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This paper studies a multi-state binary choice experiment in which in each state, 
one alternative has well understood consequences whereas the other alternative has 
unknown consequences. Subjects repeatedly receive feedback from past choices about the 
consequences of unfamiliar alternatives but this feedback is aggregated over states. Varying 
the payoffs attached to the various alternatives in various states allows us to test whether 
unfamiliar alternatives are discounted and whether subjects’ use of feedback is better 
explained by similarity-based reinforcement learning models (in the spirit of the valuation 
equilibrium, Jehiel and Samet, 2007) or by some variant of Bayesian learning model. Our 
experimental data suggest that there is no discount attached to the unfamiliar alternatives 
and that similarity-based reinforcement learning models have a better explanatory power 
than their Bayesian counterparts.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In many situations, the decision maker faces a choice between two alternatives one of them being more familiar and 
thus easier to evaluate and another one being less familiar and thus harder to assess. There is generally some information 
about the less familiar alternative, but this information is typically coarse not being entirely relevant to the specific context 
of interest.

To give a concrete application, think of the adoption of a new technology by farmers. A farmer has a lot of information 
about the performance of the current technology but not so much about the new one. The farmer may collect information 
about the new technology by asking around other farmers who would have previously adopted it. But due to the hetero-
geneity of the soil and/or the heterogeneity in the ability of the farmers, what works well/poorly for one farmer need not 
perform in the same way for another. Thus, the feedback received about the new technology is coarse in the sense that it is 
aggregated over different situations (states in the decision theoretic terminology) as compared to the information held for 
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the old technology.1 Another example may concern hiring decisions.2 Consider hiring for two different jobs, one requiring 
high skill going together with higher education level and the other requiring lower skills, and assume potential candidates 
either come from a majority group or a minority group (as determined by nationality, color, caste or religion, say). Pre-
sumably, there is a lot of familiarity with the majority group allowing for this group to distinguish the productivity as a 
function of education as well as past experiences. However, for the minority group, information is more likely to be coarse 
and perceived productivity in that group may not be as easy to relate to education or past experiences.

We are interested in understanding how decision makers would make their decisions in multi-state binary decision 
problems in which they have precise state-specific information about the performance of one alternative and less precise 
information about the other. The less precise information takes the form that the decision maker receives aggregate (not 
state-specific) feedback about the performance of that alternative. Our interest lies in understanding the behavior of agents 
acting repeatedly in such environments.

To shed light on this, we have conducted experiments in which a pool of subjects has to choose between two actions 
over several rounds. In each round and for each subject, the choice is to be made in one of two states with an equal 
proportion for the two states across rounds and across subjects. In state 1, a subject has to choose between a blue action 
and a red action. In state 2, a subject has to choose between a green action and a red action. All actions give stochastic 
returns. While the return distributions to the blue and green actions are known with some precision from the start, the 
return distributions to the red actions are not, and importantly the return distributions to these actions may be different 
in the two states. As subjects make choices, they receive feedback about the returns to the various actions (chosen in the 
last round in the entire pool) as a function of their color. Thus, the feedback for the return to a red action is coarse to the 
extent that it is not known whether the red action was chosen in state 1 or in state 2. We consider different treatments 
in which we vary the distributions of the returns to the two red actions while keeping the same return characteristics for 
the blue and green actions so that the initial conditions for each of these treatments are identical. In each treatment, we 
are interested in the evolution of the choice patterns across rounds and whether these stabilize after a sufficiently large 
number of rounds. That is, we aim at shedding light on the type of learning model that seems most appropriate to describe 
the evolution of behaviors in such contexts with coarse feedback, and also on the type of equilibrium concept to be used in 
such contexts (that could be relevant to describe patterns of behaviors after they stabilize).

Before presenting our main results, let us mention several possible theoretical benchmarks that could be relevant for 
our study. First, in the tradition of reinforcement learning (see Sutton and Barto, 1998 or Fudenberg and Levine, 1998 for 
textbook expositions), subjects could assess the strength of actions by considering their average return observed in the past. 
One key difficulty in our context is that for the red actions, the feedback is coarse not disentangling the corresponding return 
whether the red action was chosen in state 1 or 2. Following Jehiel and Samet (2007), one could extend such an approach by 
considering a similarity-based reinforcement learning model in which a single valuation would be attached to the two red 
actions (and reinforced accordingly) and the two red actions would be considered alike in terms of strength by the learning 
subjects. Jehiel and Samet (2007) have proposed a solution concept called the valuation equilibrium aimed at capturing the 
limiting outcomes of such similarity-based reinforcement learning models. We describe an extension of this solution concept 
allowing subjects to rely on noisy best-responses in the vein of the logit model (as popularized by McKelvey and Palfrey 
(1995) in experimental economics). A key feature of the valuation equilibrium is that the valuation of the red actions is 
endogenously shaped by the relative frequency with which the red actions are chosen in the two states: When the red action 
is much more frequently chosen in state 2 (resp. 1) than in state 1 (resp. 2), the induced valuation for red is much closer to 
the expected return to the red action in state 2 (resp. 1). When the red actions are chosen with the same frequency in the 
two states, the valuation of red is just the unweighted average of the expected returns to the two red actions. The return 
distributions to the red actions in the three treatments were chosen to give rise to different averaging in the determination 
of the valuation of the Red actions as well different predictions for the valuation equilibrium and the optimal solution.

Second, subjects could form beliefs about the returns to the red actions in the two states relying on some form of 
Bayesian updating to adjust the beliefs after they get additional feedback. Note that in our experiment, subjects get to ob-
serve the number of times the blue and green actions were chosen in the last round. This together with the knowledge that 
the two states are equally likely is informative whether the coarse feedback observed for the red actions is more represen-
tative of state 1 or 2 (for example a strong imbalance in favor of the green actions as opposed to the blue actions would be 
indicative that the previous red choices corresponded more to state 1 where the blue action was available). Of course, such 
a Bayesian approach heavily depends on the initial prior, and when studying such models, we will consider several families 
of priors. For the reinforcement learning model we will assume that subjects employ a noisy best response of the logit type.

Another key theoretical consideration is that the feedback concerning the red actions is ambiguous to the extent that 
it does not distinguish between the returns to the red actions according to the state s = 1 or 2. Following the tradition 
of Ellsberg (1961), one may suspect then that subjects would apply an ambiguity discount to the red actions (see Gilboa 
and Schmeidler (1989) for an axiomatization of ambiguity aversion). In the terminology of Epstein and Schneider (2007) or 
Epstein and Halevy (2019), the coarse feedback about the red actions can be viewed as an ambiguous signal. To cope with 

1 Ryan and Gross (1943) propose an early study of the diffusion of new technology adoption in the farming context. See also Young (2009) for a study 
focused on the diffusion dimension.

2 This example is inspired by Fryer and Jackson (2008)’s discussion of discrimination and categorization.
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the ambiguous nature of the feedback in a simple way, we propose adding to the previous models (the similarity-based 
reinforcement learning and the Bayesian model) an ambiguity discount to the assessment of the red actions.

Based on our observed experimental data, we estimate both for the similarity-based reinforcement learning model and 
the Bayesian learning model the parameters that fit our experimental data best. A question of is interest whether there 
is a discounting applied to the red actions and for which learning model. After performing these estimations, we ask our 
main question of interest: which of the similarity-based reinforcement learning or the generalized Bayesian learning model 
explains the observed data best. We also study if the observed choice patterns in the final rounds of our experiments are 
well explained by the valuation equilibrium.

Our main findings are as follows. First, in our estimation of the similarity-based reinforcement learning model, we find 
that there is no ambiguity discount. That is, despite the inherent ambiguity of the feedback received about the red actions, 
the red actions are not discounted more than the blue and the green actions whose returns are better known from the start 
and as more feedback is accumulated. This is similar to what is being assumed in the valuation equilibrium approach in 
which there is no ambiguity discount. Second, we find that the similarity-based reinforcement learning model explains the 
observed data better than the generalized Bayesian learning model.3 We also observe that the patterns of choices stabilize 
well before the end of experiment and observe that the modal choices observed there correspond to those predicted by the 
valuation equilibrium (and thus differ from the optimal choices).4

The rest of the paper makes the above claims precise. We start with a discussion of the related literature, we next provide 
a detailed description of the experimental design as well as of the various theories discussed above. Detailed statistical 
analysis is provided next. In the last part, we offer a general discussion, considering various robustness checks, an additional 
family of learning models this time based on imitation that we show does not explain our data well, and a discussion of how 
the long-run performance of subjects is ameliorated when the feedback for the red actions is made available state by state.

2. Related literature

While the experimental literature on ambiguity is vast, only a few experimental papers look at ambiguous signals as we 
do (beyond Epstein and Halevy, we are only aware of Fryer et al. (2019)). Note though that our experiment has a distinctive 
feature not present in the previous experiments on ambiguous signals. In our setting, the nature of the ambiguity of the 
received signals (feedback) is endogenously shaped by the choice of subjects. This endogenous character of the ambiguity 
has no counterpart in the previous experiments on ambiguity, as far as we know.

Our paper is related to other strands of literature beyond the references already mentioned. A first line of research related 
to our study is the framework of case-based decision theory as axiomatized by Gilboa and Schmeidler (1995). Compared to 
case-based decision theory, in the valuation equilibrium approach, the similarity weights given to the various actions in the 
various states happen to be endogenously shaped by the strategy used by the subjects, an equilibrium feature that is absent 
from the subjective perspective adopted in Gilboa and Schmeidler.

Another line of research related to our study includes the possibility that the strategy used by subjects would not 
distinguish behaviors across different states (Samuelson (2001), Mengel (2012)) for theory papers and Grimm and Mengel 
(2012), Cason et al. (2012) or Cownden et al. (2018) for experiments). Our study differs from that line of research in that 
subjects do adjust their behavior to the state but somehow mix the payoff consequences of some actions (the unfamiliar 
ones) obtained over different states, thereby revealing that our approach cannot be captured by a restriction on the strategy 
space, as arising in the literature just mentioned.

The analogy-based expectation equilibrium (Jehiel (2005) and Jehiel and Koessler (2008)) in which beliefs about other 
players’ behaviors are aggregated over different states is also related to our study. One difference is that we are considering 
decision problems and not games. Yet, viewing nature as a player would allow us to see closer connections between the 
two approaches. To the best of our knowledge, no experiment in the vein of the analogy-based expectation equilibrium has 
considered environments similar to the one considered here (see Huck et al. (2011) for the first experiment on analogy-
based expectation equilibrium).

The literature on selection neglect has also some connections with our study. On the theory side, that literature includes 
the behavioral equilibrium introduced by Esponda (2008) in the context of adverse selection markets or Jehiel (2018) which 
develops an equilibrium model of selection neglect in an investment decision context in the vein of the analogy-based 
expectation equilibrium. On the experimental side, that literature includes Esponda and Vespa (2018), Enke (2019) or Barron 
et al. (2019), which conclude in various applications that subjects tend to ignore that the data they see are selected. In our 
setting, the data related to the red actions are selected to the extent that they are influenced by the strategy followed by 
agents (see the discussion above on the endogenous weighting), and one can argue that subjects by behaving in agreement 
with the (generalized) valuation equilibrium do not seem to account for selection. Thus, our experimental setting can be 
viewed as providing an additional illustration of selection neglect in a novel context.

Another related recent strand of experimental literature is concerned with the failure of contingent reasoning and/or 
some form of correlation neglect (see Enke and Zimmermann (2019), Martinez-Marquina et al. (2019) or Esponda and 

3 The discount parameter estimated in the Bayesian model is very small too.
4 We obtain a much better fit in terms of frequency of choices when considering the quantal valuation equilibrium, in which noisy best-responses are 

considered.
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Table 1
Information about the returns to the Blue and Green 
urns after 100 random draws as reported at the start 
of each session.

Blue 30 black (B) 70 white (W)

Green 68 black (B) 32 white (W)

Vespa (2019)). Some of these papers (see in particular Martinez-Marquina et al.) conclude that hypothetical thinking is 
more likely to fail in the presence of uncertainty, which agrees with our finding that in the presence of aggregate feedback, 
subjects find it hard to disentangle the value of choosing the red action in the two states.

From another perspective, there is a number of contributions comparing reinforcement learning models to belief-based 
learning models in normal form games. While some of these contributions conclude that reinforcement learning mod-
els explain better the observed experimental data than belief-based learning models (Erev and Roth, 1998, Camerer and 
Ho, 1999), others suggest that it is not so easy to cleanly disentangle between these models (Salmon, 2001, Hopkins 2002, 
Wilcox, 2006). Our study is not much related to this debate to the extent that we consider decision problems and not games 
and that subjects do not immediately experience the payoff consequences of their choices (the feedback received concerns 
all subjects in the lab and subjects are only informed at the end how much they themselves earned). Relatedly the feedback 
received about some possible choices is aggregated over different states, which was not considered in the previous experi-
mental literature. Despite these differences, in our context, relating Bayesian learning models to belief-based learning models 
suggest that these perform less well than their reinforcement learning counterpart, as in a number of these other works.

Finally, one should mention the experimental work of Charness and Levin (2005) who consider decision problems in 
which, after seeing a realization of payoff in one urn, subjects have to decide whether or not to switch their choices of 
urns. In an environment in which subjects have a probabilistic knowledge about how payoffs are distributed across choices 
and states (but have to infer the state from initial information), Charness and Levin observe that when there is a conflict 
between Bayesian updating and Reinforcement learning, there are significant deviations from optimal choices. While the 
conclusion that subjects may rely on reinforcement learning more than on Bayesian reasoning is somehow common in their 
study and our experiment, the absence of ex-ante statistical knowledge about the distribution of payoffs across states in our 
experiment makes it clearly distinct from their experiment. In our view, the absence of ex-ante statistical knowledge fits 
the motivating economic examples mentioned in the introduction better.

3. Experimental design

Before describing the various theories put to a test, it is useful to describe more precisely the experimental setting. There 
are two states, s = 1, 2. In each state, the decision maker has to choose between two urns identified with a color, Blue and 
Red in state s = 1, Green and Red in state s = 2 where the Red urns have different payoff implications in states s = 1 and 
2.5 Each urn is composed of ten balls, black or white. When an urn is picked, one ball is drawn at random from this urn 
(and it is immediately replaced afterward). If a black ball is drawn this translates into a positive payment. If a white ball 
is drawn there is no payment. We conduct three treatments varying the composition of the Red urns across states and 
keeping the composition of Blue and Green fixed. One hundred initial draws are made for the Blue and Green urns with no 
payoff implication for participants, and all subjects are informed of the corresponding compositions of black and white balls 
drawn from these urns. Thus, as seen in Table 1, subjects have a precise initial view about the compositions of the Blue and 
Green urns (these urns correspond to the familiar choices in the motivating examples provided in the introduction). In the 
experiment, the Blue urn has 3 black balls out of ten and the Green urn has 7 black balls out of ten.

Concerning the Red urns, there is no initial information except that we make it clear that the compositions of these 
remain unchanged throughout the experiment. The Red urns correspond to the unfamiliar choices in the introductory ex-
amples. To guide their choices, subjects are provided with feedback about the compositions of the red urns as reflected by 
the colors of the balls that were previously drawn when a red urn either in state s = 1 or 2 was chosen. More precisely, 
there are twenty subjects and 70 rounds. In each round, ten subjects make a choice of an urn in state 1 and the other ten 
choose an urn in state 2. There are permutations of subjects between rounds so that every subject is in each state s = 1 or 
2 the same proportion of the time. Between rounds, subjects receive feedback about the number of times the Green, Blue 
and Red urns were picked by the various agents in the previous round, and for each color of the urn, they are informed of 
the number of black balls that were drawn. A typical feedback screen is shown in Fig. 1.

Note that in the case of the Red urns, this number aggregates the number of black balls drawn from both the Red urns 
picked in state s = 1 and the Red urns picked in state s = 2 mimicking the kind of coarse information suggested in the 
motivating examples. It should be highlighted that subjects were explicitly told that the compositions of the Red urn in 
state s = 1 and in state s = 2 need not be the same.

We consider three treatments T1, T2, T3 that differ in the composition of the Red urns as depicted in Fig. 2, but note 
that we maintain the compositions of the Blue and Green urns in all treatments. The initial conditions in these various 

5 In the instruction in Appendix A, Red is referred to as Red1 in State 1 and Red2 in State 2.
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Fig. 1. Feedback structure for treatment sessions. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Set up of the different treatment sessions.

treatments are thus identical and any difference of behaviors observed in later periods can be safely attributed to the 
difference in the feedback received by the subjects across the treatments. In treatment 1, the best decision in both states 
s = 1 and 2 would require the choice of the Red urn. In treatment 2, the best decision would require picking the Red urn 
in state 1 but not in state 2. Finally, in treatment 3, the best decision would require picking the Red urn in state 2 but not 
in state 1.

4. Background and theory

In the context of our experiment, this section defines a generalization of the valuation equilibrium allowing for noisy 
best-responses in the vein of the quantal response equilibrium (McKelvey and Palfrey, 1995). We next propose two families 
of learning models, a similarity-based reinforcement learning model (allowing for coarse feedback on some alternatives, 
an ambiguity discount attached to those, and noisy best-responses) as well as a generalized Bayesian learning model (also 
allowing for noisy best-responses and a discount on alternatives associated to coarse feedback). The learning models will 
then be estimated and compared in terms of fit in light of our experimental data.
5
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4.1. Quantal valuation equilibrium

In the context of our experiment, there are two states s = 1 and 2 that are equally likely. In state s = 1, the choice is 
between Blue and Red1. In state s = 2, the choice is between Green and Red2. The payoffs attached to these four alternatives 
are denoted by v Blue = 0.3, v Red1 , v Red2 and vGreen = 0.7 where v Red1 and v Red2 are left as free variables to accommodate 
the payoff specifications of the various treatments.

A strategy for the decision maker can be described as σ = (p1, p2) where pi denotes the probability that Redi is picked 
in state s = i for i = 1, 2. Following the spirit of the valuation equilibrium (Jehiel and Samet, 2007), a single valuation is 
attached to Red1, Red2 so as to reflect that subjects in the experiment only receive aggregate feedback about the payoff 
obtained when a Red urn is picked either in state s = 1 or 2. Accordingly, let v(Red) be the valuation attached to Red. 
Similarly, we denote by v(Blue) and v(Green) the valuations attached to the Blue and Green urns, respectively.

In equilibrium, we require that the valuations are consistent with the empirical observations as dictated by the equilib-
rium strategy σ = (p1, p2). This obviously implies that v(Blue) = v Blue , v(Green) = vGreen and less straightforwardly that

v(Red) = p1 × v Red1 + p2 × v Red2

p1 + p2
(1)

whenever p1 + p2 > 0. That is, v(Red) is a weighted average of v Red1 and v Red2 where the relative weight given to v Red1 is 
p1/(p1 + p2) given that the two states s = 1 and 2 are equally likely and Redi is picked with probability pi for i = 1, 2.

Based on the valuations v(Red), v(Blue) and v(Green), the decision maker is viewed as picking a noisy best-response 
where we consider the familiar logit parameterization (with coefficient λ). Formally,
Definition: A strategy σ = (p1, p2) is a quantal valuation equilibrium if there exists a valuation system (v(Blue), v(Green),

v(Red)) where v(Blue) = 0.3, v(Green) = 0.7, v(Red) satisfies (1), and

p1 = eλv(Red)

eλv(Red) + eλv(Blue)

p2 = eλv(Red)

eλv(Red) + eλv(Green)

It should be stressed that the determination of v(Red), p1 and p2 are the results of a fixed point as the strategy 
σ = (p1, p2) affects v(Red) through (1) and v(Red) determines the strategy σ = (p1, p2) through the two equations just 
written.

We now briefly review how the quantal valuation equilibria look like in the payoff specifications corresponding to the 
various treatments. In this review, we consider the limiting case in which λ goes to ∞ (thereby corresponding to the 
valuation equilibria as defined in Jehiel and Samet, 2007).

Treatment 1: v Red1 = 0.4 and v Red2 = 0.8
In this case, clearly v(Red) > v(Blue) = 0.3 (because v(Red) is some convex combination between 0.4 and 0.8). Hence, 

the optimality of the strategy in state s = 1 requires that the Red urn is always picked in state s = 1 (p1 = 1). Regarding state 
s = 2, even if Red2 were picked with probability 1, the resulting v(Red) that would satisfy (1) would only be 0.4+0.8

2 = 0.6, 
which would lead the decision maker to pick the Green urn in state s = 2 given that v(Green) = 0.7. It follows that the 
only valuation equilibrium in this case requires that p2 = 0 so that the Red urn is only picked in state s = 1 (despite the 
Red urns being payoff superior in both states s = 1 and 2). In this equilibrium, consistency (i.e., equation (1)) implies that 
v(Blue) < v(Red) = 0.4 < v(Green).

Treatment 2: v Red1 = 1, v Red2 = 0.6
In this case too, v(Red) > v(Blue) = 0.3 (because any convex combination of 0.6 and 1 is larger than 0.3) and thus 

p1 = 1. Given that v Red2 < v Red1 , this implies that the lowest possible valuation of Red corresponds to 1+0.6
2 = 0.8 (obtained 

when p2 = 1). Given that this value is strictly larger than v(Green) = 0.7, we obtain that it must that p2 = 1, thereby 
implying that the Red urns are picked in both states. Valuation equilibrium requires that p1 = p2 = 1 and consistency 
implies that v(Blue) < v(Green) < v(Red) = 0.8.

Treatment 3: v Red1 = 0.1, v Red2 = 0.9
In this case, we will show that the Red urns are picked neither in state 1 nor in state 2. To see this, assume by contra-

diction that the Red urn would (sometimes) be picked in at least one state. This should imply that v(Red) ≥ v(Blue) (as 
otherwise, the Red urns would never be picked neither in state s = 1 nor 2). If v(Red) < v(Green), one should have that 
p2 = 0, thereby implying by consistency that v(Red) = v Red1 = 0.1. But, this would contradict v(Red) ≥ v(Blue) = 0.3. If 
v(Red) ≥ v(Green), then p1 = 1 (given that v(Red) > v(Blue)), and thus by consistency v(Red) would be at most equal to 
0.1+0.9

2 = 0.5 (obtained when p2 = 1). Given that v(Green) = 0.7 > 0.5, we get a contradiction, thereby implying that no 
Red urn can be picked in a valuation equilibrium.

As explained above the value of v(Red) in the valuation equilibrium varies from being below v(Blue) in treatment 3 to 
being in between v(Blue) and v(Green) in treatment 1 to being above v(Green) in treatment 2, thereby offering markedly 
different predictions according to the treatment in terms of long run choices. Allowing for noisy as opposed to exact best-
responses still allows us to differentiate the behaviors across the treatments but in a less extreme form (clearly, if λ = 0
6
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Table 2
Long run predictions.

T1 T2 T3

Optimal (R, R) (R, G) (B, R)

Valuation Eq. (R, G) (R, R) (B, G)

behaviors are random and follow the lottery 50 : 50 in every state and every treatment, but for any λ > 0, behaviors are 
different across treatments).

For each of the treatments, Table 2 shows how the predictions of valuation equilibrium differ from the optimal choice. 
Table 2 will be used to compare the modal choices in the final rounds of the experiment in the various treatments.

4.2. Learning models

We will consider two families of learning models to explain the choice data observed in the various treatments of 
the experiment: A similarity-based version of reinforcement learning model in which choices are made on the basis of the 
valuations attached to the various colors of urns and valuations are updated based on the observed feedback, and a Bayesian 
learning model in which subjects update their prior belief about the composition of the Red urns based on the feedback 
they receive. In each case, we will assume that subjects care only about their immediate payoff and do not consider the 
possible information content that explorations outside what maximizes their current payoff could bring. This is – we believe 
– justified to the extent that in the experiment there are twenty subjects making choices in parallel and that the feedback 
is anonymous making the informational value of the experimentation by a single subject rather small. We will elaborate on 
this at the end of the Section after the exposition of the learning models.

4.2.1. Similarity-based reinforcement learning
Standard reinforcement learning models assume that strategies are reinforced as a function of the payoff obtained from 

them. In the context of our experiment, subjects receive feedback about how the choices made by all subjects in the 
previous period translated into black (positive payoff) or white (null payoff) draws. More precisely, the feedback concerns 
the number6 of Black balls drawn when a Blue, Green or Red urn was picked in the previous period as well as the number 
of times an urn with that color was then picked. Accordingly, at each time t = 2, ...70, one can define for each possible 
color C = B, R, G (for Blue, Red, Green) of the urn(s) that was picked at least once at t − 1:

U Ct = #(Black balls drawn in urns with color C at t − 1)

#(an urn with color C picked at t − 1)
. (2)

U Ct represents the strength of urn(s) with color C as reflected by the feedback received at t about urns with such a color. 
Note the normalization by #(an urn with color C picked at t − 1) so that U Ct is comparable to a single payoff attached to 
choosing an urn with color C .

We will let BCt denote the value attached to an urn with color C at time t and BCinit denote the initial value attached 
to an urn with that color. For Green and Blue there is initial information and it is natural to assume that

B Binit = 30

100
= 0.3

BGinit = 68

100
= 0.68

whereas for Red, the initial value B Rinit is a priori unknown and it will be estimated in light of the observed choice data.

Dynamics of BCt :
Concerning the evolution of BCt , we assume that for some (ρU , ρF ), we have7:

B Rt = ρU × B Rt−1 + (1 − ρU ) × U Rt

B Bt = ρF × B Bt−1 + (1 − ρF ) × U Bt

BGt = ρF × BGt−1 + (1 − ρF ) × U Gt

In other words, the value attached to color C at t is a convex combination between the value attached at t − 1 and the 
strength of C as observed in the feedback at t . Observe that we allow the weight to be assigned to the feedback to be 
different for the Red urns on the one hand and the Blue and Green urns on the other to reflect the idea that when a choice 
is better known as is the case for more familiar alternatives (here identified with urns Blue and Green) the new feedback 

6 The symbol # is used to refer to number.
7 In case no urn of color C was picked at t − 1, then U Ct = BCt−1 so that BCt = BCt−1.
7



P. Jehiel and J. Singh Games and Economic Behavior 130 (2021) 1–24
may be considered as less important to determine the value of it. Accordingly, we would expect that ρF is larger than ρU , 
and we will be concerned whether this is the case in our estimations.8

Choice Rule:
Given that the feedback concerning the Red urns is aggregated over states s = 1 and 2, there is extra ambiguity as to 

how well B Rt represents the valuation of Red1 or Red2 as compared to how well BGt or B Bt represent the valuations of 
Blue and Green.

The valuation equilibrium (or its quantal extension as presented above) assumes that B Rt is used to assess the strength 
of Reds whatever the state s = 1, 2. In line with the literature on ambiguity aversion as experimentally initiated by Ellsberg 
(1961), it is reasonable to assume that when assessing the urn Reds , s = 1, 2, subjects apply a discount δ ≥ 0 to B Rt .9

Allowing for noisy best-responses in the vein of the logit specification, this would lead to probabilities p1t and p2t of 
choosing Red1 and Red2 as given by

p1t = eλ(B Rt−δ)

eλ(B Rt−δ) + eλB Bt

p2t = eλ(B Rt−δ)

eλ(B Rt−δ) + eλBGt

The learning model just described is parameterized by (ρU , ρF , δ, λ, B Rinit). In the next Section, these parameters will 
be estimated pooling the data across all three treatments (and using the maximum likelihood method). Particular attention 
will be devoted to whether δ > 0 is needed to explain the data better, whether ρF > ρU as common sense suggests, as well 
as to the estimated value of λ and the obtained likelihood for comparison with the Bayesian model to be described next.

Assuming the ambiguity discount parameter δ is 0 and considering the limit as the number of subjects tends to infinity, 
it is readily verified that the steady states of the similarity-based reinforcement learning model just described coincides 
with the quantal valuation equilibria defined in the previous subsection (as long as ρU and ρF are strictly less than 1).10

Of course, a similar steady state could be defined when δ > 0, but as seen from our estimation exercise, δ = 0 fits best 
our experimental data and thus this extension will not be needed for our purpose. A remaining question is whether the 
learning dynamic converges and for which values of the model parameters as well as how the dynamic is affected when the 
number of subjects is finite as in our experiment. We do not provide a comprehensive analysis of this here, but we have run 
simulations for the specification (ρU = 0.43, ρF = 0.599, δ = 0, λ = 5.24, B Rinit = 0.42) that corresponds to the estimation 
of this model given our experimental data. We find that the long run frequencies of Red1 and Red2 are 75% and 20% in 
Treatment 1; 90% and 70% in Treatment 2; and 41% and 13% in Treatment 3. In Appendix D, we report the simulation and 
observe not much variation of these frequencies after round 70 (the duration of our experiment) onwards.

4.2.2. Generalized Bayesian learning model
As an alternative learning model, subjects could form some initial prior belief regarding the compositions of Red1 and 

Red2, say about the chance that there are ki black balls out of 10 in Redi , and update these beliefs after seeing the feedback 
using Bayes’ law.

Let us call βinit(k1, k2) the initial prior belief of subjects that there are ki black balls out of 10 in Redi . In the estimations, 
we will allow the subjects to consider that the number of black balls in either of the two Red urns can vary between kinf
and ksup with 0 ≤ kinf ≤ ksup ≤ 10 and we will consider the uniform distribution over the various possibilities.

With uniform distribution, for any (k1, k2) ∈ [kinf, ksup]2

βinit(k1,k2) = 1

(ksup − kinf + 1)2
,

and βinit(k1, k2) = 0 otherwise. The values of kinf and ksup will be estimated.
Of course, the family of prior just considered is somewhat arbitrary. For robustness check, we have also considered 

another class of priors, in which the maximum prior probability is assigned to k = 5 and then the probability decreases 
linearly in a symmetric way as k moves away from 5 (see details below). Together with the uniform distribution, we believe 

8 Many variants could be considered. For example, one could have made the weight of the new feedback increase linearly or otherwise with the number 
of times an urn with that color was observed. One could also have considered that the weight on the feedback is a (decreasing) function of t to reflect that 
as more experience accumulates, new feedback becomes less important. These extensions did not seem to improve how well we could explain the data 
and therefore, we have chosen to adopt the simpler approach just described.

9 One possible rationale following the theoretical construction of Gilboa and Schmeidler (1989) is that the proportion of Black balls in Red1 and Red2 is 
viewed as being in the range [B R - δ, B R + δ] and that subjects adopt a maxmin criterion, leading them to consistently use B R − δ to assess both Red1

and Red2. More elaborate specifications of ambiguity would be hard to estimate given the nature of our data.
10 To see this, assume that p1t and p2t remain constant over time and equal to p1 and p2, respectively. By the law of large number, the values of 

U Rt , U Bt and U Gt should be arbitrarily close to v(Red), v(Blue) and v(Green) as defined in the previous Section, and thus B Rt , B Bt and BGt should 
also converge to these values. Putting this together with the observation that when B Rt , B Bt and BGt remain constant and equal to v(Red), v(Blue) and 
v(Green), respectively, the resulting values of p1t and p2t would remain constant and satisfy the conditions shown in the definition of the quantal valuation 
equilibrium yields the desired result.
8
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such variations of the prior allow us to span a relatively large range, and as will turn out within such priors, the best fit 
with our experimental data is obtained for the uniform distribution, thereby explaining our choice to present the Bayesian 
learning model with uniform priors.

Dynamics of the beliefs:
To simplify the presentation a bit, we assume there is no learning on the urns Blue and Green for which there is 

substantial initial information. At time t + 1, the feedback received by a subject can then be formulated as (b, g, n) where 
b, g are the number of blue and green urns respectively that were picked at t , and n is the number of black balls drawn 
from the Red urns. In the robustness checks, we allow for Bayesian updating also on the compositions of the Blue and 
Green urns, and obtain that allowing for learning on those urns does not change our conclusion.

To further simplify the presentation, we assume that in the feedback subjects are exposed to, subjects assume there 
is an equal number of states s = 1 and s = 2 decisions (allowing the subjects to treat these numbers as resulting from a 
Bernoulli distribution would not alter our conclusions, see the robustness check section for elaborations). In this case, the 
feedback can be presented in a simpler way, because knowing (b, g, n) now allows subjects to infer that m1 = 10 −b choices 
of Red urns come from state s = 1 and m2 = 10 − g choices of Red urns come from state s = 2. Accordingly, we describe 
the feedback as (m1, m2, n) where mi represents the number of Redi that were picked. Clearly, the probability of observing 
m1, m2, n when there are k1 and k2 black balls in Red1 and Red2 respectively is given by:

Pr(m1,m2,n|k1,k2) =
∑

n1≤m1
n2≤m2

n1+n2=n

(
m1
n1

)(
m2
n2

)
(k1/10)n1(1 − k1/10)m1−n1(k2/10)n2(1 − k2/10)m2−n2

where 
(

a
b

)
= a!

(a−b)!b! for integers a, b with a ≥ b.

The posterior at t + 1 about the probability that there are k1 and k2 black balls out of ten in Red1 and Red2 after 
observing (m1, m2, n) at t is then derived from Bayes’ law by

βt+1(k1,k2) = βt(k1,k2) · Pr(m1,m2,n|k1,k2)∑
r1,r2

βt(r1, r2) · Pr(m1,m2,n|r1, r2)
.

with β1(k1, k2) = βinit(k1, k2).
Define v Bayes

t (Redi) = ∑
ki

ki
10 βt(ki) where βt(ki) = ∑

k−i
βt(ki, k−i) as the time t expected proportion of black balls in 

Redi given the distribution βt .

Choice Rule:
As for the similarity-based reinforcement learning model, we allow for noisy best responses and introduce an ambiguity 

discount δ for the evaluation of the Red urns.11 Accordingly, the probabilities p1t and p2t of choosing Red1 and Red2 at 
time t in the generalized Bayesian learning model are given by:

p1t = eλ(v Bayes
t (Red1)−δ)

eλ(v Bayes
t (Red1)−δ) + eλv(Blue)

p2t = eλ(v Bayes
t (Red2)−δ)

eλ(v Bayes
t (Red2)−δ) + eλv(Green)

where as our simplification implies we assume that v(Blue) = 0.3 and v(Green) = 0.7.12

Studying the dynamics of the above Bayesian learning model is a bit cumbersome for general specifications of 
(kinf, ksup, λ, δ). To illustrate how it leads to predictions markedly different from those of the valuation equilibrium, con-
sider the extreme case in which δ = 0, kinf = 0, ksup = 10 and λ = ∞ assuming the number of subjects is arbitrarily large. 
Then in all treatments, Red2 is not chosen to start with given that it is perceived to deliver 0.5 in expectation, which is less 
than 0.7. As a result, subjects can safely attribute the feedback they receive about Red to be coming from Red1. This in turn 
implies (considering the limiting case with infinitely large populations of subjects) that subjects perfectly learn the value of 
Red1 and learn nothing about the value of Red2. Thus, in all subsequent periods, subjects play Red1 in treatments 1 and 
2 and never play Red1 in treatment 3, and they never play Red2 in any of the treatments (by contrast, Red2 was played 
in treatment 2 in the valuation equilibrium).13 To get a sense of the predictions of the Bayesian learning model for more 

11 Some might dispute that the ambiguity discount is not so much in the spirit of the Bayesian model in which case one should freeze this parameter to 
be 0. We adopt a more permissive view about the Bayesian learning model and regard δ as a parameter to be estimated.
12 As previously mentioned, we present a model that allows subjects to update v(Blue) and v(Green) according to Bayes rule in the robustness checks.
13 The obtained behaviors can also be interpreted as a self-confirming equilibrium in which the theory about the value of Red1 would rationalize not 

experimenting with this choice and despite the coarseness of the feedback about the Red urns, subjects would be able to perfectly infer the value of Red2.
9
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general specifications of the parameters, we have run simulations for the case in which δ = 0, kinf = 3, ksup = 7 and λ = 7.5, 
which correspond to our estimation given the experimental data. We find that after 70 rounds the proportions of Red1 and 
Red2 are 80% and 30% in Treatment 1; 90% and 52% in Treatment 2; and 47% and 12% on Treatment 3. The most notable 
difference with respect to the simulation for the generalized reinforcement learning concerns the share of Red2 choices in 
Treatment 2, which switches from 70% to 52%.

Our Bayesian learning model has some simplifying assumptions. In particular, it does not incorporate elements of ex-
perimentation that would prevail in traditional multi-arm-bandit problems. To the extent that some Red choices are made 
with positive probability at least in one state, we believe the conditions of the feedback that we consider would make 
experimentation of very little value, and in fact of no value at all when the pool gets arbitrarily large. To get a sense of this, 
assume only Red1 is (sometimes) chosen in the pool. If a subject decides to experiment by choosing Red2, she/he will know 
that one instance of the Red actions in the feedback corresponds to Red2, but the feedback she/he receives will not inform 
her/him much about the return to Red2 as most of the return observations would correspond to Red1 and the subject 
would have no way to learn much (anything, in the limit of a very large pool) about the value of Red2 . The only case in 
which experimentation could be of significant value is if the Red action were rarely chosen, but this does not arise in our 
experimental data. Of course, from a theoretical viewpoint, understanding the value of experimentation better in a setting 
with coarse feedback would be interesting for smaller sizes of the pool. However, we suspect the derived effect would not 
be very significant for our experiment in which the pool – consisting of twenty subjects – was not so small.

5. Results

5.1. Further description of the experimental design

The computerized experiments were conducted in the Laboratory at Maison de Sciences Economiques (MSE) between 
March 2015 and November 2016, with some additional sessions running in March 2017. Upon arrival at the lab, subjects 
sat down at a computer terminal to start the experiment. Instructions were handed out and read aloud before the start of 
each session.

The experiment consisted of three main treatments which varied in the payoffs of the Red urns as explained above. In 
addition, we had two other treatments referred to as controls in which subjects received state-specific feedback about the 
Red urns, i.e. the feedbacks for Red1 and Red2 appeared now in two different columns, for the two payoff specifications 
of treatments 1 and 2. The purpose of these control treatments was to check whether convergence to optimal choices was 
observed in such more standard feedback scenarios.

Each session involved 18-20 subjects14 and four sessions were run for each treatment and control. Overall, 235 subjects 
drawn from the participant pool at the MSE – who were mostly students – participated in the experiment. Each session had 
seventy rounds.

In all treatments, all sessions, and all rounds, subjects were split up equally into two states, State 1 and State 2. Subjects 
were randomly assigned to a new state at the start of each round. The subjects knew the state they were assigned to but did 
not know the payoff attached to the available actions in each state.15 In each state, players were asked to choose between 
two actions as detailed in Fig. 1. The feedback structure for the main treatments was as explained above. For the control 
group, the information structure was disaggregated.

Subjects were paid a show-up fee of 5 e. In addition to this, they were given the opportunity to earn 10 e depending 
on their choice in the experiment. Specifically, for each subject, two rounds were drawn at random and a subject earned 
an extra 5 e for each black ball that was drawn from his/her chosen urn in these two rounds. The average payment was 
around 11 e per subject, including the turn-up fee. All of the sessions lasted between 1 hour and 1.5 hours, and subjects 
took longer to consider their choices at the start of the experiment.

5.2. Results

We first present descriptive statistics and next present the structural analysis.

5.2.1. Preliminary findings
In Fig. 3, we report how the choices of urns vary with time and across treatments. Across all these sessions, initially, 

subjects are more likely to choose the Red urn than the Blue urn in state 1 and they are more likely to choose the Green 
urn than the Red urn in state 2. This is, of course, consistent with most theoretical approaches including the ones discussed 
above given that the Green urn is more rewarding than the Blue urn and the Red urns look (at least initially) alike in states 
1 and 2.

The more interesting question concerns the evolution of choices. Roughly, in state 1, we see toward the final rounds, a 
largely dominant choice of the Red urns in treatments 1 and 2 whereas Red in state 1 is chosen less than half the time in 

14 Note that when 18 subjects participated in the session, Bayes updating was modified accordingly.
15 For urns Blue and Green, they had initial information, as explained in the Introduction.
10
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Fig. 3. Evolution of choice across treatments with aggregated feedback.

Fig. 4. Evolution of choice across treatments with dis-aggregated feedback.

treatment 3. The modal choices observed in the final rounds agree for state 1 with the predictions of valuation equilibrium 
(which coincide with the optimal choices).

Concerning state 2, we see that in the final rounds, the Red urns are rarely chosen in treatments 1 and 3, and are 
frequently chosen in treatment 2. This agrees with the prediction of valuation equilibrium (and stands in sharp contrast 
with the optimal choices).

Overall, the qualitative differences of the choices in the final rounds among the three treatments and the two states are 
in line with the prediction of the valuation equilibrium even if some noise in the best-response is needed especially for 
treatment 3 in state 1 to explain why about 40% of choices correspond to Red.16

In Fig. 4, with state-specific feedback for the Red urns, we see a clear trend toward the optimal choices even if some 
noise would be needed to explain why only 49% of choices correspond to Red in state 2 in Control 1. In contrast to the 

16 We note that the large share of Red chosen in state 2 of treatment 2 is not in line with the noisy version of the Bayesian learning model as explained 
above.
11
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feedback structure in the treatment group, we see that disaggregating feedback on the Red urns across states, players learn 
the optimal choice. In line with section 3.1, the fine feedback helps the agent attach a valuation v(Red1) and v(Red2)

separately for the Red urns in the two states instead of a joint valuation v(Red). Due to this finer feedback structure, the 
simple heuristic of reinforcement learning leads to an optimal choice, unlike in the main treatments in which an analogous 
reinforcement learning heuristic leads to valuation equilibrium.

5.2.2. Statistical estimations
Similarity-based reinforcement learning
The estimations of the parameters of the similarity-based reinforcement learning model together with the corresponding 

log likelihood17 are given in the Table 3.

Table 3
Parameters for similarity-based reinforcement learning model.

ρU ρF δ B Rini λ L

0.43 0.599 0.00 0.42 5.24 7626.6
[0.4, 0.49] [0.55,0.64] [0, 0.0009] [0.38, 0.49] [5.04, 5.39] -

Note: Confidence interval at 95% are reported in brackets for the restricted estimators. 
(See Ketz, 2018 for details).

Concerning the likelihood, by way of comparison, a completely random choice model wherein every state, subjects would 
randomize 50:50 between the two choices would result in a negative log likelihood of L = 11402, which is much higher 
than 7626.6. More generally, the similarity-based reinforcement learning model explains data much better than any model 
in which behavior would not be responsive to feedback.18

We now discuss the most salient aspects of the estimations.
The finding that ρF > ρU seems natural as mentioned above, to the extent that for the familiar urns, the feedback should 

affect less how the valuations are updated.
The finding that B Rinit is slightly below 0.5 may be interpreted along the following lines. In the absence of any informa-

tion, an initial value of 0.5 would be the one dictated by the principle of insufficient reason, but the uncertainty attached 
to the unfamiliar urns may lead to some extra discount in agreement with some form of ambiguity aversion as reported in 
Ellsberg.19

The most interesting observation concerns δ which is estimated to be 0. Even though the feedback for the Red urns 
is ambiguous (because it is aggregated over the two states), the valuations for Red are not discounted as if subjects were 
ambiguous neutral from that perspective.

Thus, what our estimation suggests is that while there may be some (mild) initial ambiguity aversion relative to the un-
familiar choices (as reflected by B Rinit being smaller than 0.5), no ambiguity discount seems to be applied to the valuation 
of Red despite the ambiguity attached to the feedback received about the Red urns.

Generalized Bayesian learning model:
The estimated parameters for the generalized Bayesian learning model are given in the Table 4.

Table 4
Parameter for Bayesian model with bounds.

λ kinf ksup δ L

7.488 3 7 0.003 8816.2
[7.43, 7.52] - - [0.001, 0.005] -

The value of δ = 0.003 implies that with the Bayesian model, the subjects show some mild form of ambiguity aversion. 
However we cannot statistically reject the hypothesis that δ = 0, which implies that with the Bayesian model too, there is 
no significant ambiguity discount similar to what we found in the similarity-based reinforcement learning estimations. For 
the support of initial prior, we found that kinf = 3 and ksup = 7.20 We also note that the value of λ is higher than that for 
the reinforcement model.

17 Likelihood throughout the paper refers to the negative of the log likelihood. Thus, the lower the likelihood, the better the model (See textbook Train, 
2003 for further details). Standard errors are reported in brackets.
18 Optimizing on the probability of Red1 vs Red2 in such a model, would lead to assume that Red1 is chosen with probability p1 = 0.7 and Red2 is 

chosen with probability p2 = 0.3 with a negative log likelihood of L = 9899.6 which is much higher than 7626.6.
19 The difference 0.5 − 0.44 = 0.06 can be interpreted as measuring the ambiguity aversion of choosing an unfamiliar urn when no feedback is available.
20 The value of the bounds corresponds to v Blue = 0.3 and vGreen = 0.7 respectively and so one may speculate that maybe the compositions of the familiar 

urns serve as anchoring the support of the priors. Observe that because best-responses are noisy, the derived support does not imply that the Red urn is 
always picked in state 1 and never picked in state 2.
12
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Comparing the two models:
Maybe the most important question is which of the Bayesian learning model or the reinforcement learning model explains 
the experimental data best. We use three methods of comparison, all establishing that the reinforcement learning model 
outperforms the Bayesian learning model. First, looking at the likelihood of the two models, we see that the Bayesian 
learning model explains the data less well than the similarity-based reinforcement learning model. Second, to account for 
the difference in the number of parameters between the two models, we use the Bayesian Information Criterion (BIC) or 
Schwarz criterion (also SBC, SBIC). BIC is a criterion for model selection among a finite set of models where the model 
with the lower BIC is closer to the data generating process. It is based, in part, on the likelihood function to determine the 
goodness of fit in the two models accounting for the number of parameters, formally defined as

BIC = ln(n)k − 2 ln(L∗)

where L∗ is value of maximized likelihood of model M, n is the number of observations, k is the number of parameters 
estimated by the model. As seen from Table 5, we can conclude that the reinforcement model performs better than the 
Bayesian one in explaining the data.

Table 5
BIC values for the two competing models.

Valuation model Bayesian model

1.52 × 104 1.763 × 104

Finally, we perform a Vuong test21 to compare the performance of the two models statistically. Under the null hypothesis 
H0, that both models perform equally well, we conclude that the null can be rejected in favor of the reinforcement model. 
Specifically,

H0 = E(L(θR; xd)) = E(L(θB ; xd))

Ha = E(L(θR; xd)) �= E(L(θB ; xd))

where xd is the collection of observed individual data points, θR is the set of parameters estimated via reinforcement 
learning, θB is the set of parameters estimated via Bayesian learning, L(θR ; xd) is the log likelihood under reinforcement 
model and L(θB ; xd) is the log likelihood under Bayesian learning model for each data point d. The Vuong statistics is then 
defined by

V stat = √
N

m̄

Sm

where m̄ = E(L(θR; xd)) − E(L(θB; xd)) for each individual d, N is the total number of observations and Sm is the sample 
standard deviation.

V stat tests the null hypothesis (H0) that the two models are equally close to the true data generating process, against 
the alternative H1 that one of the two model is closer.22 The obtained V stat = 25.01 being large and positive implies that 
the reinforcement model is a better fit to our experimental data than the Bayesian learning model. This is in line with the 
findings derived with the BIC methodology.

5.3. Comparing the reinforcement learning model to the data

It is of interest to see how the obtained frequencies of choices as generated by the similarity-based reinforcement 
learning model with estimations, as reported in Table 3, compares to the observed frequencies from our experimental 
data. In Fig. 5, we report the simulated frequencies of urn choices using the reinforcement model across all periods and 
treatments. Across all these sessions, our simulated frequencies remain close to the actual frequencies with a slightly less 
good fit in Treatment 1. Allowing for a different λ in Treatment 1, we observe that a larger lambda significantly improves 
the fit in this treatment as shown in Appendix C.

21 See Merkle et al. (2016) for more details.
22 Vuong test compares the predicted probabilities of two non nested models. It computes the difference in likelihood for each observation i in the data. 

A high positive V stat implies Model 1 is better than Model 2 where m̄ = log(Pr(xi |Model1)-log(Pr(xi |Model2).
13
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Fig. 5. Simulated choices using the reinforcement model.

5.4. Categorization of individuals

While we have established that the similarity-based reinforcement learning model explains the data better than its 
Bayesian counterpart, it is of interest to see how the fit as generated by such a model with estimations as reported in 
Section 5.2.2 varies across individuals over the various rounds. For each round, we compute the log likelihood of observing 
the choices by the individual, and we then add up for this individual the log likelihood across the 70 rounds so as to 
determine which model fits the overall behavior of the individual better.

That is, for each individual, we ask which of the two learning models, the generalized reinforcement learning model with 
parameters as in Table 3 or the generalized Bayesian model with parameters as in Table 4 explains the observed choices 
across all rounds better. For the model comparison, we use the Vuong test as explained above. Overall, we find that 82.97% 
of players can be categorized as reinforcement learners and the rest as Bayesian learners.

Comparing across treatments, we find that T1 has the highest proportion of Reinforcement learners (93.5%). In T2, the 
proportion of Reinforcement learners is 79.22% followed by 76.25% in T3. The higher proportion of Reinforcement learners 
in T1 can be related to the previous observation that in aggregate the Reinforcement learning model with a lower level of 
noise allows for a better fit in T1.

The pool of 235 subjects had very similar backgrounds across treatments, making it impossible to relate the categoriza-
tion in learning types to the background. We have also compared the overall payoff as measured by the sum of black balls 
obtained over the 70 rounds across the population of subjects categorized as Reinforcement learners or Bayesian learners. 
For Reinforcement learners, the average was 42.09 black balls whereas, for Bayesian learners, an average of 40.55 black balls 
were observed. But, this difference is not statistically significant.

6. Discussion

In this Section, we consider several variants of the basic learning models introduced so far. The study of these variants 
can be seen as providing robustness checks for our main insights. We then discuss an alternative model based on imitation 
14
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that we think might be the result of another possible heuristic used by subjects in the context of our experiment. But, such 
a model turns out not to explain well our data. Finally, we discuss the payoff performances obtained by subjects in the 
main conditions of our experiment with those obtained when subjects receive fine feedback.

6.1. Robustness checks

As many variants of reinforcement learning models and Bayesian models could be considered, we review a few of these 
here and suggest that our basic conclusions remain the same in these variants. In each case, the reported estimation relies 
on the same methodology as in Section 5.

Similarity-based reinforcement learning model
Regarding reinforcement models, we consider the following variants. First, we allow the speed of adjustment of the 

valuation of the Red urns to differ across the two states as a large imbalance in the number of green urns as opposed to 
blue urns in the feedback is indicative that the feedback concerned more Red urns in state 1 than in state 2.23 Specifically, 
we now introduce a new parameter μ and specify the weight on the previous valuation to satisfy

ρU 1 = ρU × [1 − μ · ( N B

NG + N B
− 0.5)]

ρU 2 = ρU × [1 − μ · ( NG

NG + N B
− 0.5)]

where N B and NG are the respective numbers of Blue and Green urns appearing in the feedback. One would expect μ to 
be negative so that when NB is observed to be smaller than NG, subjects infer the new feedback on the Red urns is more 
informative on the composition of Red in state 1 than Red in state 2 and thus update more the valuation of Red1 than 
Red2. The estimations of this extended model are reported in Table 6.

Table 6
Parameters for variant 1 of similarity-based reinforcement learning model.

ρU ρF δ B Rini λ μ L

0.45 0.6 0.00 0.45 5.2 0.108 7626.3
[0.40, 0.49] [0.55,0.64] [0, 0.001] [0.39, 0.5] [5.02, 5.37] [-0.26, 0.48] –

Our estimation yields μ > 0 in contrast to what might have been expected, but note that it is not significant and that 
μ = 0 cannot be rejected. Thus, this extended model does not explain the data better than the simpler version considered 
above.

A different idea somewhat related to the one just discussed is that subjects would apply a different discount to the Red 
urn in state 1 and 2 maybe because they would consider the feedback for the Red urns to be more indicative of Red in state 
1 than in state 2 (again maybe because of the imbalance of the number of Blue and Green urns in the feedback). This leads 
us to consider an extended version with two different discounts δ1 and δ2 for Red in state 1 and 2 while keeping the other 
aspects of the dynamics unchanged as compared to the main reinforcement learning model. That is, the only change in this 
variant is in the choice rule with now two discount parameters δ1 and δ2 as defined below.

Choice Rule:

p1t = expλ(B Rt−δ1)

expλ(B Rt−δ1) + expλB Bt

p2t = expλ(B Rt−δ2)

expλ(B Rt−δ2) + expλBGt

The estimated parameters for this variant are reported in Table 7.

Table 7
Parameters for variant 2 of similarity-based reinforcement learning model.

ρU ρF δ1 δ2 B Rini λ L

0.39 0.54 0.00 0.04 0.46 4.99 7610.6
[0.34, 0.44] [0.49,0.58] [0, 0.0007] [0.03, 0.05] [0.39, 0.52] [4.8, 5.17] –

23 This is in some sense making use of some qualitative features of the Bayesian model to improve the reinforcement learning model.
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In this variant, we see a slight discount for Red2 but not for Red1. The likelihood for this model is better than for the 
original model and the hypothesis δ1 = δ2 = 0 is rejected under significance level 0.01. While this extension has a slightly 
better explanatory power, we find only a modest level of ambiguity aversion applied to the Red urn in state 2 when allowed 
to differ from the ambiguity aversion to the Red urn in state 1.24

Generalized Bayesian learning model
For the Bayesian model, one could argue that instead of fixing v(Blue) = 0.3 and v(Green) = 0.7, the values of the Blue 

and Green urns could be updated similarly to the Red urns.25 We have estimated such an extended model taking the same 
prior parameterized by the support [kinf, ksup] for all the urns (see Table 8).

Table 8
Parameter for Bayesian model with Blue and Green updating.

λ kinf ksup δ Likelihood

8.69 3 7 0.008 8583.8
[8.4, 8.9] (–) (–) [0.003, 0.013] (–)

This model performs better than the generalized Bayesian one in terms of likelihood. However, this extended model is 
still statistically dominated by the similarity-based reinforcement learning model.26

A more elaborate version of the Bayesian approach would be to take into account the probability of having ri state i
in the 20 observation of the feedback (instead of assuming that in each round, there are exactly 10 subjects assigned to 
each state). Accordingly, we now represent the feedback as (b, g, n) where b, g are the number of draws from blue and 
green urns and n is the number of black balls in Red. We modify the generalized Bayesian model by taking into account 
the probability of having x draws corresponding to states s = 1 out of 20 draws. Formally,

Pr(b, g,n|k1,k2) =
∑

x

(
20
x

)(
1

220

)
Pr(m1 = x − b,m2 = 20 − x − g,n|k1,k2)

where x is the number of times state s = 1 was observed in one round, Pr(m1 = x − b, m2 = 20 − x − g, n|k1, k2) is defined 
as in section 4.2.2 where the total number of players in each session is 20.

The dynamics of beliefs is now given by

βt+1(k1,k2) = βt(k1,k2) · Pr(b, g,n|k1,k2)∑
r1,r2

βt(r1, r2) · Pr(b, g,n|r1, r2)
.

with β1(k1, k2) = βinit(k1, k2). The other ingredients of the Bayesian learning model are identical to those considered in 
section 4.2.2.

After running the estimation of this model (see Table 9), we note that the corresponding likelihood is further improved as 
compared to those obtained with the other two Bayesian models. However, even with the improved likelihood, the model 
still underperforms relative to the reinforcement model, and the Vuong test still statistically favors the similarity-based 
reinforcement learning model.27

Table 9
Parameter for elaborate Bayesian model.

λ kinf ksup δ Likelihood

6.56 3 7 0 8584.4
[6.57, 6.64] (–) (–) [0, 0.008] (–)

The Bayesian learning model makes an assumption that the initial prior belief regarding the composition of Red1 and 
Red2 follows a uniform distribution. As a robustness check consider a family of triangular distributions centered around 5, 

24 We also considered the possibility that subjects would use a different slope to appreciate payoffs above 0.5 and payoffs below 0.5 in the spirit of 
prospect theory (with a reference payoff fixed at 0.5), but such a variant did not result in an improvement of the likelihood, hence we do not report it here 
(see Tversky and Kahneman (1974, 1979) for an exposition of prospect theory).
25 The initial information provided about those urns would of course be used.
26 The Vuong test was conducted with the null hypothesis that both models explain the data equally well. The null was rejected in favor of the similarity-

based reinforcement learning model with V stat = 24.72.
27 The Vuong test was conducted with the null hypothesis that both models explain the data equally well. The null was rejected in favor of the similarity-

based reinforcement learning model with V stat = 20.18.
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which together with the uniform prior considered in the main analysis allows us to span a wider range of priors. Reminding 
that ki denotes the number of black balls in Redi , the triangular distributions specify priors such that for some ll and uu
with ll < 5 < uu and for any (k1, k2) ∈ [ll, uu]2

βinit(k1,k2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4(k1−ll)(k2−ll)
((uu−ll)(5−ll))2 if ll < k1 < 5 & ll < k2 < 5
4(uu−k1)(uu−k2)

((uu−ll)(5−ll))2 if 5 < k1 < uu & 5 < k2 < uu
4(uu−k1)(ll−k2

(uu−ll)2(5−ll)(uu−5)
if uu < k1 < 5 & ll < k2 < 5

4(k1−ll)(uu−k2)

(uu−ll)2(5−ll)(uu−5)
if 5 < k1 < uu & 5 < k2 < uu

and βinit(k1, k2) = 0 otherwise with the values of ll and uu to be estimated.
After running the estimation (see Table 10), we note that the uniform prior leads to a better fit so that our main finding 

that the generalized reinforcement learning model outperforms the Bayesian learning model would a fortiori be true had 
we considered the triangular priors.

Table 10
Parameter for trinagular distribution Bayesian model.

λ ll uu δ Likelihood

4.297 3 7 -0.019 9948.9
[4.29, 4.29] (–) (–) [0, -0.0196] (–)

6.2. Imitation heuristics

Our setting is about an individual decision environment in which every subject receives the same information/feedback. 
So if a subject trusts no less her/his ability to process the data/feedback as compared to others, there is no reason for 
this subject to reason about how others made their choices. As an alternative, one may consider subjects who would 
not trust their ability to process data/feedback and would instead try to behave like others maybe with the premise that 
others have a better sense of how to make good choices. This line of thought leads us to consider the following imitation 
heuristics.

In our experiment, everyone can infer from the proportions of Blue and Green urns that appear in the feedback, how 
frequently Red1 and Red2 were chosen in the pool, in the last round. If a subject thinks others had a good reason to make 
their choices, such a subject may try to adapt her/his behavior in the current round to take inspiration from the observed 
frequency of choices made in the last round. Based on this consideration, we propose that the probability of choosing Red 
in the two states would satisfy the following.

Choice Rule:

p1t = λ + (1 − 2λ)
(10 − N Bt)

α

N Bα
t + (10 − N Bt)α

p2t = λ + (1 − 2λ)
(10 − NGt)

α

NGα
t + (10 − NGt)α

where λ = 0 and α = 1 would correspond to the heuristic in which the behavior is probabilistic and matches exactly 
the frequencies observed in the last round, and a smaller λ and/or a larger α indicate a greater propensity to follow the 
majority choice. The learning model just considered is parameterized by λ, α together with p1init and p2init defining the 
initial probabilities of choices of Red1 and Red2 in the first round. Assuming our subjects follow this heuristic provides the 
estimations shown in Table 11.

Table 11
Parameter for imitation heuristic model.

α λ p1init p2init Likelihood

0.864 0.097 0.62 0.18 8651.7
(0.006) (0.007) (0.043) (0.046) (–)

We observe that the estimation yields a heuristic model not very far from the standard matching model in which we 
would have λ = 0 and α = 1, even if the fact that α = 0.864 is indicative that in the estimated model behaviors are a bit 
less responsive than in the matching model. But, considering the likelihood, it appears that the imitation model provides 
a much less good fit than the similarity-based reinforcement learning model. We run a Vuong test comparing these two 
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models at the aggregate level and found that the reinforcement model is a better fit to our experimental data than the 
imitation heuristic model (the Vuong test yields V stat = 6).

In line with Section 4.4, we have also checked at the individual level, which of the imitation model or the Bayesian 
learning model or the reinforcement learning model allows offering the best prediction. That is, we compare at the in-
dividual level which of the reinforcement model with parameters in Table 3, or the generalized Bayesian model with 
parameters in Table 4 or the Imitation model with parameters in Table 11 explains best the observed choices of any 
given subject across the 70 rounds. We find that out of the 235 participants, 71.48% fit the Reinforcement model best, 
followed by 14.46% for the Imitation model and 14.04% for the Bayesian model. These statistical exercises reinforce the 
trust in the generalized reinforcement learning model as compared with alternative learning models in the context of our 
experiment.

6.3. Payoff comparison

Our study of the three main treatments is suggestive that some inefficiencies arise due to the coarseness of the feedback 
received by subjects. As we have also run control sessions for the return specifications of treatments 1 and 3 in which 
the feedback was made more detailed (separate feedback for Red1 and Red2), it is of interest to compare how the average 
payoffs compare between control and treatment over rounds. This is reported in Fig. 6.

Fig. 6. Payoff difference between Control and Treatment.

As seems apparent the payoff is higher in control than treatment. To assess this from a statistical perspective, we have 
conducted a t-test. That is, we have compared the overall payoff as measured by the sum of black balls obtained over the 
70 rounds across the population of subjects categorized as control or treatment. For the return specifications of Treatment 1 
in which v Red1 = 0.4, v Red2 = 0.8, the average sum was 38.2 black balls in control whereas it was 38.7 in treatment (even if 
small this difference is shown to be statistically significant with p-value 0.000). For the return specifications of Treatment 3 
in which v Red1 = 0.1, v Red2 = 0.9, the average sum was 37.68 black balls in control whereas it was 32.48 in treatment. This 
difference is bigger and statistically significant (p-value 0.000). Interestingly, the difference is much stronger for treatment 3 
in which the large return of Red2 is missed by several subjects. From this, we conclude that there can be substantial gains 
in providing detailed feedback if possible in such contexts (Fig. 6).28

7. Conclusion

In this paper, we have considered the choices to be made between familiar alternatives and unfamiliar alternatives for 
which the obtained feedback is aggregated over different states of the economy. The literature on ambiguity aversion would 
suggest that the unfamiliar alternatives would be discounted as compared to the familiar ones, but that literature has largely 
ignored how behaviors would change in the face of continuously coming new feedback that would remain aggregated over 
different states.

Several competing learning models could be considered to tackle the choices in the face of new feedback: either exten-
sion of reinforcement models in the spirit of the valuation equilibrium (Jehiel and Samet, 2007) or Bayesian learning models 
in which subjects would start with some diffuse priors and update as well as they can, based on the coarse feedback they 

28 The gains seem all the more pronounced that the returns to the unfamiliar choices are very heterogeneous and there is a strong negative correlation 
in the returns between the familiar and the unfamiliar choices, as is the case in treatment 3. More work is needed to confirm this more generally.
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receive. Ideas of ambiguity aversion can be combined with such learning models along with the idea that subjects make 
noisy best-responses given their expectations, as routinely done in the empirical literature (discrete choice models as con-
sidered by McFadden) or in the experimental literature (quantal response equilibrium as defined by McKelvey and Palfrey, 
1995).

Our results indicate that the similarity-based reinforcement learning models outperform their Bayesian counterparts 
and that little discount seems to be applied to unfamiliar choices even when the feedback relative to them is aggregated 
over different states, and as in other experimental findings, our results also indicate that subjects’ choices require some 
noise in the best-response formulation. We believe such a work could be viewed as a starting point for a broader research 
agenda that aims at understanding how subjects make choices in the face of a mix of coarse and precise (state-specific) 
feedback. Understanding further whether and when subjects seek to generate state-specific feedback should also be part of 
this broader agenda.

Appendix A. Instructions

Instruction sheet for the players (In the lab the instructions were in French):

Control Group:
Welcome to the experiment and I thank you for your participation. Please listen to these instructions carefully. If you 

have any questions kindly raise your hand and it shall be addressed. You receive 5 euros for participating and then your 
payoff depends on your performance in the experiment.

The Experiment:
The experiment consists of 70 rounds. It is a simple decision task. There are two situations you may face referred to as 

states 1 and 2. In each state, you have to choose one of two urns. Each urn is composed of ten balls either black or white 
in color. When you choose an urn, one of the balls in the urn is drawn at random (by the computer) and it is immediately 
replaced after the computer has noted the color of the ball. If the ball drawn is Black, you can receive extra payment (see 
below for details) whereas if the ball drawn is White you receive no payment.

The two urns available in state 1 are Blue and Red, respectively. The two urns available in state 2 are Green and Red, 
respectively. While the compositions of the various urns remain the same throughout the experiment, note that the compo-
sitions of the Red urn in state 1 need not be the same as the composition of the Red urn in state 2. These are two different 
urns.

As the experiment goes, on your computer screen, you will be informed whether you have to make a choice of urns in 
state 1 (Blue or Red) or in state 2 (Green or Red). The sequence of choices from states 1 or 2 is decided randomly by the 
computer. Your task is to choose one urn out of the two in each state.

Note: We drew 100 times a ball (replacing the ball in the urn after each draw) out of the Blue and Green urn. We 
obtained the following composition

Blue 30 Black 70 White

Green 68 Black 32 White

At the beginning of the experiment:

• Your terminal is randomly assigned a State of the world. If in State 1, you choose between a Red and Blue urn. If in 
State 2, you choose between a Red and Green urn.

• After you choose the color of the urn that you want to pick, you click on the screen. A ball (the color of which could 
be either Black or White) will be drawn from that urn by the computer. You will not know the color of the ball drawn. 
This implies you will not have the information for your choice.

• Once all participants have made their choices, we provide you with some feedback. The total number of black and white 
balls drawn in previous rounds by all subjects according to the color of the urn (Blue, Red1, Red2, Green).

• Following the feedback, your terminal is randomly assigned a state of the world again. The state may vary from the 
previous round or remain the same.

• We then repeat the same experiment again until the completion of the 70 rounds.

For determining your payoff, two of the rounds will be randomly chosen at the end of the experiment. If one of your 
balls in these two rounds is Black, you will get an extra 5 euros. If both of your balls in these two rounds are Black, you 
will have an extra 10 euros. Otherwise (if both balls are White), you will have no extra return. So if you have no questions 
let us begin!
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Treatment Group:
Welcome to the experiment and I thank you for your participation. Please listen to these instructions carefully. If you 

have any questions kindly raise your hand and it shall be addressed. You receive 5 euros for participating and then your 
payoff depends on your performance in the experiment.

The Experiment:
The experiment consists of 70 rounds. It is a simple decision task. There are two situations you may face referred to as 

states 1 and 2. In each state, you have to choose one of two urns. Each urn is composed of ten balls either black or white 
in color. When you choose an urn, one of the balls in the urn is drawn at random (by the computer) and it is immediately 
replaced after the computer has noted the color of the ball. If the ball drawn is Black, you can receive extra payment (see 
below for details) whereas if the ball drawn is White you receive no payment.

The two urns available in state 1 are Blue and Red, respectively. The two urns available in state 2 are Green and Red, 
respectively. While the compositions of the various urns remain the same throughout the experiment, note that the compo-
sitions of the Red urn in state 1 need not be the same as the composition of the Red urn in state 2. These are two different 
urns.

As the experiment goes, on your computer screen, you will be informed whether you have to make a choice of urns in 
state 1 (Blue or Red) or in state 2 (Green or Red). The sequence of choices from states 1 or 2 is decided randomly by the 
computer. Your task is to choose one urn out of the two in each state.

Note: We drew 100 balls randomly out of the Blue and Green urn which gave us the composition

Blue 30 Black 70 White

Green 68 Black 32 White

At the beginning of the experiment:

• Your terminal is randomly assigned a State of the world. If in State 1, you choose between a Red and Blue urn. If in 
State 2, you choose between a Red and Green urn.

• After you choose the color of the urn that you want to pick, you click on the screen. A ball (color of which could be 
either Black or White) will be picked up from that urn. You will not know the color of the ball drawn. This implies you 
will not have the information of your choice

• Once every participant has made their choice, we provide you with the feedback. The No. of black and white balls 
drawn from each colored urn (Blue, Red, Green) across states based on only the previous round draw is reported. Note 
that the information for Red corresponds to the No. of balls picked in State 1 and 2.

• Following the feedback, your terminal is randomly assigned a state of the world again. The state may vary from the 
previous round or remain the same. Note that the composition of the urn is however fixed throughout the experiment.

• We then repeat the same experiment again till we complete 70 rounds.

For determining your payoff, two of the rounds will be randomly chosen at the end of the experiment. If you have picked 
up B in that particular round, you end up with 5 euros more for each B otherwise no returns. So if you have no questions 
let us begin!
20



P. Jehiel and J. Singh Games and Economic Behavior 130 (2021) 1–24
Appendix B. Monte Carlo simulation for reinforcement learning model

The learning model we described is parameterized by (ρR , ρB , δ, λ, B Rinit). The diagrams below show that these param-
eters are normally distributed via Monte Carlo simulations with 1000 iterations and n = 240 (Fig. 7).29

Fig. 7. Results for Monte Carlo simulations for Model 1.

Appendix C. Simulated reinforcement with different noise parameter for T1

The figure shows simulated proportions of choices for the reinforcement model over 70 rounds with the estimated 
parameters for Treatment 1. Instead of using the noise parameter, λ = 5.23, we use λ = 7 to introduce less noise. This 
improves the fit of the simulated data with the actual one (Fig. 8).

Fig. 8. Simulated reinforcement learning for Treatment 1 with λ = 7.
29 This is in line with number of players in our actual experiment.
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Appendix D. Drivers affecting reinforcement learning

D.1. Incomplete learning

It is of interest to understand how the gap between valuation equilibrium and optimal behavior is generated. The main 
factor driving this difference is the nature of the feedback being aggregate. One could argue that with 70 rounds, incomplete 
learning might be a concern. In Fig. 12, we report the simulated frequencies of urn choices using the reinforcement model 
across all time periods and treatments using estimations from Table 2. Across all these sessions, our simulated frequencies 
show that the frequencies remain stable and there seems to be convergence at t = 70. We can therefore rule out incomplete 
learning as a possible cause for the gap between valuation equilibrium and optimal behavior (Fig. 9).

Fig. 9. Simulated choices for t = 700 using the reinforcement model.
22



P. Jehiel and J. Singh Games and Economic Behavior 130 (2021) 1–24
D.2. Noise

Another factor leading to the gap between optimal and valuation learning could be the level of noise represented by λ
in Table 2. In Fig. 13, we report the simulated frequencies of urn choices using the reinforcement model across all time 
periods and treatments using estimations from Table 2 and decreasing the level of noise by assigning λ = 100. In both T2 
and T3, the choices converge 100% to the ones predicted by Valuation equilibrium. Consistent with Appendix C, a lower 
level of noise is required with α = 1000 to achieve convergence to Valuation equilibrium (Fig. 10).

Fig. 10. Simulated choices for λ = 100 (no noise) using the reinforcement model.
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