,

Pr(b, g, n|k1, k2) =
∑
x

(
20
x

)(
1

220

)
Pr(m1 = x−b,m2 = 20−x−g, n|k1, k2)

where x is the number of times state s = 1 was observed in one round,
Pr(m1 = x − b,m2 = 20 − x − g, n|k1, k2) is defined as in section 3.2.2 where
the total number of players in each session is 20.

The dynamics of beliefs is now given by

βt+1(k1, k2) =
βt(k1, k2) · Pr(b, g, n|k1, k2)∑
r1,r2

βt(r1, r2) · Pr(b, g, n|r1, r2)
.

with β1(k1, k2) = βinit(k1, k2). The other ingredients of the Bayesian learning
model are identical to those considered in section 3.2.2.

After running the estimation of this model (see Table 8), we note that the
corresponding likelihood further improved compared to the other two Bayesian
models. However, even with the improved likelihood, the model still under
performs when compared to the reinforcement model, and the Vuong test still
statistically favors the similarity-based reinforcement learning model.27

Table 8 Parameter for elaborate Bayesian model

λ kinf ksup δ Likelihood
6.56 3 7 0 8584.4

[6.57, 6.64] ( - ) ( - ) [0, 0.008] ( - )

5 Conclusion

In this paper, we have considered the choices to be made between familiar alter-
natives and unfamiliar alternatives for which the obtained feedback is aggregated

27The Vuong test was conducted with the null hypothesis that both models explain the
data equally well. The null was rejected in favor of the similarity-based reinforcement learning
model with Vstat= 20.18.
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over different states of the economy. The literature on ambiguity aversion would
suggest that the unfamiliar alternatives would be discounted as compared to the
familiar ones, but that literature has largely ignored how behaviors would change
in the face of continuously coming new feedback that would remain aggregated
over different states.

Several competing learning models could be considered to tackle the choices
in the face of new feedback: either extensions of reinforcement models in the
spirit of the valuation equilibrium (Jehiel and Samet, 2007) or Bayesian models
in which subjects would start with some diffuse priors and update as well as
they can, based on the coarse feedback they receive. Clearly, ideas of ambiguity
aversion can be combined with such learning models along with the idea that
subjects make noisy best-responses to their representations of the alternatives,
as routinely done in the empirical literature (discrete choice models as considered
by McFadden) or in the experimental literature (quantal response equilibrium
as defined by McKelvey and Palfrey, 1995).

Our results indicate that the similarity-based reinforcement learning mod-
els outperform their Bayesian counterparts and that little discount seems to be
applied to unfamiliar choices even when the feedback relative to them is aggre-
gated over different states. As in other experimental findings, our results also
indicate that subjects’ choices are noisy, which we have tackled by assuming
that subjects employ noisy best-responses. We believe such a work could be
viewed as a starting point for an ambitious research agenda that aims at under-
standing how subjects make choices in the face of a mix of coarse and precise
(state-specific) feedback. It seems well suited to cope with a number of choice
problems in which one alternative is familiar and another one is not. Questions
of whether subjects seek to generate state-specific feedback (and when) should
also be part of this broader agenda.
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6 Appendix

Appendix A
Instruction sheet for the players (In the lab the instructions were in French):
Control Group:
Welcome to the experiment and I thank you for your participation. Please

listen to these instructions carefully. If you have any questions kindly raise your
hand and it shall be addressed. You receive 5 euros for participating and then
your payoff depends on your performance in the experiment.

The Experiment:
The experiment consists of 70 rounds. It is a simple decision task. There

are two situations you may face referred to as states 1 and 2. In each state, you
have to choose one of two urns. Each urn is composed of ten balls either black
or white in color. When you choose an urn, one of the balls in the urn is drawn
at random (by the computer) and it is immediately replaced after the computer
has noted the color of the ball. If the ball drawn is Black, you can receive extra
payment (see below for details) whereas if the ball drawn is White you receive
no payment.

The two urns available in state 1 are Blue and Red, respectively. The two
urns available in state 2 are Green and Red, respectively. While the compo-
sitions of the various urns remain the same throughout the experiment, note
that the compositions of the Red urn in state 1 need not be the same as the
composition of the Red urn in state 2. These are two different urns.

As the experiment goes, on your computer screen, you will be informed
whether you have to make a choice of urns in state 1 (Blue or Red) or in state 2
(Green or Red). The sequence of choices from states 1 or 2 is decided randomly
by the computer. Your task is to choose one urn out of the two in each state.

Note: We drew 100 times a ball (replacing the ball in the urn after each
draw) out of the Blue and Green urn. We obtained the following composition

Blue 30 Black 70 White
Green 68 Black 32 White

At the beginning of the experiment:

• Your terminal is randomly assigned a State of the world. If in State 1, you
choose between a Red and Blue urn. If in State 2, you choose between a
Red and Green urn.
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• After you choose the color of the urn that you want to pick, you click on
the screen. A ball (the color of which could be either Black or White) will
be drawn from that urn by the computer. You will not know the color of
the ball drawn. This implies you will not have the information for your
choice.

• Once all participants have made their choices, we provide you with some
feedback. The total number of black and white balls drawn in previous
rounds by all subjects according to the color of the urn (Blue, Red1, Red2,
Green).

• Following the feedback, your terminal is randomly assigned a state of the
world again. The state may vary from the previous round or remain the
same.

• We then repeat the same experiment again until the completion of the 70
rounds.

For determining your payoff, two of the rounds will be randomly chosen at
the end of the experiment. If one of your balls in these two rounds is Black, you
will get an extra 5 euros. If both of your balls in these two rounds are Black,
you will have an extra 10 euros. Otherwise (if both balls are White), you will
have no extra return. So if you have no questions let us begin!

Treatment Group:
Welcome to the experiment and I thank you for your participation. Please

listen to these instructions carefully. If you have any questions kindly raise your
hand and it shall be addressed. You receive 5 euros for participating and then
your payoff depends on your performance in the experiment.

The Experiment:
The experiment consists of 70 rounds. It is a simple decision task. There

are two situations you may face referred to as states 1 and 2. In each state, you
have to choose one of two urns. Each urn is composed of ten balls either black
or white in color. When you choose an urn, one of the balls in the urn is drawn
at random (by the computer) and it is immediately replaced after the computer
has noted the color of the ball. If the ball drawn is Black, you can receive extra
payment (see below for details) whereas if the ball drawn is White you receive
no payment.

The two urns available in state 1 are Blue and Red, respectively. The two
urns available in state 2 are Green and Red, respectively. While the compo-
sitions of the various urns remain the same throughout the experiment, note
that the compositions of the Red urn in state 1 need not be the same as the
composition of the Red urn in state 2. These are two different urns.

As the experiment goes, on your computer screen, you will be informed
whether you have to make a choice of urns in state 1 (Blue or Red) or in state 2
(Green or Red). The sequence of choices from states 1 or 2 is decided randomly
by the computer. Your task is to choose one urn out of the two in each state.
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Note: We drew 100 balls randomly out of the Blue and Green urn which
gave us the composition

Blue 30 Black 70 White
Green 68 Black 32 White

At the beginning of the experiment:

• Your terminal is randomly assigned a State of the world. If in State 1, you
choose between a Red and Blue urn. If in State 2, you choose between a
Red and Green urn.

• After you choose the color of the urn that you want to pick, you click on
the screen. A ball (color of which could be either Black or White) will be
picked up from that urn. You will not know the color of the ball drawn.
This implies you will not have the information of your choice

• Once every participant has made their choice, we provide you with the
feedback. The no. of black and white balls drawn from each colored
urn(Blue, Red, Green) across states based on only the previous round
draw is reported.

• Following the feedback, your terminal is randomly assigned a state of the
world again. The state may vary from the previous round or remain the
same. Note that the composition of the urn is however fixed throughout
the experiment.

• We then repeat the same experiment again till we complete 70 rounds.

For determining your payoff, two of the rounds will be randomly chosen at
the end of the experiment. If you have picked up B in that particular round,
you end up with 5 euros more for each B otherwise no returns. So if you have
no questions let us begin!

Appendix B
The learning model we described is parameterized by (ρR, ρB , δ, λ, BRinit).

The diagrams below show that these parameters are normally distributed via
Monte Carlo simulations with 1000 iterations and n=240. 28

28This is in line with number of players in our actual experiment.
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Figure 7 Results for Montecarlo simulations for Model 1.

Appendix C
The figure shows simulated proportions of choices for the reinforcement

model over 70 rounds with the estimated parameters for Treatment 1. Instead
of using the noise parameter, λ= 5.23, we use λ= 7 to introduce less noise. This
improves the fit of the simulated data with the actual one.

(a) Treatment 1: State 1 (b) Treatment 1: State 2

Similarly, the figure below uses λ= 7 for the likelihood calculations. The
distribution of likelihood around the mean looks closer to the other treatments
with less noise.
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Figure 9 T1: Distribution of likelihood
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