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Abstract. We offer an alternative approach to cooperation in repeated games
of private monitoring in which prior beliefs are formed by observing the fre-
quencies of play in a record of past plays of the game. The record is incom-
plete, reporting past actions but not signals. Players group the histories in the
record into a relatively small number of analogy classes to which they attach
probabilities. We provide conditions for the existence of equilibria supporting
cooperation and supporting high payoffs, and show that more detailed analogy
classes (i.e., a ”better specified” model) need not lead to better outcomes.
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The Analogical Foundations of Cooperation

1 Introduction

It is intuitive that repeated interactions, by allowing the participants to link fu-
ture behavior to current actions, can give rise to different incentives than those
of isolated interactions. People readily understand that they should treat dif-
ferently the purchase of a diamond ring drawn from a display case in Tiffany’s
Fifth Avenue showroom and the purchase of a diamond ring drawn from the
pocket of a trench coat on a nearby 23rd street subway platform. Models of
repeated games of perfect monitoring (Fudenberg and Maskin [9]) capture this
intuition well, most simply in the Nash reversion equilibria presaged by Fried-
man [5], in which players cooperate as long as there has been no defection, and
then revert to the perpetual play of a Nash equilibrium of the stage game upon
the first defection.

One might hope that analogous arguments would continue to hold in the
face of the imperfections that inevitably complicate the monitoring of others’
actions, as long as the monitoring is informative enough. Unfortunately, there is
no counterpart of the Nash reversion equilibrium under private monitoring, no
matter how precise the monitoring.1 A player who receives a signal suggesting
that her opponent defected in the first period will cling to the equilibrium hy-
pothesis (that the opponent has cooperated) rather than trigger a punishment,
attributing the signal to an unlikely draw from the noisy monitoring technology.
This in turn gives players a license to defect in the first period, disrupting the
equilibrium.

The standard response provided by game theorists is to construct equilibria
in which players mix between cooperation and defection in the first period,
so that adverse signals can be interpreted as signals of defection. (See Ely and
Valimaki [4], Piccione [16], and Sekiguchi [20] for early contributions.) However,
these equilibria typically sacrifice the intuitive link between current and future
behavior that motivates much of the interest in repeated games—for example,
belief-free equilibria are constructed so that player 1’s beliefs about player 2’s
behavior are irrelevant to 1’s choice of action—and can depend upon finely-
tuned beliefs that are seemingly plucked out of thin air.

In this paper, we suggest an alternative approach to cooperation, centered
around four features. First, rather than having their prior beliefs spring to
life as part of an equilibrium, players form their prior beliefs by observing the
frequencies of the various outcomes in a record of past plays of the game. Second,
this frequentist foundation forces prior beliefs to be coarse. No record of previous
interactions will allow the estimation of a potentially distinct probability for each
of the infinite number of histories in a repeated game. Instead, players must
group histories into a relatively small number of analogy classes to which they
attach probabilities. Third, the record reports play from a variety of games

1As Fudenberg, Levine and Maskin [8] show, noisy monitoring need not pose difficulties
as long as the monitoring is public.
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whose peculiar details shaped the behavior of the players in the game, but are
lost in the record. Finally, the record may lack some information. We focus on
a record which reports the actions taken in previous plays of the game, but not
the private signals received by past players, which we motivate on the grounds
that such private signals can rarely be regarded as hard evidence and as such
are hard for outside observers to access or interpret.

Formally, we examine analogy-based expectation equilibria (Jehiel [12]) in
which the analogy partitions do not distinguish histories according to the private
signals, nor according to whether the interaction is likely be short-lived or long-
lived. We begin in Sections 2–3 with the prisoners’ dilemma, with two analogy
classes distinguishing histories according to whether any player has previously
defected. We analyze the extent to which cooperation can be achieved when
varying the precision of the monitoring and the share of short-lived interac-
tions. We note that the reliance on analogy classes inevitably leads players to a
misspecified model of their interaction, and explain how this misspecification is
essential in creating the incentives supporting cooperation. Subsequent sections
of the paper discuss the applications to which the analysis applies and argue
that the intuition gained from the analysis can be extended more generally.

2 Analogical Reasoning and Cooperation

2.1 The Stage Game

We develop the basic ideas in the context of the workhorse model of cooperation,
the repeated prisoners’ dilemma. We focus in Sections 2 and 3 on the stage game
given by

C D
C 1, 1 −k, 1 + k
D 1 + k,−k 0, 0

. (1)

It is a normalization to choose the payoffs of mutual defection and mutual
cooperation to be 0 and 1. Our formulation then restricts attention to the
commonly examined one-parameter class of games in which the payoff premium
to defecting, given by k, is independent of the actions of one’s opponent. The
larger k, the more tempting is defection, making it more difficult to sustain
cooperation.

If this game is infinitely repeated under perfect monitoring and with common
discount factor β, then there exists an equilibrium supporting permanent mutual
cooperation if and only if the players are relatively patient and the premium on
defecting is relatively small, i.e., if and only if

β ≥ k

1 + k
. (2)

Perhaps the best known strategy supporting cooperation is the Nash reversion
or “grim” strategy, in which both players cooperate after any history featuring
no defections, and defect otherwise.
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2.2 The Repeated Game

We now suppose that a pair of players is matched to play the repeated prisoners’
dilemma, playing the stage game given in (1) in each of period 0, 1, . . ... With
probability α, the players are both drawn to have a high discount factor that we
denote by β, and with probability 1− α they are drawn to have a low discount
factor that we denote by β. We interpret (and hereafter refer to) the discount
factor as a continuation probability, governing the random length of the game.

Both players in a game observe the realized continuation probability. Players
do not observe other’s actions. Instead, if player i plays C in some period t,
then player j observes the signal c with probability 1− ε and observes signal d
with probability ε. Similarly, when i plays D in some period t, then player j
observes the signal c with probability ε and observes signal d with probability
1 − ε. The signals are drawn independently across players and periods. Some
of the analysis presented below will assume that ε is small.

We assume that the continuation probability β is sufficiently low that the
only equilibrium in such a game features defection after every history, and so
our analysis focuses on games with high continuation probabilities.2

2.3 Beliefs

The analogy-based expectations equilibrium (Jehiel [12]) that we examine rests
on the two common pillars of equilibrium concepts—best responses and con-
sistent beliefs. The departure from more familiar concepts lies in providing an
explicit model of belief formation rather than assuming that these beliefs simply
appear as part of the equilibrium concept.

We assume that the players have access to a record of past plays of the
game, and adopt the frequencies of behavior observed in the record as their
prior belief about their opponent’s behavior in their current interaction. This
record exhibits two imperfections.

First, we cannot expect the interactions in the record to correspond exactly
to the current interaction—any pair of interactions will inevitably exhibit some
differences, if nothing else reflecting the fact that previous interactions occurred
earlier. The players will be unaware of many of these differences, and will ig-
nore some differences in order to include observations they consider sufficiently
similar to the current interaction—if the players are too exacting in the interac-
tions they consider relevant, the record may be too sparse to be useful. Hence,
whether the players cannot or choose not to distinguish them, the record will
include some cases that are analogous to their own, even if not exactly the
same. We are especially interested in games which differ in the readiness with
which they support cooperation, which we capture in a quite stylized fashion
by assuming that the record includes interactions with varying continuation
probabilities, i.e., by taking α ∈ (0, 1).

2For our purpose, the universal defection arising in such games is what matters. Any
alternative specification (for example, based on varying the monitoring technology) that would
give rise to the same behavior would be equivalent.

3



Second, the record reports the actions played in each game, but not the
private signals observed by the players. One interpretation is that these signals
are unobservable, perhaps for the same reason that the signals are private. Our
preferred interpretation is that the players may not even understand what form
these signals might take, or what means the players in previous interactions may
have for collecting and using information.3

Each previous play of the game contributes an observation to the record
listing the actions taken in each period of the game. These observations will
be of various lengths (recalling that β is a continuation probability), though all
will be finite. A game that ends in period t contributes an observation to the
record that contains t+1 cases, of lengths 1 to t+1. A case of length τ specifies
the actions both players played in periods 0 through τ − 1 (referred to as the
history, taken to be null if τ = 1) as well as the actions both players played in
period τ .

A player uses the record to attach a probability that her opponent in her
current interaction will cooperate, given that this interaction has reached some
period t with history ht. This probability is taken to be the empirical frequency
of cooperation in those cases in the record corresponding to history ht.

In principle, the player might aspire to attach a different probability to each
history, just as the strategies in a standard repeated game can attach different
probabilities to different histories. However, the number of such histories is
(countably) infinite, putting the estimation of a probability for each beyond
the reach of any plausible data set, regardless of recent advances in big data.
Hence, the player classifies histories into categories (or analogy classes), and
then calculates the empirical frequency of C and D actions for each category.

The equilibrium concept itself provides no guidance as to how many cate-
gories a player is likely to use in examining the data, nor how these categories
are to be determined. Our intuition is that the number of categories is likely
to be small. The categories may be chosen by the player, with their paucity
reflecting limitations of the historical record or parsimony in the players’ rea-
soning. Alternatively, the categories may represent aggregate statistics of the
corresponding sort provided by third parties to new comers. From that perspec-
tive, a question of interest is how the choices of categories made by such third
parties affect the possibility of cooperation.

In Sections 2–3, we suppose that players arrange histories into two cate-
gories, clean and dirty. A clean history is one in which no player has defected.
A dirty history is one in which at least one player has defected. The player
uses the record to calculate the probability p that a player cooperates after a
clean history, and the probability q that a player cooperates after a dirty his-
tory. Section 4 examining how the results can depend on the specification of
categories.

3One may sense some tension between the assumption that players cannot observe actions
in their current interaction, and yet these actions appear in the record. A more realistic model
would assume that the actions are reported in the record with some noise, an elaboration we
eschew on the grounds that it adds more notation than insight.
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For example, an interaction that ends in period 3 may contribute the follow-
ing observation to the record:

Player 1 : CCCD
Player 2 : CCDD

. (3)

This interaction contributes the following four cases to the record:

Case 1 : Case 2 : Case 3 : Case 4 :
Player 1 : C CC CCC CCCD
Player 2 : C CC CCD CCDD

. (4)

These involve four histories, given by

Case 1 : Case 2 : Case 3 : Case 4 :
Player 1 : ∅ C CC CCC
Player 2 : ∅ C CC CCD

. (5)

The first three of these histories are clean, as no one has defected, while the final
history is dirty. Of the six actions (reported in (4)) taken after clean histories,
five are cooperate and one is defect. Were this the only observation in the
record, the players would estimate that the probability of cooperation after a
clean history is p = 5/6 and the probability of cooperation after a dirty history
is q = 0.

In grouping together the various dirty histories, player i does not distinguish
whether it is player i who has defected, player j who has defected, or both.
Obviously, this may make a difference—player j may be more likely to defect
after histories in which player j has already defected than after histories in which
only i has defected—and so player i’s categorization of the histories potentially
obscures some information. Given that i cannot estimate behavior after every
one of the infinite number of histories, this is unavoidable.

2.4 The Equilibrium Concept

The analogy-based expectations equilibrium concept requires that the players’
actions are optimal given their beliefs, and that these beliefs match the frequen-
cies contained in a record generated by the equilibrium strategies. We refer to
(Jehiel [12]) for a formal presentation. Formally, the requirement is that play-
ers’ beliefs match those that would be generated by an infinite number of draws
from the equilibrium strategies. In practice, the record will be finite. Indeed,
this was our motivation for restricting attention to a small number of categories.
As a result, the players’ beliefs will be perturbed by estimation error. Our in-
tention here is to isolate the implications of assuming that players’ beliefs are
given by the empirical frequencies of analogy classes, without the confounding
effects of estimation error. We do so by working with an effectively infinite
record, even while restricting players to a small number of analogy classes. In
much the same vein, econometricians often assume away estimation error when
considering questions of identification.
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3 Equilibrium

3.1 Existence of Equilibrium

The candidate equilibrium behavior is that each player initially views the his-
tory as clean (and hence the opponent as cooperating with probability p), and
cooperates. As long as i continues to cooperate, player i will update the prob-
ability i attaches to the event that the history is clean in light of the signals
i receives. Once this probability drops below a threshold, player i switches to
defecting. Once player i defects, i views the history as being dirty (and hence
the opponent as cooperating with probability q), and defects thereafter.

The estimated probabilities p and q will both be positive, but less than
one. The probability p will be positive because players with high continuation
probabilities initially cooperate, and so the record will include clean histories
exhibiting cooperation. This probability will be less than one because players
with low continuation probabilities defect after the (clean) null history, and
because there may be points in a high-continuation-probability exhibiting a
first defection, giving us another clean history with a defection. In general, it
may take some time for the other player in such a high-continuation-probability
interaction to become sufficiently pessimistic as to defect, giving us some dirty
histories with cooperation and hence positive q. But eventually, all players
defect on dirty histories, ensuring q < 1.

3.1.1 Restless Bandits

We first fix probabilities p and q and examine an individual player’s problem.
We formulate the player’s problem as a restless bandit problem, defined by
the values p and q. These values are ultimately determined as equilibrium
phenomena, but are viewed by the player as fixed parameters. There are two
arms, a C arm (corresponding to cooperating) and a D arm (corresponding to
defecting). The arms are characterized by a state that evolves but is identical
across arms.

We let zt, the probability the player attaches in period t to the event that
the history is clean, be the state of both arms at time t. We have z0 = 1, since
all interactions start with the empty history, which is clean. As long as the C
arm is pulled, zt will evolve in response to the signals the player receives. If the
D arm is pulled at time t, then both arms are in state 0 at time t+ 1.

If the C arm is pulled at time t, then a c signal is observed and both arms
move to state4

φ(z, c) =
zp(1− ε)

zp(1− ε) + z(1− p)ε+ (1− z)[q(1− ε) + (1− q)ε]
(6)

with probability zp(1 − ε) + z(1 − p)ε + (1 − z)[q(1 − ε) + (1 − q)ε]; while a d

4This posterior probability is the probability player i attaches the the event that the state
is clean, given prior probability c and given that i played C and observed signal c, and is
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signal is observed and both arms move to state

φ(z, d) =
zpε

zpε+ z(1− p)(1− ε) + (1− z)[qε+ (1− q)(1− ε)]
(7)

with probability zpε+ z(1− p)(1− ε) + (1− z)[qε+ (1− q)(1− ε)].
We can use these expressions to calculate that, given current state z, the

expected value of the next state is pz. Hence, as long as p < 1, the player
expects a decline in the probability that the opponent is clean.

This gives us a restless bandit (the states of unpulled arms evolve) rather
than a simple bandit (only the state of the pulled arm evolves). Each time the
C arm is pulled, it generates a current payoff of

zp+ (1− z)q+ [z(1− p) + (1− z)(1− q)](−k) = − k+ (zp+ (1− z)q)(1 + k).

When the D arm is pulled, it generates a current payoff of

(zp+ (1− z)q)(1 + k).

It is clear that once the D arm is pulled, it is then optimal to thereafter pull
the D arm. As a result, it is straightforward to calculate the value of the D
arm, which is given by

W (z) = (1− β)[(zp+ (1− z)q)(1 + k)] + βq(1 + k)

= (1− β)z(p− q)(1 + k) + q(1 + k). (8)

We can view the D arm as paying q(1 + k) the first time it is pulled as well as
every subsequent time, and can view (1− β)z(p− q)(1 + k) as an initial bonus
the player receives (only) the first time he pulls the D arm. Only the initial
bonus depends on the belief zt.

3.1.2 Equilibrium in the Bandit Problem

The most interesting case is that in which p > q, so that players are more likely
to cooperate after clean histories than after dirty histories.

Lemma 1 For fixed p > q, there exists an optimal policy in the bandit prob-
lem. An optimal policy is characterized by a cutoff belief z such that a player
cooperates if the belief z exceeds z and defects if z is less than z.

readily constructed from the following accounting of outcomes:

Currentstate Probability Signal/Next state Probability
Clean z c/Clean zp(1− ε)
Clean z d/Clean zpε
Clean z c/Dirty z(1− p)ε
Clean z d/Dirty z(1− p)(1− ε)

Dirty 1− z c/Dirty (1− z)[q(1− ε) + (1− q)ε]
Dirty 1− z d/Dirty (1− z)[(1− q)(1− ε) + qε]

.
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Proof. The existence of an optimal policy is standard, having been established
by Whittle [23], and follows from dynamic programming arguments.

The statement that the optimal policy takes the form of a cutoff belief z is
the intuitive result that if there is a belief at which one is willing to cooperate,
then learning that the history is more likely to be clean will also make one
willing to cooperate. To establish this, let V (z) be the value of cooperating at
belief z, and thereafter proceeding optimally (with the existence result ensuring
that this is well defined). Suppose it is optimal to cooperate at belief z, or
V (z) ≥W (z). Now consider z′ > z. We know, from (8), that

W (z′)−W (z) = (1− β)(p− q)(1 + k)(z′ − z).

We also know that V is given by the sum of the current payoff (1 − β)[−k +
(zp+ (1− z)q)(1 + k)] plus a continuation payoff, allowing us to write

V (z′)− V (z) = (1− β)(p− q)(1 + k)(z′ − z) + β[EV (φ(z′, ·))− EV (φ(z, ·))].

It is immediate that V (z) is increasing in z, and hence that E(V (z, ·)) is in-
creasing in z. A comparison then gives

V (z′)−W (z′) ≥ V (z)−W (z).

Hence, we must have V (z′) ≥ W (z′), and so we have the desired threshold
result.

Remark 1 We can convert our restless bandit into a stationary bandit to
which an index applies. Let z(p− q)(1+k) be denoted by h(z). In period 0, the
player makes no decision, and receives payoff h(z0). In the period 1, the player
chooses either C, for payoff −(k/β) +Eh(z1|z0), or chooses D, for a payoff of 0.
In the period 2, assuming C was chosen in period one, the player chooses either
C , for payoff −(k/β) + Eh(z2|z1), or chooses D, for a payoff of 0. In general,
the D arm gives a payoff of 0 and is an absorbing action, while in each period t
the C are gives payoff −k/β+Eh(zt|zt−1). The idea is that no matter what, the
player receives the period-1 bonus h(z0). Then, in the ordinary representation,
the player can pay the cost k in period 0 in order to also receive the bonus
in period 1, which from period 0’s point of view has the value Eh(z1|z0). But
we can then represent this as the player paying in period 1 the cost k/β for
the reward Eh(z1|z0). Continuing in this way, we obtain a stationary bandit.
We can then apply the familiar Gittins index characterization (Whittle [23])
of the optimal policy in the stationary bandit to conclude that this policy is
a threshold policy that cooperates above some belief z and defects below that
belief.

3.2 Equilibrium in the Repeated Game

An equilibrium in the repeated game requires not only a solution to the bandit
problem for fixed values of p and q, but also that this solution generates a record
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of past plays that is in turn consistent with p and q. Hence, given p and q, the
solution to the bandit problem induces values p̂ and q̂ in the data, where these
are the probability of cooperating after a clean history and after a dirty history.
We seek a fixed point with p = p̂ and q = q̂.

3.2.1 Perfect Monitoring

We first suppose that ε = 0, so that monitoring is perfect, and confirm that we
recover familiar results. Suppose each player adopts the strategy of cooperating
after clean histories and defecting after dirty histories. Then the observations
contained in the record will be either perpetual defection, arising in low contin-
uation probability games, or perpetual cooperation, arising in high continuation
probability games.

Given this record, each player will estimate an interior value for p, since
they observe cooperation after all of the (clean) histories that appear in high
continuation probability games, but defection after the null (and hence clean)
history in a low continuation probability game. Each player will estimate q =
0, observing dirty histories only in low continuation probability games whose
players routinely defect.

When will the proposed behavior constitute an equilibrium? We can calcu-
late the probability p:

p =
α
∑∞
t=0 β

t

α
∑∞
t=0 β

t
+ (1− α)

=
α

α+ (1− α)(1− β)
.

The numerator calculates the frequency of clean histories after which a player
cooperates.5 The denominator calculates the frequency of all clean histories.

To confirm that we have an equilibrium, we need only verify the incentive
constraint that a player be willing to cooperate at a clean history. The payoff
from cooperating is given by

V = [p+ (1− p)(−k)] + pβV =
(1 + k)p− k

1− pβ
,

while the payoff from defecting is (1+k)p, and hence the incentive constraint
V (z) ≥W (Z) is

1 + k

k
p2β ≥ 1,

or, using our solution for p and rearranging,

β ≥ k

1 + k

(
α+ (1− α)(1− β)

α

)2

.

5Cooperation requires that a high continuation probability be drawn, giving us the initial
α. Then, with probability 1 we get a period-0 history added to our list, with probability β

we also get a period-1 history added to the list, with probability β
2

we get a period-2 history,
and so on.
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This inequality holds for sufficiently large β, but is more demanding than the
corresponding requirement (2) from the classical perfect monitoring game. The
two criteria coincide when α = 1 (and hence p = 1). As α falls below one, so
does the estimated value of p, and hence the value of cooperation, thus making
the equilibrium condition more stringent.

3.2.2 Universal Cooperation?

Given the previous subsection’s observation that letting α → 1 sharpens the
result, why not view the presence of low-continuation-probability interactions
as a nuisance and simply set α = 1? Doing so allows an equilibrium to creep in
that we view as an artifact of a record that is too sterile.

Suppose α = 1, so there are no low-continuation-probability interactions,
but now let ε ∈ (0, 1), so that monitoring is imperfect. Suppose the players
adopt the strategy of cooperating after every history. Then the data will give
the estimate p = 1, since every clean history leads to cooperation, and will
provide no means of estimating q, the probability of cooperation after a dirty
history. Suppose the players then take q = 0. In this case, player i’s view of
player j is that j will cooperate as long as i does (so that the history is clean),
and that j will switch to permanent defection whenever i defects (giving a dirty
history). As long as β ≥ k

1+k , we then have an equilibrium that somewhat
magically supports cooperation, regardless of what signals the players receive
and no matter how precise or imperfect the monitoring.

A basic concern with this construction is that it relies too heavily on the
beliefs that p = 1 and q = 0 (or more generally that q is sufficiently small).
Both beliefs are problematic.

The estimate p = 1 depends on the players including in the record only games
identical to their own, a feat we generally regard as impossible. The record
provides no means of estimating q, and so we have arbitrarily set q = 0. We could
just as well have picked other values of q, not all of which support the candidate
equilibrium.6 More conceptually, the vision behind analogy-based equilibria
is that players construct their analogy classes so as to effectively organize the
information they can extract from the record. In keeping with this, we do not
expect players to work with analogy categories for which the record provides no
data. Under this view, the very fact that we must seek insight into q from some
mechanism outside the model is an indication that something in the model is
amiss. We view the reasoning organized around these two analogy classes and
α < 1 as reasonable.

6One route to a firmer foundation for q would be to incorporate trembles into the actions
(cf. footnote 3), so that the record would always include some diry histories. In at least one
natural way of specifying the trembles, in which players assume that it is intended rather than
realized actions that shape behavior, the result would be an estimate of q = 1, disrupting the
equilibrium.
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3.2.3 Universal Defection

It is no surprise, given that we are working with the prisoners’ dilemma, that
there is an equilibrium in the repeated game featuring relentless defection. If
the candidate equilibrium strategies specify defection after every history, then
the record will including only strings of mutual defection of varying length.
Players observing this record will estimate p = 0 (having observed only defection
after clean histories, which in this case are only the null histories) and q = 0
(having observed only defection after all other histories, all of which are dirty).
Defection after every history is then indeed an equilibrium strategy, and would
be no matter what the analogy classes.

3.2.4 Cooperation

We now turn to the existence of nontrivial (i.e., exhibiting at least some cooper-
ation) equilibria. We assume monitoring is imperfect (ε ∈ (0, 1/2)) and players
sometimes find themselves in circumstances that cannot support cooperation
(α < 1).

It is intuitive that we can sustain cooperation only if p > q:

Lemma 2 In any nontrivial equilibrium, p > q.

Proof Rewrite the current payoffs in the bandit problem from pulling the C
arm, the first pull of the D arm, and subsequent pulls of the D arm, as

C : −k + q(1 + k) + z(p− q)(1 + k)

first D : q(1 + k) + z(p− q)(1 + k)

subsequent D : q(1 + k).

No matter what happens, the player receives q(1 + k) in every period. Given
this, we might as well normalize payoffs by subtracting this amount from the
payoff in every period, and view our system as one in which the payoffs from
the various arms are:

C : −k + z(p− q)(1 + k)

first D : z(p− q)(1 + k)

subsequent D : 0.

We can then say that in each period the player has the option of paying a cost
k in order to receive a bonus of z(p− q)(1 + k). In the first period that player
fails to pay the cost, the bonus is paid, but the bonus is never again paid. The
players will pay the fee only if the bonus is positive, which requires p > q.

We now show that we have a nontrivial equilibrium as long as either the
monitoring is sufficiently precise, the high continuation probability is sufficiently
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high, or low-continuation-probability interactions are sufficiently few. In each
case, we require that the temptation to defect, captured by k, not be too large.7

Proposition 1 Let ε ∈ (0, 1) and α ∈ (0, 1).
[1.1] Suppose

k <
βα2

4(1− βα2)
.

Then there exists ε such that for all ε < ε, a nontrivial equilibrium exists.
[1.2] Suppose

k <
α2

4− α2
.

Then there exists β such that for all β > β, a nontrivial equilibrium exists.
[1.3] Suppose

k <
β

1− β
.

Then there exists α such that for all α > α, a nontrivial equilibrium exists.

Appendix 7.1 contains the proof.
The argument proceeds by first showing that a necessary and sufficient con-

dition for the existence of a nontrivial equilibrium is

k

1 + k
≤ βp(p− q).

Notice that if p = 1 andf q = 0, this is equivalent to the criterion (2) found
in the conventional repeated prisoners’ dilemma. The results then follow by
establishing bounds on the values of p and q under the various conditions. In
doing so, we find that a large continuation probability plays two roles. First,
as is typical in repeated games, we need the future to be sufficiently important.
Second, an increase in β can decrease the estimate of q extracted from the
record, making defecting less attractive.

3.2.5 The Value of Cooperation

Proposition 1 ensures the existence of an equilibrium with some cooperation,
but makes no comment as to how much cooperation we can expect and makes
no statement about the payoff implications of that cooperation. There remains
the possibility that cooperation is a fleeting phenomenon with negligible pay-
off implications. Our next proposition establishes conditions under which the
equilibrium payoff approaches 1, the payoff of the grim equilibrium in a game
of perfect monitoring. Appendix 7.2 proves:

7No such restriction on k is required in the standard perfect-monitoring formulation, and
indeed this restriction becomes moot in the limit as both the monitoring technology becomes
arbitrarily precise and low-continuation-probability interactions become arbitrarily rare.
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Proposition 2
[2.1] Suppose β satisfies

β >
k

1 + k
. (9)

Then there exists α < 1 such that for α ∈ (α, 1), there exists a sequence of
equilibria such that, in the limit as ε→ 0, the equilibrium payoff approaches 1,
the payoff of persistent, mutual cooperation.

[2.2] Suppose β satisfies

β >
2k

1 + k
. (10)

Then there exists a sequence of equilibria such that, in the limit as α → 1, the
equilibrium payoff approaches 1, the payoff of persistent, mutual cooperation.

In each case, we require that high continuation probabilities be sufficiently
high, relative to the temptation to defect k. This is expected—without a suffi-
ciently likely future, we cannot get cooperation off the ground. The additional
conditions ensure that this cooperation is persistent rather than transitory.

The key to persistent cooperation is ensuring that the posterior belief that
one’s opponent is clean does not decline too rapidly. The first result ensures this
by requiring that low-continuation-probability interactions be relatively rare and
then examining the limit as the monitoring becomes arbitrarily precise. The
paucity of low-continuation-probability interactions ensures that the estimate
of p drawn from the record is large, in turn ensuring that players think it
unlikely that their opponents have spontaneously switched from clean to dirty.
The precise monitoring ensures that erroneous (posterior-depressing) signals are
unlikely.

This first result requires the probability ε of mistaken signals to be small rel-
ative to 1−α, the probability of low-continuation-probability interactions. This
order of limits brings us back to the reasoning that ensures the grim strategy
is not an equilibrium in a conventional repeated game of private monitoring.
To deter defection, adverse signals must be interpreted as reflecting defection.
In the first period of a conventional repeated game of private monitoring, the
equilibrium hypothesis of grim strategies precludes this, with the players in-
stead interpreting the adverse signal entirely as a whim of the noisy monitoring
technology. Letting α < 1 in our context ensures that players will consider the
possibility that an adverse signal reflects a defection. However, if ε is relatively
large, it will still be considered overwhelmingly likely that the noisy monitoring
technology is at fault. To create the requisite incentives, the monitoring tech-
nology must be relatively precise, captured by the requirement that ε be small
relative to 1− α.

The second condition places no restriction on the precision of the moni-
toring, requiring only that low-continuation-probability interactions players be
relatively few. This result relies on the observation that if low-continuation-
probability interactions are relatively rare, then adverse signals will be inter-
preted as quirks of the noisy monitoring rather than indications of defection.
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This allows the posterior that the opponent is clean to remain high, as needed
for long-lasting cooperation. However, this gives rise to precisely the type of
inference that scuttles cooperation in standard repeated games of private moni-
toring. The argument in the current setting relies on the misspecificaiton in the
players’ models of their interaction to verify the incentives to cooperate are not
disrupted in the process. Example 3.3.1 provides a particularly stark illustration
of the mechanism.

3.3 Examples

We illustrate the results with two examples. The first example illustrates the
forces behind Proposition 2.2 while the second illustrates Proposition 2.1. To
keep the notation uncluttered, we set β = 0 and denote β simply by β.

3.3.1 Example 1: Uninformative Monitoring

One’s initial reaction is that imprecise monitoring must be inimical to coopera-
tion, as it makes it more difficult to detect and punish deviations. However, the
key to supporting cooperation is that players fear their own deviations will be
punished, and this fear in turn is a byproduct of the players’ misspecified, two-
category model of behavior. Imprecise monitoring may then even be helpful, by
making players less likely to suspect opponents have deviated.

To illustrate this, we let ε = 1/2, so that signals carry no information. As
before, each player believes that the opponent cooperates with probability p
after clean histories and probability q after dirty histories, Player i’s strategy is
to cooperate as long as the posterior probability zt of a clean history remains
above a threshold z, and defect when zt < z.

In equilibrium, we will see an initial period in which both players cooperate
(given a high continuation probability). Each player then continues to cooper-
ates, as the posterior probability that the history is still clean continually falls,
until some period T+1, at which point zT+1 dips below the threshold z, and the
players then defect. As a result, the record will consist entirely of interactions
in which the two players initially cooperate, and then simultaneously defect for
the first time, and then continue to defect. The first simultaneous defection
makes the history dirty, and the subsequent defections ensure that the record
never exhibits cooperation after a dirty history. The players’ estimate q of the
probability of cooperation after a dirty history is thus 0.

We first calculate zt. Since i’s model of player j is that in each period of a
clean history, j cooperates with probability p, the probability that the history
is still clean (given no defection by i) upon having arrived at period t is

zt = pt. (11)

Notice that zt falls as t grows—player i believes that in period, j cooperates
with probability p, and so as t increases, the probability that j has not yet
defected declines.
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Next, let us calculate the probability p. In equilibrium, a player who has
drawn a high continuation probability will cooperate in periods 0, . . . , T for
some T , and then defect. We then have

p =
α(1 + β + · · ·+ βT )

α(1 + β + · · ·+ βT+1) + 1− α
=

α(1− βT+1)

α(1− βT+2) + (1− α)(1− β)
. (12)

The numerator calculates the frequency of clean histories after which an player
cooperates.8 The denominator calculates the frequency of all clean histories.

As T grows from 0 to ∞, the value of p grows from α/(1 + βα) to α/(1 −
β + βα). The latter value approaches 1 as either α (because then there are no
low-continuation-probability interactions, which are the only ones exhibiting de-
fection after healthy histories when T =∞) or β (because the low-continuation-
probability defections are then swamped) approaches 1.

Our task is to find T such that the induced values of zT ≥ z ≥ zT+1 and p
satisfy the incentive constraints. The incentive constraints for these periods will
ensure the incentive constraints hold in other periods. The value of cooperation
in period T is zT [p(1 + βp(1 + k)) + (1− p)(−k)] + (1− zT )(−k). The value of
defecting in period T is (1+k)zT p. Subtracting the second from the first, player
i prefers to cooperate if zT [p(−k+βp(1 +k)) + (1−p)(−k)] + (1− zT )(−k) ≥ 0,
or

zT ≥
k

(1 + k)βp2
.

The equilibrium condition is then

zT ≥
k

(1 + k)βp2
≥ zT+1. (13)

We can use (11) and rearrange to obtain

(p(T ))T+2 ≥ k

(1 + k)β
≥ (p(T ))T+3.

We clearly have (p(T ))T+2 > (p(T ))T+3. Both functions initially increase in T
and then decline to zero as T → ∞. As long as k is not too large and β not
too small, there will exist a value T satisfying (13) and hence an equilibrium in
which cooperation persists for the first T periods.

One might wonder whether, as the continuation probability β approaches
one, this initial cooperation fades into insignificance, with payoffs approaching
zero (βT → 1), or whether are payoffs bounded away from zero (βT < 1)? The
latter is the case.9

8Cooperation requires that a high continuation probability, giving us the initial α. Then,
with probability 1 we get a period-0 history added to our list, with probability β we also
get a period-1 history added to the list, with probability β2 we get a period-2 history, and
so on, through probability βT that we get a period-T history. After that, there is no more
cooperation.

9To see this, we first note that

pT ≈
k

1 + k
(14)
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Now consider what happens as α → 1, as in Proposition 2.2. It remains
the case that for fixed α, we have limT→∞(p(T ))T+2 = 0, but also the case
that for large T , we have limα→1(p(T ))T+2 = 1. Hence, as α approaches 1,
as long as k/(1 + k)β < 1, the equilibrium value of T will grow arbitrarily
large. The equilibrium payoff will thus approach the payoff of permanent mutual
cooperation, as in Proposition 2.2.

Two conditions are required in order for cooperation to last indefinitely
(relative to the expected length of the interaction). First, player i must persist
in the belief that player j is sufficiently likely to cooperate (as long as i does).
This is ensured by the assumption that α is close to one, so that the value of p
estimated from the record is close to one. Second, player i must believe that a
defection will trigger a punishment. Literally speaking, this cannot be the case.
Player j observes nothing about i’s behavior, and so i’s defection cannot affect
j’s future play. However, the record contains many cases in which defections
are followed by punishments, and i’s coarse modeling of the record interprets
these correlations as causations. In effect, the misspecified model of behavior
that i has extracted from the record supplies the requisite fear of punishment.

A situation of absolutely no monitoring is clearly an extreme one, and we
do not offer this as a realistic model of cooperation. However, it helps isolate
the link between the coarse inferences drawn from the record and equilibrium
behavior. These forces persist in settings with more informative modeling, as
in Proposition 2.2, where we view them as reasonable.

3.3.2 Example 2: Informative Monitoring

Now consider the informative case in which ε ∈ (0, 1). We can calculate the
posterior probability (denoted by φ(z, c)) that the history is clean, given that i
has hitherto always cooperated, that i has a prior probability z that the history

as β gets close to 1. To verify this, note that it suffices for (14) that p converges to one. But
if p does not converge to one, then (13) ensures that T would remain bounded, and which
point (12) ensures that p converges to one, leading to a contradiction. We can thus use (14)
to write

p ≈ 1−
y

T
(15)

where e−y = k
1+k

. Rewrite (12) as

p = 1−
αβT+1 + 1− α

α(1− βT+2) + (1− α)(1− β)
(1− β) (16)

and postulate that β ≈ 1− x
T

+ o( 1
T

), implying that βT → e−x as β converges to 1. We then
have that

αβT+1 + 1− α
α(1− βT+2) + (1− α)(1− β)

(1− β) ≈
αe−x + 1− α
α(1− e−x)

x

T
(+o(

1

T
)).

Inserting into (16) and identifying the 1/T terms in (15) and (16), we have

αe−x + 1− α
α(1− e−x)

x = − ln
k

1 + k
.

This gives us a positive value of x, with e−x < 1 being the limit of βT .
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is clean, and that i observes a c signal, which is given by (6). Two forces appear
in forming this posterior belief. First, a c signal is an indication that it is likely
the history is clean, and so tends to push the posterior upward. However, there
is always the 1−p probability that a player defects at a clean history and hence
turns dirty, and this pushes the posterior downward. When the prior z is very
large, we expect the second force to dominate, as the good signal carries almost
no information, and so the primary forces is that even clean histories have a
constant hazard of turning dirty. When z is relatively small, the c signal is
more informative, and so we expect the first force to dominate. This suggests
that we can find a fixed point z∗ as the value of z that solves

z =
zp(1− ε)

zp(1− ε) + z(1− p)ε+ (1− z)[q(1− ε) + (1− q)ε]
.

We can solve for (using the presumption that p > q, so that this makes sense)

z∗ =
p(1− ε)− [q − 2qε+ ε]

(p− q)(1− 2ε)
.

The expression given in (6) is increasing in the prior z. In equilibrium, i’s
posterior belief that the history is clean starts at 1, and then drifts downward
toward z∗ as long as i observes a constant stream of c signals. In general,
c signals push i posterior either downward toward z∗ from above, or upward
toward z∗ from below.

The posterior probability (denoted by φ(z, d)) that the the history is dirty,
given that i has hitherto always cooperated, and that i has a prior probability
z that the history is clean and i observes a d signal, is given by (7). One
can check that this posterior is always less than z—it is always bad news to
observe a d signal. As ε approaches 0, this posterior also approaches 0—when
monitoring is arbitrarily close to perfect, a d signal makes it arbitrarily likely
that the opponent has defected and hence the history is dirty.

A pure strategy for player i is a function that maps from the collection
of finite strings of c and d signals into the set of actions {C,D}. We can
immediately add the restriction that if any string maps to D, then so does
every continuation of that string. Once player i defects, i takes it for granted
that the history is dirty, hence j’s behavior is thereafter impervious to any
actions of i, ensuring that i finds it optimal to thereafter defect.

We first argue that we can find values of our parameters such that it is
an equilibrium for player i to cooperate after any sequence containing only c
signals, and to defect upon observing the first d signal, giving us an equilibrium
corresponding to Proposition 2.1. The path of equilibrium play is then that
each player begins by assigning probability 1 to the history being clean, and
by cooperating. The string of mutual cooperation continues, with the posterior
that the history is clean drifting downward toward z∗, until the first d signal
appears. The player receiving the d signal than attaches probability at most z−

to the event that the history is clean, and thereafter defects.
The posterior that the history is clean, following a d signal, is higher when

the prior probability of being clean is higher (this requires p > q, which we will
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verify), and hence we can give an upper bound on this posterior by looking at
the update when the prior is 1:

z− ≤ pε

pε+ (1− p)(1− ε)
.

We have a bound on q, given by

q ≤ ε/2.

To see this, consider a dirty history in which just one player (say j) has defected.
Then in the next period j defects with probability 1 and i cooperates with
probability ε (the probability that i has seen a c signal in the most recent
period, despite j’s defection), giving a probability of cooperation of ε/2. The
value of q is less than this, since the record also contains dirty histories in which
both players are dirty, and hence both defect in the next period with probability
1.

We can calculate p, obtaining:10

p =
α+ α(1− ε)

∑∞
n=1 β

n(1− ε)2(n−1)

α+
∑∞
n=1 β

n(1− ε)2(n−1)

Calculating that

∞∑
n=1

βn(1− ε)2(n−1) =
β

(1− ε)2
∞∑
n=1

βn(1− ε)2n =
β

(1− ε)2
1

1− β(1− ε)2
,

we can insert this to obtain

p =
α+ α(1− ε) β

(1−ε)2
1

1−β(1−ε)2

α+ β
(1−ε)2

1
1−β(1−ε)2

= α
(1− ε)2(1− β(1− ε)2) + (1− ε)β

(1− ε)2(1− β(1− ε)2) + αβ
.

10The following table gives the relative frequencies with which clean histories of various
lengths appear in the record, and the probability of cooperation after histories of such length:

Length Frequency Probability
of History of Cooperation

0 1 α
1 αβ (1− ε)
2 αβ2(1− ε)2 (1− ε)
3 αβ3(1− ε)4 (1− ε)
4 αβ4(1− ε)6 (1− ε)
5 αβ5(1− ε)8 (1− ε)

...

To see obtain the first term, we note that with probability one, every game contributes a null
history to the record, which is clean, and players cooperate after this history if they have a
high continuation probability, which occurs with probability α. For the second term, note that
with probability αβ, a game also contributes a 1-period history to the record, which is clean.
After this history, each player cooperates with probability 1− ε, which is the probability they
received a c signal in the previous period. Then, with probability αβ2(1 − ε)2, a game also
contributes a clean 2-period history to the record, with the additional β term reflecting the
fact that the game must have reached another period, and the (1−ε)2 capturing the fact that
both players must have cooperated in the previous period in order for the history to be clean.
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The key characteristic we will use is that p goes to α
1−β+αβ as ε goes to zero.

Hence, as long as ε < 1/2 is sufficiently small, we have p > q, as needed. In
addition, this gives

lim
ε→0

z∗ = 1.

We can also calculate
lim
ε→0

z− = 0.

This calculation reflects the fact that we have fixed α, which in turn ensures
that p < 1, while letting ε approach zero. As ε→ 0, a d signal is overwhelmingly
likely to have come from a defection. This alone is not enough to ensure that
z− approaches zero, because (if p approaches 1) defections may themselves be
yet more overwhelmingly unlikely. However, p is approaching α

1−β+αβ , ensuring

that a d signal is interpreted as a defection, and hence that z− is arbitrarily
small.

We know from Lemma 1 that there is a cutoff belief z such that player i
cooperates for higher beliefs and defects for lower beliefs. We then need to show
that z− < z < z∗.

Let V (z) be the value for a player who has hitherto not defected and observed
no d signals, believes the history to be clean with probability z (≥ z∗), and who
cooperates in the current period. Then we have

V (z) = (1− β)[(zp+ (1− z)q) + (1− (zp+ (1− z)q))(−k)]

+ β[zp(1− ε) + z(1− p)ε+ (1− z)q(1− ε) + (1− z)(1− q)ε]V (φ(z, c))

+ β[1− (zp(1− ε) + z(1− p)ε+ (1− z)q(1− ε) + (1− z)(1− q)ε)]W (φ(z, d)),

recalling φ(z, c) is the posterior that the history is clean following prior z and sig-
nal c. The first line is the current-period payoff, the second line is the discounted
value of the probability of a c signal times the continuation payoff V (φ(z, c))
in the event of such a signal, and the third line is the discounted probability of
a d signal times the continuation payoff q(1 + k) in the event of such a signal.
This value is decreasing in z, and obtains its infimum in the limiting case of
z = z∗ = φ(z∗, c). Letting V ∗ denote this value, it is the solution to

V ∗ = (1− β)[(z∗p+ (1− z∗)q) + (1− (z∗p+ (1− z∗)q))(−k)]

+ β[z∗p(1− ε) + z∗(1− p)ε+ (1− z∗)q(1− ε) + (1− z∗)(1− q)ε]V ∗

+ β[1− (z∗p(1− ε) + z∗(1− p)ε+ (1− z∗)q(1− ε) + (1− z∗)(1− q)ε)]W (φ(z∗, d)).

From (8), we have

W (z) = (1− β)z(p− q)(1 + k) + q(1 + k).

The incentive constraints for equilibrium are

V (z∗) ≥ W (z∗)

V (z−) ≤ W (z−).
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To check these conditions, we first note that as ε gets small, we have z∗ → 1,
z− → 0, and q → 0, and hence we have limiting values forW (φ(z, d)) andW (z−)
of 0. This in turn ensures that V (z−) = (1−β)(−k), giving the second incentive
constraint—players will prefer to defect when the strategies call for them to do
so. We can also solve for

V (z∗) = p+ (1− p)(−k).

The first incentive constraint, given by p+ (1− p)(−k) ≥ (1− β)p(1 + k), then
becomes

βp ≥ k

1 + k
,

which, using our limiting expression for p, becomes

αβ

1− β + αβ
≥ k

1 + k
.

If we were to now let α approach one, then we would recover the limit β ≥ k
1+k

from the traditional repeated game of perfect monitoring. This gives us an
equilibrium of the type described in Proposition 2.1, with a value approaching
one, the value of permanent cooperation.

Much more briefly, we note that we could alternatively keep ε fixed, so
that monitoring is inherently noisy. We would then have equilibrium strategies
exhibiting cooperation as long as the probability the history is clean remains
above a cutoff z, with the first d signal no longer necessarily prompting defection.
If any of the conditions of Proposition 1 are met, we will have z < 1 and
hence the equilibrium will exhibit at least some cooperation. If α approaches 1
(now with ε fixed), the value of this cooperation will again approach one, as in
Proposition 2.2.

4 What Difference Does an Analogy Make?

The players’ analogy classes reflect their model of their strategic interaction
and shapes their behavior. This section explores the implications of different
analogy classes. To keep things simple, we continue to let β = 0 and to denote

β simply as β.
Equilibrium cooperation rests on three pillars. First, player i must believe

that at least under the right circumstances, player j will cooperate. Second,
player i must believe that if i defects, then j will be more likely to defect. Third,
the difference in j’s behavior must be large enough to make it worthwhile for i
to forsake the immediate payoff gains from defection.

These conditions clarify why the grim strategy is not an equilibrium in a
conventional repeated game of private monitoring—condition two fails in the
first period. The basic difficulty is that it is difficult to ensure both conditions
one and two. Suppose player j receives a d signal in the first period. Under the
equilibrium hypothesis, j’s interpretation is that i cooperated and the signal is
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erroneous. Given this, j will continue to cooperate, recognizing (in keeping with
condition one) that doing so makes it more likely that i receives good signals and
continues to cooperate. However, condition two then fails for i, as i now does
not fear that a first-period defection will make it more likely that her opponent
defects.

In our setting, player i’s model of the interaction, captured in her analogy
classes, is that all interactions start clean, giving rise to the prospect of coop-
eration and hence the first condition. In addition, i believes that a defection
renders the history dirty, and hence defection more likely, giving the second
condition. Finally, the proofs of Propositions 1 and 2 involve showing that the
difference p− q in the probability of defection after clean and dirty histories is
sufficiently large, giving the third condition.

Player i’s assessment of the adverse consequences of a defection reflect the
misspecification inherent in i’s analogy classes. Player j cannot observe i”s ac-
tion, and indeed the monitoring may be sufficiently noisy (as allowed in Proposi-
tion 2.2) that j receives virtually no information about i. If i formed a separate
estimate of j’s behavior for every possible history, i would find some histories
where a defection would be relatively innocuous, as in the first period of a
conventional repeated game of private monitoring. Instead, i averages many
histories together into a single estimate of the effects of a defection, obtaining
an average effect large enough to support cooperation.

In the next two subsections, we have in mind that the record of past play
does not contain (or the players do not exploit) information about the exact
timing at which the previous actions were chosen, as is the case with the clean-
and-dirty two-category case we have been examining. This makes it impossible
to condition the categorization of histories on how the actions of the two players
compared in the same period. In the third subsection, we briefly suggest how a
simple categorization based on the profile of actions could help coordination in
some cases.

4.1 Proportions of Defection

Suppose players classify histories into two categories, with the dirty category
being that more than θ proportion of the actions in the history have been
defections, and the clean category being those with fewer than θ proportion
of defections. This might be appropriate for a case in which the record does
not contain detailed information on individual actions, perhaps instead simply
giving an indication of whether an industry or group of countries is currently in
a cooperative or contentious phase of their relationship. We can view our first
analysis as corresponding to the case in which θ = 0.

We ask here whether, for a fixed continuation probability β, in the limits as
α → 1 and ε → 0, we can support an equilibrium in which players cooperate
until receiving their first d signal. If so, we have an equilibrium of the type
described in Proposition 2.1 and Section 3.3.2.

Let us accordingly fix the (high) continuation probability β and assume
that players in high-continuation-probability interactions cooperate until re-
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ceived their first d signal, and defect thereafter. As ε becomes small, the typical
experience in a high-continuation-probability interaction is that both players
cooperate until one player (say) i receives an errant d signal, with i then de-
fecting in the next period, causing j to receive a d signal, after which i and j
both continually defect. The first dirty history that appears in this sequence
arises after j’s defection, and both players thereafter defect. As a result, the
estimated probability q of cooperation at a dirty history will converge to zero.

A similar argument shows that p will converge to one: As α converges to
one, low-continuation-probability interactions, in which the (clean) null history
is followed by defection, become arbitrarily rare. As ε converges to zero, d sig-
nals and hence defections after clean histories in high-continuation-probability
interactions also become rare, ensuring that p approaches one.

It is then straightforward to see that the proposed behavior will not consti-
tute an equilibrium. Fix a candidate value θ and let α be sufficiently large and
ε sufficiently small that 1 − p < θ. Then for sufficiently large t, a player who
has invariably played C and has seen all c signals (or has not seen too many d
signals) can invoke a law-of-large-numbers argument to conclude that with very
high probability, the proportion of defections in the history falls enough short
of θ that another defection engenders virtually no risk of rendering the history
dirty. This destroys the incentive to play C, disrupting the equilibrium. We
believe that the same argument precludes the existence of any equilibrium with
almost permanent cooperation, even when α gets close to 1 and ε gets close to
0.

By contrast, our two-category equilibrium avoids this difficulty by working
in the extreme case of θ = 0, ensuring that player i always fears that a single
defection will render the history dirty. Again, if analogical thinking is to support
cooperation, it is important that it fulfill the second condition that a defection
is sufficiently likely to cause the history to switch categories. As the next setting
illustrates, this switch must then have a sufficient effect on estimated behavior.

4.2 Three Analogy Classes

In our examination of two analogy classes, player i assumes that a defection
renders the history dirty and instantly induces a jump in the probability that j
defects, even though this cannot literally be the case. We examine here a three-
category alternative that mutes this tension. One might reasonably argue that
the movement to three categories gives players a more faithful representation of
their interaction. However, we find that it can make cooperation more difficult
to sustain, with the primary affect appearing in the estimate of the counterpart
of q, the probability of cooperating after a dirty history.

A history for player i is deemed healthy if there has been no past defection
by either player. A history for player i is infected if the player has defected
at least once in the history. A history for player i is exposed if player i has
cooperated throughout, but player j has defected at least once.

To illustrate, suppose the record contains the four-period observation in-
troduced in Section 2.3. As before we have four cases in the record, given by
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(4), with the attendant histories given by (5). The three cases in the three
leftmost columns give rise to six histories, one per player per case, all of which
are healthy. Five of these histories are followed by cooperation, and so the
probability of cooperation after a healthy history is thus taken to be 5/6. The
final case gives rise to two histories. The attendant player-1 history is exposed
and exhibits cooperation, leading to the probability of cooperation of 1. The
player-2 history is infected and exhibits defection, leading to a the probability
of cooperation 0.

Player i’s model of player j is that j is initially healthy, and then is either
healthy (in which case j cooperates with probability p), exposed (in which case
j cooperates with probability q), or infected (in which case j cooperates with
probability r). As long as i continues to cooperate, i will view j as being either
healthy or infected, and will update the probability i attached to the event that
j is healthy in light of the signals i receives. Once i defects, player i now views
player j as being either exposed or infected, and will update the probability i
attaches to the even that j is exposed in light of the signals i receives.

The candidate equilibrium strategies are that each player begins by cooper-
ating, and continues to do so as long as they think it sufficiently likely that their
opponents are cooperating. However, the probability that player i attaches to j
being healthy will fall over time, reducing the probability that j is cooperating,
until i switches to thereafter defecting. At this point, i is infected. Player j is
either exposed or infected, and will at some point switch to being infected.

A helpful first observation is that being infected is an absorbing state—once
player i defects, then player i will thereafter defect, no matter what signals i
receives. Player i’s model of player j is such that once i is infected, i’s actions
have no effect on j’s transition from exposed to infected. Instead, player imodels
j as making the transition to infected the first time j’s draw of an action comes
up with the probability 1 − q action D. Hence, once i defects, no subsequent
signals or beliefs will cause i to cooperate. This in turn allows us to conclude
that r = 0.

Once again we can formulate player i’s maximization problem as a restless
bandit problem. with details in Appeindix 7.3. We can then show that we
have a nontrivial equilibrium as long as players are sufficiently patient and the
monitoring is sufficiently precise. Appendix 7.3 proves:

Proposition 3 Suppose

β >
4k

α2(1 + k)
. (17)

The there exists ε such that for all ε < ε, a nontrivial equilibrium exists.

The argument behind this result first shows that a necessary and sufficient
condition for the existence of a nontrivial equilibrium is

pβ(p− q)
1− qβ

≥ k

1 + k
. (18)

The values of p and q are endogenous, and so the next step is to place some
bounds on their values. It is not surprising that we need the monitoring to be
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sufficiently informative, with the bound ε becoming less stringent the higher
is the continuation probability. The important relationship here is that q ap-
proaches zero as does ε. We then argue that α/2 is a lower bound on p. Inserting
this bound in (18) and letting ε and hence q approach zero, we obtain (17).

Proposition 3 ensures the existence of an equilibrium with some cooperation,
but makes no comment as to how much cooperation we can expect and makes
no statement about the payoff implications of that cooperation. Now we fix the
continuation probability β and show that, as the monitoring structure becomes
increasingly precise and the proportion of impatient players shrinks, then the
there exists an equilibrium with payoff approaching 1, the payoff of the grim
equilibrium in a game of perfect monitoring.

Proposition 4 Fix β ≥ k
1+k . Then there exists a sequence of equilibria such

that, in the limit as first ε → 0 and then α → 1, the equilibrium payoff ap-
proaches 1, the payoff of persistent mutual cooperation.

The bound β ≥ k
1+k on the continuation probaibility is precisely the bound

for the grim strategy to be an equilibrium in the standard repeated game of
perfect monitoring. The argument, which follows that of Proposition 2 and is
hence omitted, proceeds by stablishing the sufficient condition that, for small ε
and large α, we have

p(1− ε)− ε
p(1− ε) + (1− p)ε− ε

≥ k

1 + k

1− qβ
βp(p− q)

We then show that as ε goes to zero so does q, and then as α goes to 1 so does
p, reducing this condition to β ≥ k

1+k . It is expected that we need ε to be
small and α to be large. If ε is small, then the noisy monitoring technology will
sometimes provide seemingly convincing evidence that an opponent is infected,
even if this is not the case. If incentives are to be preserved, these signals
must draw punishment, and the fixed continuation probability ensures that
these punishments are costly. If α is not close to 1, then each player believes
the opponent is subject to the constant hazard of infection, again precluding
universal cooperation.

We can examine the forces behind the differences in the two-category and
three-category case. First, as is familiar from thinking about repeated games,
one step toward constructing an equilibrium is to make the punishment payoff
small. In the two-category case, the relevant punishment payoff is

q(1 + k),

while in the three-category case it is

q(1 + k)
1− β
1− qβ

.

It is immediate that (1−β)/(1−qβ) < 1, and so the punishment payoff seems less
attractive under three categories. This is intuitive. Under two categories, the
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punishment consists of receiving q(1 + k) forever, while under three categories,
q(1 + k) is received only temporarily, until the opponent switches from exposed
to infected. In light of this, it is initially counterintuitive that, as the results
indicate, cooperation is more difficult to achieve with three categories, where
Proposition 3 requires ε small while Proposition 1 does not, and Proposition 4
requires an order of limits while Proposition 2 does not.

The resolution is that the comparison above holds q fixed, while in fact the
two-category system gives a smaller estimate of q than does three categories.
The two-category case allows us to identify cases in which q = 0 while three
categories typically give q > 0, possibly much larger. The difference arises
because with three categories, the estimate of the probability q is taken from
the set of exposed histories, which quite often lead to cooperation, with the first
defection converting the history to infected. With two categories, in contrast,
the set of histories from which q is estimated includes (among others) every
history in which both players have defected, contributing many instances of
defection to the frequency calculations. It is then no surprise that the estimated
value of q is smaller under two categories.

4.3 Simultaneous Defection

Suppose the players adopt two analogy classes, one involving histories in which
there has never been a simultaneous defection, and one involving histories in
which there has been a simultaneous defection. The former are clean and the
latter dirty, with p and q being the respective probabilities of cooperation. Let
the players employ the strategy of cooperating as long as the probability z of
the history being clean is sufficiently high. To isolate the key considerations, we
examine the extreme case in which signals are uninformative (ε = 1/2).

We identify conditions under which equilibrium play in high-continuation-
probability interactions exhibits permanent cooperation. If this is the case, then
we will have q = 0, since dirty histories then occur only in low-continuation-
probability interactions, which exhibit only defection. Because players in low-
continuation-probability interactions defect after the (clean) null history, we will
have p < 1.

Let z be the probability that the history is clean. As long as player i cooper-
ates, there is no chance for the history to change to dirty, and so if cooperation
is optimal at belief z, is is optimal thereafter. We can then calculate that the
value of doing so is

z(p+ (1− p)(−k)) + (1− z)k,

obtained by noting that the opponent cooperates (for payoff 1) with probability
zp and otherwise defects (for payoff −k). If player i defects, then the history
is clean in the next period with probability zp (the probability that it is clean
now and j cooperates). If is optimal to defect at belief z, it will be optimal to
defect thereafter, as the probability of a clean history continually falls, allowing
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us to calculate a payoff of

(1− β)(zp(1 + k) + βzp2(1 + k) + β2zp3(1 + k) + . . .) =
(1− β)zp(1 + k)

1− βp
.

The condition for cooperation is then

z(p+ (1− p)(−k)) + (1− z)k ≥ (1− β)zp(1 + k)

1− βp
.

As expected, this condition will fail for an interval of values of z of the form [0, z],
confirming that players will not cooperate if the history is not sufficiently likely
to be clean. The inequality will hold for large z, which suffices for an equilibrium
exhibiting perpetual cooperation, if k is sufficiently small. However, the upper
bound on k shrinks to zero as α and hence p approaches 1.

In this setting, it is impossible for the history to switch from clean to dirty if
player i cooperates, with the incentive to cooperate provided by the possibility
that the history will switch to dirty if i defects. In our previous analysis, a
defection on i’s part ensured that the history would switch to dirty, but here
this switch occurs only if j also defects. As the proportion of low-continuation-
probability interactions shrinks and hence p approaches one, the probability
of such a double defection shrinks to zero, causing the incentive to cooper-
ate to shrink disappear along with it. As before, the incentive to cooperate
arises out of a misperception, since the putative equilibrium calls for players in
high-continuation-probability interactions to invariably cooperate, while player
i estimates that such players cooperate only with probability p < 1. Unlike
the previous case, the misperception here depends upon there being many low-
continuation-probability interactions, and hence dissipates as such interactions
become rare. However, when cooperation is possible, we note that permanent
cooperation can be achieved even as the monitoring technology is not very pre-
cise (as ε away from 0 is allowed).

5 Discussion

5.1 Which Analogies?

We have identified conditions under which the analogues of familiar Nash re-
version strategies support cooperation in repeated games of private monitoring.
Our model of players’ behavior is conventional, except that we ask that equilib-
rium beliefs be grounded in the empirical frequencies in a record of past plays of
the game, rather than being drawn out of thin air. Much the same reasoning mo-
tivates the notion of self-confirming equilibrium (Fudenberg and Levine [6, 7]).
Applications of self-confirming equilibria are often concerned with the fact that
the record of play may place no discipline on beliefs at out-of-equilibrium his-
tories. In contrast, we emphasize the idea that players will organize histories
into analogy classes in such a way that they have data to estimate all of the
probabilities they need, while recognizing that this is possible only with a coarse

26



categorization that lumps some histories together and inevitably leads to some
misspecification.

This misspecification plays a central role in supporting cooperation in the
simple settings we have examined. A player observes in the record that once a
defection appears, the probability of cooperation falls, and captures this in the
estimate that dirty histories give rise to lower probabilities of cooperation than
do clean histories. In doing so, player i misses some details of how subsequent
play depends on which player first defecting, leading i to interpret the correlation
between dirty histories and attenuated cooperation as in indication that should
i defect, the probability that j will cooperate deteriorates, regardless of the
monitoring structure. Our setting is sufficiently stark that one might expect
players to correct such misspecification. However, misspecification will be less
obvious amid the complications of an actual interaction, and is inevitable as
long as one deals with a finite record.

These observations naturally direct attention to the question of how analogy
classes are determined. One approach would be to assume that the players con-
struct the analogy classes themselves, perhaps to the point that this construction
becomes part of the strategic interaction. However, we find it somewhat coun-
terintuitive to think of players as optimally choosing a model and the proceeding
as if unaware of the misspecification inherent in that model. We are accordingly
more inclined to think that the classes are constructed outside the relationship,
perhaps unknowingly, often in the form of conventions governing the sorts of
information that are readily available in the record.

When taking this view, one might naturally think that a more detailed record
is better, and it is better for the players to work with more categories. However,
we have already seen that refining the categories need not facilitate cooperation.
The intuition that more precise monitoring facilitates cooperation arises out
of the fact that more precise monitoring makes it easier to detect opponent
deviations. In contrast, coarse analogy classes may facilitate cooperation by
obscuring situations in which deviations will not prompt responses form others.
In this sense, at least partial ignorance may indeed be bliss.

5.2 Beyond the Prisoners’ Dilemma

We have exploited the particular structure of the prisoners’ dilemma, but we
believe the analysis applies much more generally. The key is that just as the
players are likely to assess the record by organizing histories into analogy classes,
so are they likely to think of the game itself in terms of analogy classes.

Let us fix a stage game, perhaps capturing the interactions of a pair of
Cournot duopolists. Let D denote an action corresponding to a Nash equilib-
rium of the stage game, and let C denote the collusive action. Let c be a signal
interpreted as reflecting the play of C, and let d be a signal interpreted as “not
cooperating.” Then we can perform much the same analysis as before.

Unlike the prisoners’ dilemma, D is no longer a stage-game best response
to C, and so deviations from C need not necessarily induce the same signal
distribution as does playing D. However, we need only that profitable deviations
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from C push the signal distribution in the same direction as does the action D.
In such a case, we view it as plausible that players might organize the actions of
others into the categories of cooperating and not cooperating. Indeed, players
may have only an imperfect understanding of the actions available to their
opponents and the implications of these actions, and may find it impossible to
form a more precise understanding of their opponent. As a result, players may
form a fairly precise view of what it means to cooperate, and keep track of that
rather finely, but may be less discriminating once the opponent has fallen into
the not-cooperating category.

5.3 Simplicity in Context

Even in repeated ganes of perfect monitoring, there is an intuition that some
equilibrium strategy profiles are more plausible than others. A commonly voiced
sentiment is that simple strategies are more plausible than more complicated
ones, and especially that simple punishments are more plausible than more
complex punishments. One sees this view reflected in applied work, where Nash
revision is the most commonly-invoked punishment. In some cases, the appeal
to Nash reversion may reflect only a desire to keep the theoretical and com-
putation analysis manageable. However, Nash reversion has an appeal beyond
tractability, often supported by arguments that “it’s unreasonable to think that
firms cooperate in punishing for not cooperating.”

The early literature, inspired by Rubinstein [18], tried to make this intuition
precise by introducing measures of strategic complexity and objectives that
balanced complexity with payoffs in the repeated game. The complexity mea-
sures were often expressed in terms of the ability to express a strategy in terms
of an automaton or similar device, and the analysis showed that even lexico-
graphically inferior concerns for complexity could have important implications.
This literature foundered on two difficulties. There quickly appearedd a host of
simplicity definitions, with different implications. In addition, one readily en-
countered the seeming paradox that cooperation is sustained by a punishment,
but if this is successful, then the punishment is never used, at which point the
punishment capability will be discarded on simplicity grounds, at which point
the cooperation cannot be sustained.

Our approach leads to an alternative notion of simplicity, based on the anal-
ogy classes used by the players in interpreting the record. We have simplified
our presentation by giving players an arbitrarily rich record, but in practice
players are likely to be forced into simple strategies by a limited record, ensur-
ing that they can obtain useful estimates of only a small number of probabilities.
Moreover, the need to sustain punishment capabilities arises naturally in our
setting.

The initial approaches to strategic complexity examined games in isolation,
with the complexity of a strategy assessed in the context of the single game in
which it was applied. In contrast, we suspect that people maintain a suite of
strategies that are applied to various games as needed, as in Samuelson [19]. This
is reflected in our analysis in the fact that games are drawn to have either high or
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low continuation probabilities. It is then important for strategies to be capable
of “Nash reversion,” as this is the only equilibrium in some interactions, and
Nash reversion then plays a natural role as a punishment in other interactions.

6 The Foundations of Cooperation?

The initial results in the study of repeated games were influential not only for
showing that cooperative payoffs can be supported, but for exposing the intuitive
mechanism behind this cooperation, namely that deviations from cooperation in
a current period lead to payoff-lowering punishments in future periods. This link
between the structure of the equilibrium and intuition about how cooperation
is supported breaks down in games of private monitoring, where the various
versions of belief-free equilibria are wonderfully elegant but devoid of any notion
that a person refrains from defecting today in order to avoid triggering a shift to
lower payoffs tomorrow. The approach introduced in this paper is an attempt
to recover this link. Does this approach provide insight into cooperation in
repeated interactions?

The most striking feature of our equilibria is that they in general feature
only temporary cooperation, until the posterior belief about the opponent dips
below the threshold z.11 This contrasts with an emphasis in the literature
on models of permanent cooperation. Should a “foundation of cooperation” for
games of private monitoring command our interest that supports only temporary
cooperation?

Much of the motivation for studying repeated games comes from thinking
about collusion in oligopolies. Marshall and Marx and [14] provide a compre-
hensive discussion of collusion, drawing on theoretical sources and case studies.
Their work suggests that neither a standard model of a repeated game nor the
approach outlined here is relevant.

Marshall and Marx emphasize that two features of collusive arrangements
are endemic. First, monitoring is noisy and private. Realized quantities never
precisely match their target levels, firms have only imperfect information about
their rivals’ quantities, and firms have no way of ascertaining how well their
own actions are tracked by others, or whether the seemingly anomalies quanti-
ties of others reflect deliberate actions or the capriciousness of the market. As
a result, Marx and Matthews stress that collusion can be sustained only if the
firms introduce some explicit means (in the form of an industry trade associa-
tion, common accounting firm, or some similar arrangement) of collecting and
disseminating information, allowing communication, and coordinating redress
for anomalous outcomes. In effect, their message is that oligopolies support
persistent cooperation only if they convert the game of private monitoring into
a game of public monitoring.

11Based on Section 4.3, we suspect that this will necessarily be the case whenever the precise
timing of past actions is not accessible in the record (thereby not allowing the categorization
to depend on the precise details of the profile of actions).
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Porter [17] and Ulen [21, 22] provide a detailed case study of the Joint Execu-
tive Committee, the governing body of a railroad cartel operating in the 1880s.
The cartel operated without hindrance from the Interstate Commerce Com-
mission (founded in 1887) and antitrust legislation (originating in the Sherman
Antritrust Act of 1890). The Joint Executive Committee published weekly ship-
ping statistics, verified by station agents and employees of the Chicago Board
of Trade, hired a prominently-staffed Board of Arbitrators to settle disputes,
and assigned punishments in response to cheating on agreements. Once again,
successful collusion hinged on public monitoring. Levenstein and Suslow [13]
and Harrington and Skrzypacz [10, 11] stress the importance cartels place on
disseminating public sales information to their members, perhaps through the
creation of joint sales agencies or trade associations. In contrast to the case
of the Joint Executive Committee, this coordination can be hampered by the
specter of illegality.

A second approach to cooperation is exemplified by the work of Elinor Os-
trum (e.g., [15]; see also Ellickson [3]) on managing common resources. There
are no legal obstacles to cooperation in these cases, though there are typically
many more people involved than in an oligopoly. Ostrum again emphasizes the
importance of continual communication and the creation of informal or infor-
mal mechanisms to monitor behavior and impose sanctions when needed. The
arrangements often involve explicit agreements as to how the participants are
to monitor and verify other’s behavior. Blomquist, Schlager, Tang and Os-
trum [2] reinforce the importance of monitoring. They search for the features
that are common to a large number of cases in which cooperation has been sus-
tained in the use of common-pool resources, such as fisheries, irrigation systems,
groundwater systems, and forests. These common features include organized
procedures for monitoring actions, making deviations known, and assessing and
enforcing sanctions. These monitoring arrangements were often backed by for-
mal institutions. In essence, actions become public.

Our interpretation of this literature is that one cannot typically expect to
sustain cooperation permanently without converting private monitoring into
public monitoring.12 We view our model as applying to cases in which monitor-
ing is inherently private, communication is unreliable or communication alone
is ineffective in supporting cooperation. Here, we are not surprised that pun-
ishments may eventually get triggered and then will be permanent. Relations
between countries, where institutions to provide monitoring are sparse, are one

12Aoyagi, Bhaskar and Frechette [1] report experimental results for the repeated prisoners’
dilemma with private monitoring. Two of the three most popular strategies (consisting of
always-defect and a lenient version of Nash reversion, and together comprising 56% of all
strategies) necessarily eventually always defect, and this is one possibility for the second most
popular strategy (which they refer to as Sum2). This is qualitatively consistent with our
equilibria, in which cooperation eventually dissipates. The also find that overall cooperation
in private monitoring games reaches approximately the levels found in perfect-monitoring
games, partly because the lenient Nash reversion strategy requires up to three successive d
signals before switching to always defect, and partly because the Sum2 strategy can also
settle into persistent cooperation (regardless of subsequent history). This is consistent with
our finding that seeming temporary cooperation can be quite valuable.
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obvious area of application, as are relations between firms when the specter of
antitrust enforcement is sufficient to deter effective communication.

We find that cooperation can still be immensely valuable. The time scale
on which cooperation breaks down may be so long as to make the payoff effects
of cooperation effectively permanent; this is the implication of Proposition 2.
We thus have a situation in which institutions may last a very long time, and
cooperation may also last a very long time, but eventually either the institution
or the cooperation degenerates or disappears. One could argue that in the
Roman empire, cooperation broke down (which then lead to the demise of the
empire) while in the British empire, cooperation persevered but the empire
withered away.

7 Appendix: Proofs

7.1 Proof of Proposition 1

[Step 1] We first establish conditions under which a player will optimally pull
the C arm in period 1 of the modified bandit of Remark 1. A sufficient condition
for this to be the case is that the period-1 reward from the C arm exceed that
of the D arm, or

k

β
≤ Eh(z1|z0) = E{z1|z0}(p− q)(1 + k) = pz0(p− q)(1 + k) = p(p− q)(1 + k),

where the second equality uses the fact that E{z1|z0} = pz0 and the next uses
the fact that z0 = 1. We can rearrange this as

k

1 + k
≤ βp(p− q). (19)

Remark 2 An alternative derivation of (19) helps illuminate the underlying
forces. If cooperation is ever to be optimal, it must be better to cooperate in the
first period and defect thereafter than to defect immediately (and permanently).
The payoffs from these two strategies, arranged by period, are:

CDD . . . : p+ (1− p)(−k) + β[p2(1 + k) + (1− p)q(1 + k)] + β
2
q(1 + k) + β

3
q(1 + k) + . . .

DDD . . . : p(1 + k) + βq(1 + k) + β
2
q(1 + k) + β

3
q(1 + k) + . . .

All of the payoff differences occur in the first two periods. The first strategy
sacrifices some payoff in the first period, in order to obtain a larger payoff in
the second period. The condition that the first strategy give a higher payoff is

− k

1 + k
+ βp(p− q) ≥ 0,

which is (19). The first term captures the payoff reduction in the first period
from cooperating, while the second captures the payoff gain in the second period.
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[Step 2] We now derive some bounds on p and q The probability of p of
cooperation after clean histories is bounded below by α/2. So confirm this, we
note that in a patient interaction, both players cooperate in the first period,
and there can be at most one (if the first defection is unilateral) or two (if the
first defection is mutual) clean histories after which players defect. Hence, the
probability of cooperation after clean histories in patient interactions is at least
1/2, ensuring that p is at least α/2. A sufficient condition is then

k

1 + k
≤ βα

2

(α
2
− q
)
.

Now fix α and β. As ε approaches zero, so does q (as we confirm in the next
step). The sufficient condition then becomes

β >
4k

α2(1 + k)

which rearranges to give the first result.
Alternatively, fix α and ε. As β approaches one, either p approaches 1 or

q approaches 0 (as verified in the next step). The latter case gives the more
demanding condition, which is (substituting β = 1, p = α/2 and q = 0)

k

1 + k
<
α2

4
,

which is equivalent to k ≤ α2

4−α2 .
Statement [1.3] is a special case of Proposition 2.2, and so we defer its proof.

[Step 3] The first two steps identify conditions under which players will
initially cooperate. To establish the existence of such an equilibrium with this
property, we now construct a correspondence Φ that maps values of (p, q, z) ∈
[α2 , 1]× [0, α2 ]× [z, 1] into new values of (p̂, q̂, ẑ) ∈ [α2 , 1]× [0, α2 ]× [z, 1], for some
z > 0. The mapping is defined as follows. First, given (p, q), a player solves for
the the optimal value ẑ in the modified bandit. Then, given this value of ẑ and
working with the updating rules defined by (p, q), we construct the distribution
over histories, and from this infer new values (p̂, q̂). When doing the latter step,
we consider all possible values of (p̂, q̂) by allowing a player to mix between
cooperating and defecting when indifferent.

The argument now involves verifying that for sufficiently large β, this cor-
respondence indeed maps into [α2 , 1] × [0, α2 ] × [z, 1], and that it has a fixed
point.

First, we argue that the map takes values from (p, q, z) ∈ [α2 , 1]×[0, α2 ]×[z, 1]
into (p, q, z) ∈ [α2 , 1] × [0, α2 ] × [z, 1]. Because they are probabilities, p cannot
exceed 1, q cannot fall short of 0, and z cannot exceed 1, giving three of the
required bounds. As we argued in the previous step, the probability p is bounded
below by α

2 (because with probability α, we have patient players who both
cooperate after the (clean) null history). Somewhat similarly, q is at most α

2 ,

32



because only patient players ever cooperate after a dirty history, after which at
most one can cooperate. Finally, we need the lower bound z. Notice that we
cannot simply take this to be zero. The argument in step 1 requires that q goes
to zero as β gets large. We can be sure of this only if signals are informative and
z is bounded away from zero. An upper bound on the continuation payoff from
cooperating and an exact calculation of the payoff from defecting are given by:

C : [zp+ (1− z)q] + [(1− (zp+ (1− z)q))](−k)

D : (1− β)[zp+ (1− z)q](1 + k) + βq(1 + k).

Given these payoffs, the condition that cooperation have a higher payoff is

z ≥ k

(1 + k)β(p− q)
.

A lower bound on the value of z that solves this equation with equality, and
hence (given that we have overestimated the payoff of cooperation) a lower
bound on z (and hence z), is given by (setting β = p = 1 and q = 0)

k

1 + k
.

Given that we allow the player to mix when indifferent between cooperating and
defecting, our map is a convex-valued, upper hemicontinuous correspondence,
ensuring that it has a fixed point.

Finally, we note that as ε approaches zero, so does φ(z, d) for all z ∈ [0, 1].
Intuitively, as monitoring becomes arbitrarily precise, a bad signal is taken as
convincing evidence of defection. Combining this with the lower bound on z,
small values of ε ensure that (for fixed β) the first d signal in an interaction
is with arbitrarily high probability produced by a D action, and prompts a
D action from the recipient in the next period. This in turn ensures that
with arbitrarily high probability we observe only defection after dirty histories,
causing q to approach 0.

Similarly, fix α and ε in (0, 1). Suppose that p is bounded below 1 as β → 1.
Because z is bounded below, for any η > 0 there is a number τ such that, once
player i defects, player j will defect within τ periods with probability at least
1− η. This places a bound on the number of dirty histories after which players
cooperate. However, as β → 1, each defection gives rise to an arbitrarily large
number of dirty histories, ensuring that q converges to zero.

7.2 Proof of Proposition 2

If the opponent is currently clean with probability z, a player who cooperates
and receives a c signal forms the posterior φ(z, c) that the opponent is clean
given by (6). A consistent string of c signals will lead to the posterior z∗ solving
z∗ = φ(z∗, c), given by

z∗ =
p(1− ε)− [q − 2qε+ ε]

(p− q)(1− 2ε)
.
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The generalization of (19), giving a sufficient condition for an player to coop-
erate, holding posterior z (equal to one in (19)) that the opponent is clean,
is

βzp(p− q) ≥ k

1 + k
,

or, equivalently

z ≥ k

1 + k

1

βp(p− q)
≡ z. (20)

The condition that z∗ ≥ z is then

p(1− ε)− [q − 2qε+ ε]

(p− q)(1− 2ε)
≥ k

1 + k

1

βp(p− q)
(21)

First, let ε → 0. Because (i) β is fixed, (ii) the candidate equilibrium
strategies are that players cooperate as long as their posterior exceeds z, and
(iii) erroneous d signals become arbitrarily rare as ε falls, we can conclude
that interactions between patient players will contribute to the record primarily
cases in which mutual cooperation persists throughout the interaction. This
ensures that p will approach 1 as does α. This also ensures that (given fixed α)
virtually all dirty histories will occur among impatient players, whose defection
then causes q to approach zero. Hence, (21) becomes (9). If this condition holds,
then for values of α larger than some α < 1, we have a sequence of equilibria
in which the probability of cooperation throughout the life of the interaction
becomes arbitrarily large as ε approaches one.

Next, let us fix ε. Let us hypothesize that as α → 1, we have p → 1, while
remembering the bound q ≤ 1/2. This will be the case if the probability that zt
dips below z before the interaction ends becomes vanishingly small. For this to
be the case, we require two conditions. First, we need z < 1, which (from (20))
will be the case (using p→ 1 and q ≤ 1/2) if (10) holds. Second, we need

zεn

zεn + (1− z)(1− ε)n

to converge to 1 as does z, for all n. This is the posterior probability that the
opponent is clean, given a prior of z and given that n consecutive d signals have
been received, calculated in the limit as p takes on the value 1 and calculated
in the worst-case scenario in which q is set to 0. This condition is obviously
met. This in turn ensures that very large values of p, even the worst case
of a relentless string of bad signals does not drive the posterior probability z
below the defection threshold z before the interaction ends. But then, given
that α is arbitrarily close to one, the record will indeed produce an estimate
of p arbitrarily close to one. Coupling this with q ≤ 1/2, (21) gives (10). The
result is an equilibrium in which cooperation persists throughout virtually all
interactions, as desired.
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7.3 Details for Section 4.2

We first formulate the bandit problem. Let zt be the probability that i attaches
to the event that j is not infected in period t. This will be either the probability
that j is healthy (if i has not yet defected) or exposed (if i has defected).

The bandit is defined by two parameters, p and q. There are two arms, a C
arm (corresponding to cooperating) and a D arm (corresponding to defecting).
We let zt be the state of both arms at time t. If the D arm is pulled at time t,
then both arms are in state 0 at time t + 1. If the C arm is pulled at time t,
then both arms move to state

φ(z, c) =
zp(1− ε)

zp(1− ε) + z(1− p)ε+ (1− z)ε

with probability zp(1− ε) + z(1− p)ε+ (1− z)ε and to state

φ(z, d) =
zpε

zpε+ z(1− p)(1− ε) + (1− z)(1− ε)

with probability zpε+ z(1− p)(1− ε) + (1− z)(1− ε).
Each time the C arm is pulled, it generates a current payoff of

zp+ (1− zp)(−k) = − k + zp(1 + k).

When the D arm is first pulled, it generates a current payoff of

zp(1 + k).

We have noted that once the D arm is pulled, it is then optimal to thereafter
pull the D arm. This allows us to calculate the expected value of a path of play
that begins with player i’s first defection. Suppose i defects for the first time in
period t− 1, and as a result, period t begins with i attaching probability zt to
the event that j is exposed, and probability 1−zt to the event that j is infected.
Then i’s continuation payoff is13

(1− β)zt(1 + k)[q + q2β + q3β2 + q4β3 + . . .].

We can solve for the value of

ztq(1 + k)
1− β
1− β

.

As a result, it is straightforward to calculate the value of the D arm, which
is given by

W (z) = (1− β)zp(1 + k) + βpzq(1 + k)
1− β
1− qβ

= pz(1 + k)
1− β
1− βq

. (22)

13To see this, we note that with probability 1−zt, player j is infected and defects thereafter,
giving i a 0 payoff (since i is also defecting). With probability zt player i receives a payoff
1 + k each time j cooperates (and 0 otherwise). With probability q, j cooperates in period t.
With probability q2β, the game lasts another period and j again cooperates. With probability
q3β2, the game lasts yet another period, and j again cooperates, and so on.
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Proof of Proposition 3 We establish conditions under which a player will
optimally pull the C arm in period 1, with the remainder of the argument
mimicking that of Proposition 1. A sufficient condition for this to be the case
is that pulling the C arm in the first period and thereafter defecting is better
than defecting immediately. This comparison is (using the facts that z0 = 1,
the expected value of z1 is p, and the value of defecting is linear in z):

(1− β)(−k + p(1 + k)) + pβW (1) ≥W (1)

where the left side sums the current payoff from playing C plus the discounted
expected value of defecting next period (βW (p) = pβW (1)) and the right side
is the value of immediate defection. We can rewrite this successively as

(1− β)[−k + p(1 + k)] + βp

[
p(1 + k)

1− β
1− βq

]
≥

[
p(1 + k)

1− β
1− βq

]
(1− β)(−k + p(1 + k)) ≥ (1− pβ)p(1 + k)

1− β
1− qβ

p

(
1− 1− pβ

1− qβ

)
≥ k

1 + k

pβ(p− q)
1− qβ

≥ k

1 + k
. (23)

Now, for a fixed β, let ε approach 0. This will ensure q approaches 0. (The
key to this conclusion is that α < 1, and so p remains bounded below 1. As a
result, as ε gets arbitrarily small, a d signal is arbitrarily more likely to have
come from an action of D (and hence an infected opponent) than from an action
of C.) When player i defects, it becomes arbitrarily likely that j’s posterior that
i is infected gets arbitrarily close to 1, ensuring that j will defect, and hence
q will be arbitrarily close to 0. Then, letting β approach one completes the
argument, as before. In the limit as β approaches 1, the sufficient condition is
then (substituting β = 1, p = α/2 and q = 0)

α2

4
≥ k

1 + k
,

which is equivalent to k ≤ α2

4−α2 .
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