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Abstract

Lack of diversity in higher education is partly driven by long-run

belief distortions about admission chances at elite colleges. We depart

from the rational expectation framework and propose a concrete model

of expectation formation in which students estimate their admission

chances by sampling peers who previously applied to elite colleges but

need not exactly share the same characteristics as themselves. Two types

of inefficiencies arise in steady state: high-achieving disadvantaged stu-

dents self-select out of elite colleges, and average students from advan-

taged families apply to elite colleges even though their true admission

chances are null. We then explore the additonial inefficiencies induced

by competition across neighborhoods with different wealth characteris-

tics, and we investigate the efficiency of several policy instruments such

as quotas, affirmative action or the mixing of neighborhoods.
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1 INTRODUCTION

According to the rational expectations paradigm that is commonly used by
economists, students when applying to elite colleges should form correct be-
liefs about their admission chances, in particular assessing correctly how the
admission chances vary with observable characteristics such as the results
obtained in ability tests. By contrast, sociologists argue that students are em-
bedded in their social environment and obtain information by observing the
decisions made by others, leading to mistakes and biases. We note that there
is ample evidence that agents hold incorrect beliefs that are correlated across
agents in the social network.1

Neither economists nor sociologists, however, propose a coherent frame-
work for understanding the two-way interactions between expectation for-
mation and the social environment. In the rest of the paper, we propose such
a framework in the particular context of a career choice problem in which
students have to decide whether or not to apply to elite colleges.

Specifically, we assume that students differ in two dimensions: their abil-
ity (accessible through standardized test, say), and their cost of being rejected
from elite colleges (that can alternatively be thought of as an opportunity
cost induced by rejection). Students strategically choose one out of two oc-
cupations: unqualified jobs on the labor market (or non-selective vocational
training), and elite colleges. Elite colleges have limited seats and select only
the best students up to their capacity. Importantly, we assume that students
do not form rational expectations regarding their admission chances. We consider
instead that they form their expectations by estimating the admission prob-
ability using a sample of past experiences from their peers. This estimation
procedure is constrained in three ways: First, the sample is endogenous and
consists only of students who applied in the past to elite colleges. Second,
the sample must have a size no smaller than some threshold τ viewed as
necessary to make the statistics derived from the sample sufficiently reliable.

1To name a few, Kapor et al. (2020) elicit students’ subjective admission chances in a low-
income district of Connecticut uncovering important departures from rational expectations.
On the social network dimension, Altmejd et al. (2020) show that older sibling’s enrollment
in college increases a younger sibling’s probability of enrolling in college at all.
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Figure 1: The x-axis represents students’ cost, the y-axis represents ability, and the
z-axis is the population density. There are two occupations: H are elite colleges that
have limited capacity, and L are jobs with no qualifications. (Left) Allocation of stu-
dents to occupations in a rational expectations equilibrium. (Right) Allocation of
students to occupations in a local sampling equilibrium. The shaded areas represent
students who are mismatched: the top-right square corresponds to high-achieving
disadvantaged students who self-select in non-selective colleges; the bottom-left tri-
angle corresponds to average-achieving advantaged students who apply to elite col-
leges but are rejected.

Third, students ask in priority peers with similar ability.2 We introduce the
“local sampling equilibrium” representing steady states of a process in which
students best respond to their subjective beliefs viewed as the empirical fre-
quencies of admissions in the samples, and subjective beliefs are consistent
with the above sequential sampling estimation procedure.

In our model with a continuum of students and no aggregate uncertainty,
under rational expectations, students perfectly sort in each occupation based
on their ability and the equilibrium is efficient. Things are different in the

2The rationale for the first constraint is that information about rejection rates is typically
confined in practice to the pool of applicants as for non-applicants this would rely on coun-
terfactuals which are rarely accessible. The rationale for the second constraint can be thought
of in relation to the bias-variance trade-off, which is a core idea in statistics. The rationale for
the third constraint is that it seems plausible that students would know that the admission
probabilities depend on ability, therefore leading them to ask first peers with similar abil-
ity. We briefly discuss in appendix the case in which students would ask according to the
proximity in cost and observe it induces more biases.
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sampling equilibrium. Indeed, if students were to follow the same strategy
as in the rational expectations equilibrium, no student who apply would get
rejected. Thus according to the sampling procedure, every student would
apply believing that the acceptance probability is 1 whatever the type of stu-
dent. Of course, when all students apply, some are rejected given the capacity
constraint, thereby yielding a contradiction. Our first general result is that in
a local sampling equilibrium two types of inefficiencies arise: First, some
high-achieving disadvantaged students self-select out of elite colleges. Sec-
ond, some average-ability advantaged students apply to elite colleges but are
rejected. This equilibrium mismatch is due to the fact that average (or above)
students who apply and get rejected induce a strategic externality on high-
achieving students by distorting their perceived admission chances down-
ward, and average (or below) students who apply and get accepted induce
a strategic externality on low-achieving students by distorting their beliefs
upward. These strategic externalities arise because of the combination of ra-
tioning at elite colleges and the non-rational character of expectations, which
leads both high and low ability students to rely on average-ability peers with
different admission results to compute their admission chances. By contrast,
there is no rationing on the labor market, hence there are no payoff-relevant
distortions for students in the assessment of this alternative. See Figure 1
for a graphical representation of the rational expectations equilibrium and
the local sampling equilibrium. We observe that the local sampling equilib-
rium moves gradually toward the rational expectations equilibrium, as one
reduces the size τ of the samples. At the other extreme, when τ is large, all
students have the same expectation about the admission chances irrespective
of their type. The sampling procedure can be seen as inducing in students’
minds a kind of regression to the mean when assessing the link between
ability and the admission chance, where the mean admission rate is endoge-
nously determined by the application strategy of students.

Our second main investigation concerns the study of competition across
several neighborhoods where students across all neighborhoods compete for
the same seats, but sampling takes place locally, separately in each neigh-
borhood. Our main question of interest concerns how asymmetries across
neighborhoods in the sampling size and/or in the cost distributions affect
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the welfare in the various neighborhoods as well as the average quality of
admitted students. Simple results showing the comparative advantage of
neighborhoods using smaller sampling size and/or having smaller costs are
established in extreme cases, and simulations pointing to non-trivial compar-
ative statics in general are provided. We also study the effect on redistribu-
tion and welfare of standard policy instruments such as quotas, affirmative
action (based on neighborhood) and the mixing of neighborhoods. While we
establish the redistributive role such policies may have, we provide several
results suggesting that the effects of these on total welfare may be ambiguous
or even positive.3

Related Literature At a methodological level, our model of belief forma-
tion can be viewed as offering a balance between strategic sophistication as
usually considered in economics—which is empirically supported by some
studies (Agarwal and Somaini, 2018)—and the embeddedness of students’
beliefs as usually considered in sociology. This is to be contrasted with the
“undersocialized” view of an atomic agent that forms correct beliefs inde-
pendently from her environment as well as the “oversocialized” accounts of
expectation formation in which students mechanically inherits the beliefs of
their parents or have social capital fully account for educational choices (the
sociology literature has departed from this Bourdieusian view in the last 20
years, see for instance Aschaffenburg and Maas (1997)).4

There is a growing empirical literature on expectation formation in edu-
cation, broadly divided between beliefs on the returns to schooling and sub-
jective admission chances.

Very few papers investigate subjective admission chances, which is the
focus of our paper. Most notably, Hastings and Weinstein (2008) show that
providing information about school quality and odds of admission to low-

3While more research would be needed in light of the hot debates surrounding the assess-
ments of such policies, our results may be viewed as providing a tentative explanation as to
why researchers have found little empirical basis for the mismatch hypothesis which asserts
that affirmative action necessarily results in boosted students being admitted to colleges for
which they are otherwise unqualified and reduce welfare (see Alon and Tienda (2005)).

4The distinction between undersocialized and oversocialized explanations is due to Gra-
novetter (1985).
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income families with high-achieving students increases application to good
schools. It is unclear, however, if the effect is driven by growing awareness
about these schools or changing expectations. Kapor et al. (2020) directly
elicit admission probabilities of students facing a centralized school choice
mechanism that rewards strategic behavior. They find that households play
strategically, but do so with miscalibrated beliefs. Belief errors, however, do
not seem to correlate with observable characteristics such as race or economic
status. Finally, Altmejd et al. (2020) show that older sibling’s enrollment in a
better college increases a younger sibling’s probability of enrolling in college
at all, especially for families with low predicted probabilities of enrollment.

The empirical literature on the perceived returns to schooling that is less
directly related to our model is mixed. In Wisconsin, Dominitz and Manski
(1994) find that the perceived returns from a Bachelor’s degree compared to
a high school diploma are positive. In Chile, Hastings et al. (2015) show that
low-achieving disadvantaged students who apply to low-earning college de-
gree programs overestimate earnings for past graduates by over 100%, while
beliefs for high-achieving students are correctly centered. Conversely in the
Dominican Republic, Jensen (2010) find that the perceived returns to sec-
ondary school are extremely low, despite high measured returns.

The first theoretical model of expectation formation on the returns to
schooling is due to Manski (1993). He postulates an additive log-income
equation, and he assumes that students infer the returns to schooling by tak-
ing the conditional expectation of log-income. If students omit to condition
on ability—e.g., because they do not observe the ability of their peers—he
shows that more low-ability and less high-ability students enroll to college.
To some extent, our model can be viewed as enriching that kind of approach
to expectation formation about admission chances. We also add to Manski
the idea of local sampling and also of selection neglect to the extent that our
students do not take into account that in their sampling they only see stu-
dents applying to elite colleges (see also Esponda (2008) and Jehiel (2018) for
the modelling of selection neglect in other environments).

There is a vast literature on social learning illustrating that past cohorts’
behavior influences the expectations of current cohorts (Banerjee, 1992; Bikhchan-
dani et al., 1992; Ellison and Fudenberg, 1995). These papers, however, typi-
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cally assume that agents have enough prior information to infer the outcome
of counterfactual actions using Bayes’ rule. Manski (2004) relaxes this as-
sumption by considering a social learning environment in which students
have no prior belief on the distribution of outcomes conditional on actions—
as in our model. Hence students cannot infer anything on counterfactual ac-
tions. Only assuming the stationarity of the outcome distribution—as we do
in this paper5—he shows that learning induces a process of sequential reduc-
tion in ambiguity. Though similar in motivation, our papers differ with the
social learning literature because we account for strategic interactions among
students which are instrumental to produce belief distortion.

Finally, several papers in behavioral game theory have introduced vari-
ous departures from the rational expectation hypothesis. These include among
others the cursed equilibrium Eyster and Rabin (2005), the analogy-based ex-
pectation equilibrium (Jehiel, 2005) or the Berk-Nash equilibrium Esponda
and Pouzo (2016). The spirit of our approach is maybe closest in spirit to
Jehiel (2005) who introduces a model of coarse expectations in which play-
ers bundle actions into classes. In equilibrium, players best-respond to their
analogy-based expectations, and expectations correctly represent the average
behavior in every class. Our paper is based on a different learning rule where
students average the outcome of an endogenously chosen group of play-
ers and do not bundle actions, whereas in Jehiel (2005) players average the
outcome of an exogenously given bundle of actions using past observations
from an exogenously given group of players (see however Jehiel and Mohlin
(2022) for a model that endogenizes the analogy classes of Jehiel (2005) based
on a similar bias-variance trade-off as the one used to motivate our sampling
heuristic, see also Mohlin (2014) on the bias-variance trade-off).

2 SETUP

We introduce a stylized model of career choice with strategic students and
rationing at elite colleges. There is a unit mass of students indexed by their
ability θ ∈ [θ, θ] ⊆ R+, and by their cost c ∈ [c, c] ⊆ R+. There is a probability
distribution F on N ≡ [θ, θ] × [c, c] with continuous density f that has full

5Meaning that colleges never modify their admission criteria.

7



support. In the main text, we view the cost as an opportunity cost from being
rejected from elite colleges.6 In the Appendix, we discuss richer formulations
for the opportunity cost and briefly develop the analysis for the application
cost formulation.

Students choose among two occupations: going directly on the labor mar-
ket (or a non-selective vocational training) L, or applying to selective col-
leges H . Without loss of generality, the utility of attending an elite college is
UH(θ) = θ, whereas for simplicity we assume that the utility of going directly
on the labor market is UL(θ) = 0 for all θ.

Students can apply to only one occupation: the action space is then A =

{L,H}. There is no rationing for going on the labor market. Elite colleges,
however, have a limited number of seats and they select students with the
highest ability (among the pool of applicants) up to their capacity q � 1.7

The payoffs are as follows:

– If student (θ, c) goes on the labor market L her utility is 0.

– If student (θ, c) applies to H and obtains a seat, her utility is θ.

– If student (θ, c) applies to H but does not get a seat, she goes on the
labor market and her utility is −c.

A natural interpretation of our model is that if a student applies to H and
gets rejected, he loses some time before entering the job market resulting in
a loss of c. A more elaborate interpretation would allow for three levels H ,
M and L of applications where L represents the labor marker and H and M

represent high and medium ranked colleges respectively. The initial choice
is whether to apply to H or M and in case of rejection only L would be left.
Our model corresponds to a stylized version of this, assuming there is limited
capacity constraint on M .

Getting back to our model, a strategy profile σ : N −→ ∆A is a (mesurable)
function from the population of students to mixed actions. This is a binary

6We have in mind that poorer students generally have a higher rejection cost since condi-
tional on being rejected at an elite college, poorer students would have benefited more from
going directly on the labor market.

7Our results are unchanged if colleges only receive a noisy signal about students’ ability.
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action game, hence we let σ(θ, c) ∈ [0, 1] simply denote the probability that
student (θ, c) applies to H .

A key object that drives the choice of student (θ, c) is the subjective proba-
bility this student (subjectively) assigns to obtaining a seat at an elite college
conditional on applying to H . In both the rational case and our approach,
this subjective probability turns out to depend only on θ and we denote it by
p(θ) accordingly. Based on p(θ), student (θ, c) applies to H whenever

p(θ)θ − (1− p(θ))c ≥ 0

This leads to the following definition of an optimal strategy profile.8

DEFINITION 1. σ is optimal given subjective beliefs p(·) if

σ(θ, c) =

1 when c ≤ p(θ)
1−p(θ)θ

0 when c > p(θ)
1−p(θ)θ

For any strategy profile, let θ(σ) denote the cutoff at H such that any stu-
dent with ability θ > θ(σ) who applies to H is admitted. It is defined as
follows: θ(σ) = θ when

∫ θ

θ

∫ c

c

σ(θ, c)f(θ, c) dc dθ < q

Otherwise, θ(σ) is uniquely defined as the largest θ∗ such that

∫ θ

θ∗

∫ c

c

σ(θ, c)f(θ, c) dc dθ = q

Subjective beliefs are rational when they are consistent with the admission
cutoff, given a strategy profile.

8For completeness, we assume that the student applies to H when indifferent, but how
indifferences are resolved plays no role in the analysis.
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DEFINITION 2. pR(·) is rationally consistent with σ if

pR(θ) =

1 when θ ≥ θ(σ)

0 when θ < θ(σ)

Therefore, the rational expectations equilibrium is defined as follows.

DEFINITION 3 (Rational Expectations Equilibrium). σR is a rational expecta-
tions equilibrium if there exist subjective beliefs pR such that σR is optimal given pR

and pR is rationally consistent with σR.

Let us now characterize the unique rational expectations equilibrium—
thus proving existence. Given the strategy profile σ and the consistency of
beliefs, it is optimal to apply to H for all students with ability θ > θ∗ where
θ∗ = θ(σ) as defined above. It follows that in a rational expectations equilib-
rium, the admission cutoff θ∗ solves∫ θ

θ∗

∫ c

c

f(c, θ) dc dθ = q ⇐⇒ θ∗ = H−1(1− q)

where H denoted the cdf of the marginal distribution of θ. In other words,
the equilibrium allocation of students to occupations can be described by
the cutoff strategy consisting in applying to H whenever θ is higher than
H−1(1− q), thereby yielding:

PROPOSITION 1 (Equilibrium Characterization). In the unique rational expec-
tations equilibrium, students NH = {(θ, c) : θ > H−1(1− q)} obtain a seat at elite
colleges, and NL = N \NH go on the labor market.

(All formal proofs appear in the Appendix). The rational expectations
equilibrium induces perfect assortative matching as students sort across oc-
cupations based on their ability. Namely, high-achieving students go to elite
colleges, and average- or low-ability students go on the labor market. No
student applying to H gets rejected. See Figure 1 (Left) above for a graphical
illustration of the equilibrium.
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Define welfare as

W (σ) =

∫ θ

θ∗

∫ cH(θ,p(θ))

c

θf(θ, c) dc dθ −
∫ θ∗

θ

∫ cH(θ,p(θ))

c

cf(θ, c) dc dθ

where cH(θ, p(θ)) is the cost below which student (θ, c) applies to H con-
ditional on admission chances p(θ). In the rational expectation equilibrium,
cH(θ, p(θ)) = c for all θ ≥ H−1(1−q) and cH(θ, p(θ)) = c for all θ < H−1(1−q).
Rational expectations induce perfect sorting, which is welfare maximizing.

3 EXPECTATION FORMATION AND BELIEF TRAPS

In this section we introduce a simple model of expectation formation based
on extrapolations and sampling, and we show, among other things, how it
leads to persistent belief distortions among high-achieving disadvantaged
students—so-called “belief traps.”

Students have no prior over the distribution of admissions conditional on
applications. We assume that they non-parametrically estimate this distribu-
tion by averaging the outcome of their peers who are closest to them in terms
of ability. Let B(N) denote the set of measurable subsets of N .

DEFINITION 4. The sample for action H of student (θ, c) conditional on a strategy
profile σ (from the previous generation) is

S(θ, c | σ) = arg inf
B∈B(N)

{∫
B

|θ − θ̃| dF (θ̃, c̃) :

∫
B

σ(θ̃, c̃) dF (θ̃, c̃) > min(τ, τ(σ))

}

where τ(σ) =
∫
N
σ(θ̃, c̃) dF (θ̃, c̃) is the total mass of students applying to H .

In words, S is the set with mass τ of students applying to H and having
ability closest to θ. There is a convex penalty of including students with
dissimilar ability, hence the sample S(θ, c | σ) is rectangular and it can be
described by a simple index:

b(θ, σ) = inf

{
b > 0 :

∫ min{θ,θ+b}

max{θ,θ−b}

∫ c

c

σ(θ̃, c̃) dF (θ̃, c̃) > τ

}
.
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This means that the sample for actionH of student (θ, c) is obtained by taking
all students with ability θ′ ∈ [θ − b(θ, σ), θ + b(θ, σ)] regardless of their cost.
See Figure 2 below for a graphical illustration.

We can now define subjective admission chances. As in the previous sec-
tion, we denote by θ(σ) the admission cutoff at elite colleges given the strat-
egy profile σ. The subjective admission chances at elite colleges H are ob-
tained by averaging the experiences of the students in the sample.

DEFINITION 5. Subjective admission chances at elite colleges p are τ -consistent
with σ if9

p(θ) =
1

min(τ, τ(σ))

∫
S(θ,c|σ)

σ(θ̃, c̃)1{θ̃ > θ(σ)} dF (θ̃, c̃).

We now introduce our solution concept, the local sampling equilibrium,
which requires optimality of actions and consistency of beliefs.

DEFINITION 6 (Local Sampling Equilibrium). σ is a local sampling equilibrium
if there exists p such that σ is optimal given p and p is τ -consistent with σ.

We interpret this solution concept as the stationary point of an intergen-
erational model of learning in which students of the current generation ask
peers from the previous generation the outcome of their behavior. Therefore,
this sample is completely endogenous as it depends on the strategy profile of
the previous generation. Importantly, students know nothing ex-ante about
the admission process: it could be either because schools do not disclose their
admission criteria, or because students lack the ability to understand the ad-
mission process, or because they do not trust publicly disclosed information.
Therefore, students entirely rely on the information provided by their social
network. Of course, this is a stylized assumption and in practice we expect
students to use a mix of information sources to form their expectations.

We made two assumptions on the learning process. First, students care
about the precision of their estimate hence they must acquire a sufficient
amount of data for each action. Formally, this means that students ask a

9If a mass of students less than τ choosesH , then we divide by
∫
B
σk(θ̃, c̃) dF (θ̃, c̃) instead

of τ .
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mass τ ∈ (0, 1] of students from the previous generation, where τ is inter-
preted as a confidence parameter. This parameter captures a bias-variance
trade-off: if the sample it too small then subjective admission chances are
unbiased because they are computed using students with similar ability, but
the estimator is noisy.10 Conversely, if the sample is too large then subjec-
tive admission chances are precisely estimated but they are more likely to be
biased.

Second, students contact in priority peers with similar ability. This can be
justified on the ground that if students know that the admission probability
is somewhat correlated with their ability, then they might reduce bias by
asking peers with similar ability.11 From another perspective, one can view
our sampling technology as the one inducing the smallest distortions away
from rationality, so that any inefficiency identified within our setup is likely
to persist with alternative sampling specifications. In Appendix B, we briefly
discuss the case when bundling is made on similarity in c, and we illustrate
how extra inefficiencies would arise in this case.

Note that students include in their sample only peers who actually applied
to H in the previous period. Therefore, students make no inference using
counterfactual outcomes—i.e., they are not asking their peers “What would
have been your admission chances at x conditional on applying there?”. Who
is included in the sample is endogenous and typically differ for each player,
even though sample size is identically equal to τ for each player. Concretely,
the perimeter of the sample for H of low-ability disadvantaged students is
very large because no close ties ever apply to H . Therefore, they will need
to ask high-achieving peers who have very different characteristics which
induce a large bias in the subjective admission chances. In general, a larger
perimeter implies a larger bias because the sample includes students with
very different characteristics, whereas a smaller perimeter implies a smaller
bias.

10This is a reduced-form interpretation because there is no actual noise in the estimate as
students sample from a continuum of peers.

11Alternatively, one can view this assumption as reflecting the hypthosesis that prior to
applying to colleges, students have been grouped according to their ability, thereby leading
to ties more naturally linked to ability.
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Existence. We apply a fixed point argument on the mapping from subjec-
tive beliefs p : Θ −→ [0, 1], to best responses σ as derived from Definition 1,
compounded with the mapping from strategies σ to subjective beliefs as de-
rived from Definition 5. The fixed point exists if each sub-map is continuous.
It is easy to see that the best response σ has a threshold structure that varies
continuously with p. Moreover, the sample bounds b(θ, σ) are continuous in
the strategy profile σ, and so are subjective beliefs p. This shows the existence
of a pure strategy local sampling equilibrium. (The formal proof appears in
the Appendix).

Equilibrium Characterization. In the characterization below we make the
simplifying assumption that cost and ability are independently distributed,
i.e., f(θ, c) = h(θ)g(c). Fixing ability and the subjective admission chances,
students who apply to H have a cost c < cH(θ, p(θ)) where

cH(θ, p(θ)) =
p(θ)

1− p(θ)
θ.

The total mass of applicants to H is then:

∫ θ

θ

∫ cH(θ,p(θ))

c

f(θ, c) dc dθ.

In a local sampling equilibrium, the ability of the last student admitted to H ,
denoted θ∗, is such that the mass of applicants at H is equal to the capacity
of elite colleges: ∫ θ

θ∗

∫ cH(θ,p(θ))

c

f(θ, c) dc dθ = q.

Given our independence assumption, this equation can be simplified into:

∫ θ

θ∗
h(θ)G

(
p(θ)

1− p(θ)
θ

)
dθ = q (1)

Let us now derive the equation that guarantees τ -consistency of subjec-
tive admission chances. The subjective admission chances of student (θ, c)
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S(θ(σ), c)

θ(σ) + b(θ, σ)

θ(σ)− b(θ, σ)

Figure 2: Construction of the sample for the last student admitted at an elite college
(θ(σ), c) in (c, θ)-space. The sample, represented in the shaded box, includes approx-
imately a mass τ of students who applied to an elite college H . All students above
the dashed line applied to H (i.e. σ(θ, c) = 1) but only those above the solid line got
admitted at an elite college. Rejected students exert a strategic externality on higher
achieving students by distorting their estimated admission chances downard.

are τ -consistent if they solve the following equation:

p(θ) =
1

τ

∫ min{θ,θ+b(θ,σ)}

max{θ,θ−b(θ,σ)}

∫ cH(θ̃,p(θ̃))

c

1
{
θ̃ > θ∗

}
dF (c̃, θ̃).

where b(θ, σ) is derived as explained above. With our independence assump-
tion, this can be rewritten as:

p(θ) =
1

min(τ, τ(σ))

∫ min{θ,θ+b(θ,σ)}

max{θ,θ−b(θ,σ)}
G

(
p(θ̃)

1− p(θ̃)
θ̃

)
1
{
θ̃ > θ∗

}
dH(θ̃) (2)

where

τ(σ) =

∫ min{θ,θ+b(θ,σ)}

max{θ,θ−b(θ,σ)}
G

(
p(θ̃)

1− p(θ̃)
θ̃

)
dH(θ̃)

In equilibrium, θ∗ must solve (1) given p(θ), and p(θ) must solve (2) for all
students (θ, c) given θ∗.

We can now compare equation (1) with the equation that defines the last
student admitted to H in a rational expectations equilibrium:

∫ θ

θ∗
h(θ) dθ = q. (3)
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If there are students with sufficiently high costs—e.g. if g has full support
on R+—any small belief distortion in equation (2) will induce self-selection
among disadvantaged students: c > cH(θ, p(θ)). Then, the term under the in-
tegral sign in (1) is smaller than in (3) becauseG(cH(θ, p(θ))) < 1 as cH(θ, p(θ)) <

c ≤ c. Therefore, the ability of the last admitted student at H in a local sam-
pling equilibrium θ∗ must be smaller than in a rational expectations equilib-
rium to fill all the seats in equation (1).

We just proved that two types of inefficiencies arise in a local sampling
equilibrium: high-achieving disadvantaged students self-select out of elite
colleges even though their actual admission probability is one, and low-
achieving advantaged students spend inefficient resources in applications at
elite colleges even though their actual admission chances are zero. See Figure
1 in the introduction for a graphical representation of the two inefficiencies.

PROPOSITION 2 (Equilibrium Characterization). Suppose that g has full sup-
port on R+ and assume ability and cost are independent. For all q < 1 there exists
θ∗ ∈ (0, 1) and (σ(θ), p(θ)) that solve (1) and (2) such that in this local sampling
equilibrium students NH = {(θ, c) : θ > θ∗, c ≤ cH(θ, p(θ))} obtain a seat at
elite colleges and NL = N \ NH go on the labor market. There are two types of
inefficiencies:

1. Missed opportunities: all students (θ, c) with ability θ > θ∗ and cost c >
cH(θ, p(θ)) self-select out of elite colleges.

2. Inefficient applications: all students (θ, c) with ability θ < θ∗ and cost c <
cH(θ, p(θ)) apply to H but are rejected and suffer a cost −c.

Observe that compared to the rational expectations equilibrium both the
supply side and the demand side suffer from inefficiencies. On the supply
side, belief distortion arises endogenously and leads to payoff-relevant mis-
takes for high-achieving students and low-achieving advantaged students.
On the demand side, the quality of the pool of admitted students at elite col-
leges is lower than with rational expectations due to equilibrium mismatch.

We now describe comparative statics with respect to the confidence pa-
rameter τ . When τ → 0 students form their expectations using an infinitesi-
mal sample of individuals. As it turns out, in our model this leads to rational
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Figure 3: (Left) Subjective admission chances as a function of student ability. Bias
in subjective beliefs increases with the confidence parameter τ . (Right) Density of ap-
plicants to H as a function of student ability. As τ increases, the admission cutoff θ̃∗

decreases, the number of self-selecting students (on the right of the cutoff) increases
and the number of inefficient applicants (on the left of the cutoff) increases as well.

expectations because students do not bias their estimate with dissimilar stu-
dents. Indeed, taking the limit τ → 0 of the implicit equation (2) we can see
that if θ < θ∗ then there is τ∗ small enough such that θ + b(θ, σ) < θ∗ and
θ − b(θ, σ) < θ∗. Therefore, the integral in (2) is zero, and we have p(θ, c) = 0.
Similarly, one can verify that for all θ > θ∗, p(θ, c) = 1. Therefore, only the
best students apply to elite colleges and the last student admitted in a local
sampling equilibrium coincides with that of rational expectations.

Students, however, do not form expectations using one data point, for-
malized in our model by assuming that τ is strictly positive, away from 0.
To reduce risk induced by imprecise estimates, they are more likely to in-
clude the outcome of multiple peers. In our model, belief distortions increase
with the confidence level τ because students include peers with very differ-
ent characteristics in their sample. Hence bias in the estimate stems from a
selection bias that increases with τ . As τ → 1 (i.e., students include the en-
tire population), the subjective beliefs of the entire population converge. In
practice, we would expect intermediary values of τ so as to trade-off bias and
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precision of the estimate.
This comparative statics is illustrated in Figure 3 (Left). Figure 3 (Right)

illustrates the two types of inefficiencies that arise in a local sampling equi-
librium. We see that as the confidence parameter τ increases, the admission
cutoff θ̃∗τ decreases. Subjective beliefs, however, move smoothly around this
threshold hence the mass of student who apply to H with an ability that is
below the cutoff θ̃∗τ is positive (inefficient applications), and the mass of stu-
dents who apply to H with an ability that is above the cutoff is below one
(missed opportunities).

PROPOSITION 3. In any local sampling equilibrium, a higher confidence param-
eter τ leads to more self-selection from high-achieving disadvantaged students and
to more inefficient applications from low-achieving advantaged students. As τ con-
verges to 0, the local sampling equilibrium converges to the rational expectations
equilibrium.

Comment. The same conclusion does not hold when students sample in
priority peers with similar cost c as opposed to peers with similar ability θ.
As we show in Appendix, in this case, inefficiencies arise even as τ converges
to 0 (essentially because it leads to subjective beliefs that depend on c when
in reality they depend on θ).

3.1 Large sampling window τ = 1

We conclude this section with the case in which τ is large enough so that
students take the average success rate in the entire neighborhood as their
subjective probability of acceptance. This case allows us to characterize more
completely the sampling equilibrium, and the resulting analysis will be used
in the next Section when several neighborhoods will compete for the same
seats in elite colleges.

More precisely, when τ = 1, the subjective admission belief p(θ) is con-
stant independently of θ, which simplifies the analysis. To show this most
simply, we continue to assume here that cost and ability are independently
distributed. To fix ideas, we assume ability is uniformly distributed on [0, 1]

and we let as before G denote the cdf of the distribution of c. For a given
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Figure 4: Total welfare is monotonic in the number of allocated seats q(θ∗).

capacity q, subjective admission chances are equal to the capacity at elite col-
leges divided by the mass of applicants:

p = q
/∫ 1

0

G

(
p

1− p
θ

)
dθ

Given that p 7→ p
∫ 1

0
G( p

1−pθ) dθ is a strictly increasing function of pwith value
0 at p = 0 and 1 at p = 1, we obtain that for each q there is a unique p̃(q)
satisfying the above equation.

We can prove equilibrium uniqueness.

PROPOSITION 4. When τ gets close to 1 and f(θ, c) = g(c), then the local sampling
equilibrium is unique.

As will be convenient when analyzing the multiple neighborhood case,
it is useful to parameterize the equilibrium by the admission threshold θ∗

defined for a given q by ∫ 1

θ∗
G

(
p

1− p
θ

)
dθ = q

where p is p̃(q) as previously defined. We also define a function which takes
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Figure 5: Simulation for G(θ) = c/2. (Left) Quality loss in a local sampling equi-
librium as a function of the admission threshold θ∗ (Middle) Welfare loss in a local
sampling equilibrium as a function of the admission threshold θ∗. (Right) Number
of seats allocated in equilibrium as a function of the admission threshold θ∗.

the value 0 at an equilibrium belief p:

J(p; θ∗) =

∫ 1

θ∗
G( p

1−pθ) dθ∫ 1

0
G( p

1−pθ) dθ
− p.

The first term should be understood as the ratio between the number of
accepted students to the number of applicants. Hence, in equilibrium this
should be equal to p when the sampling window is τ = 1. To guarantee
the existence of a root to the equation J(p; θ∗) = 0, we make the following
assumption.

Assumption 1. The function J(p; θ∗) is decreasing in p.

This assumption is satisfied when G is a uniform distribution, which we
are going to assume in most of the analysis of the next section. Moreover,
when G is a uniform distribution welfare is monotonically increasing in the
number of allocated seats, as shown in Figure 4 (this holds for any support
of g).

It is useful to define measures of quality loss and welfare loss between a
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local sampling equilibrium and the first-best (achieved in a rational expecta-
tions equilibrium). Let the average ability (θ) of admitted students be

M(θ∗) =

∫ 1

θ∗
G
(

p(θ∗)
1−p(θ∗)

θ
)
θ dθ∫ 1

θ∗
G
(

p(θ∗)
1−p(θ∗)

θ
)

dθ

to be compared to MFB(θ∗) = 1 − q(θ∗)
2

, the corresponding first-best average
quality when there are q(θ∗) seats. Similarly, W (θ∗) is defined as in Section 2
and W FB = q(θ∗)(1 − q(θ∗)

2
). In Figure 5, we plot the ratio of these quantities

to assess the relative loss of quality and welfare induced by biased beliefs.
For a uniform distribution with support (0, c), we can solve for equilib-

rium beliefs in closed form. Noting that G(c) = c
c

on [0, c], subjective admis-
sion chances solve

p = q
/[∫ 1

0

min

{
p

1−pθ

c
, 1

}
dθ

]
. (4)

We first consider the case in which min
{ p

1−p
θ

c
, 1
}

=
p

1−p
θ

c
for all θ ∈[0, 1]. Then,

the above condition amounts to a simple quadratic function and solving for
p yields:

p = −qc+
√
q2c2 + 2qc (5)

We now characterize under what conditions the minimum does not bind.
Substituting the expression for p in the following equation:

p
1−p

c− c
θ < 1

and solving for q yields

q̂(θ) =
c2

2θ2
[
(1 + c

θ
)2c− 2(1 + c

θ
) c
θ
c
]

Therefore, the subjective beliefs are given by (5) whenever the capacity at
elite colleges verifies q < supθ q̂(θ). If this condition is violated, however, we
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define θ̂ as the ability that solves q = q̂(θ̂) and we decompose the integral
in (4) into two integrals on the intervals [0, θ̂] and [θ̂, 1] and then solve for p
accordingly.

Remark. For intermediate values of τ , it is not possible to obtain closed
form solutions, therefore we run simulations (see Figure 3). As we already
discussed, the bias increases with the confidence parameter τ because of se-
lection of students with dissimilar characteristics in the sample.

4 COMPETING NEIGHBORHOODS

We consider now the case of multiple neighborhoods competing for the same
positions. The neighborhood plays a role only in shaping the samples from
which students form their subjective assessment, as we assume the sampling
is made locally (only within the neighborhood to which the student belongs).
The fact that students from the various neighborhoods compete for the same
seats creates a linkage between the various neighborhoods as the threshold
ability θ∗ above which students get admitted has to be the same across neigh-
borhoods. This linkage in turn induces externalities across neighborhoods
the effects of which are the main subject of interest of this Section. To for-
malize the questions of interest, consider a two-neighborhood setup. Neigh-
borhood i = 1, 2 consists of a unit mass of students with (θi, ci) distributed
according to distribution fi and sampling window τi. Consider first neigh-
borhood i in isolation, assume there is a mass qi of seats available for students
in this neighborhood and that students follow strategy σi. We let θ(σi, qi) be
the corresponding threshold admission ability in this neighborhood. It is
computed as shown in Section 3. An equilibrium is formally defined as fol-
lows.

DEFINITION 7. A local sampling equilibrium with competing neighborhoods i =

1, 2 (with characteristics fi and τi) and total mass q of seats is a strategy profile
(σ1, σ2) such that there exist q1, q2 satisfying

1. σi is a local sampling equilibrium in the neighborhood iwith a mass qi of seats;

2. q1 + q2 = q and,
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3. θ(σ1, q1) = θ(σ2, q2).

The definition of welfare Wi and average ability of admitted students Mi

in neighborhood i are adapted accordingly. Denote W = W1 +W2 the aggre-
gate welfare, and M = q1M1+q2M2

q1+q2
the average ability of admitted students.

In this section, we are interested in (i) the strategic interactions across
neighborhoods, and (ii) how asymmetries across neighborhoods impact wel-
fare and the average quality of admitted students. We consider asymmetries
in sampling window τi 6= τj , and asymmetries in cost distributions—fixing
the distribution of ability. When varying τ we will assume that τ is either
0 or 1 to make things simpler. When considering asymmetric distributions,
we will consider that in both neighborhoods θi is uniformly distributed on
[0, 1] and ci is distributed according to cdf Gi, independently of θi. Gi will be
taken to be a uniform distribution on [ci, ci] in most results and simulations.
Toward the end of the Section, we briefly consider a case of symmetric neigh-
borhoods in which the distributions of ability and cost are correlated. This
serves to illustrate the possibility of multiple equilibria.

We also discuss the impact of several policies commonly considered to
mitigate inequalities across neighborhoods: quotas in which each neighbor-
hood receives a number of seats proportional to its size, place-based affir-
mative action according to which abilities in one neighborhood are boosted
for the purpose of student admission, and the mixing of neighborhoods (i.e.,
directly changing the composition of neighborhoods).

4.1 Asymmetries in Sampling Window

We first investigate asymmetries in sampling windows, namely τi 6= τj . This
arises naturally when neighborhoods are of different size, and students ask
a fixed number of peers to construct their estimate. In this case, students in
the smaller neighborhoods mechanically communicate with a larger fraction
of their peers.

To keep things simple, we consider within our model an extreme situation
where the sampling window in neighborhood i goes to zero (i.e., neighbor-
hood i is very large) whereas in neighborhood j students contact all their
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peers (i.e., neighborhood j is very small).12 We show that neighborhood j is
disadvantaged and obtain less seats at elite colleges.

PROPOSITION 5. Suppose that Gi = Gj and consider a sequence (τni ) such that
τni −→

n→∞
0 and τj = 1, then limn→∞ q

n
i > qj . If Gi and Gj are uniform, this implies

that limn→∞W
n
i > Wj .

To understand the result, observe that the set of admitted students is iden-
tical whether τni −→ 0 orG = δ0 (point mass at zero cost). Indeed, as the sam-
pling window becomes smaller, the sampling bias on pi goes to zero and each
student has an asymptotically unbiased estimator of his admission chances.
Therefore, students apply to H if and only if θi ≥ θ∗. Instead, when G = δ0

all students apply to H , and only students with θi ≥ θ∗ are admitted. There-
fore, the set of admitted students is identical in both cases. Now, when the
cost distribution goes to zero, it is quite intuitive that students never self-
select and take a larger number of seats at elite colleges. This is proven more
precisely in Appendix.

4.2 Asymmetries in Cost Distribution

We now investigate asymmetries in cost distribution, i.e. Gi 6= Gj . This can
arise due to differences in opportunity costs or in social norms for instance:
the cost of not attending an elite college might be higher in some communi-
ties than others.

To illustrate the effect of such asymmetries most sharply, we start with
an extreme situation where the cost is zero in neighborhood i (i.e. Gi = δ0)
whereas the cost is arbitrary but non-zero in neighborhood j. We show that
neighborhood j is disadvantaged and obtain less seats at elite colleges.

PROPOSITION 6. Suppose that τi = τj , and Gi = δ0 but Gj 6= δ0. Then, qi > qj .
If Gj is a uniform distribution, this implies that Wi > Wj .

Moving to more general forms of cost asymmetries, comparative statics
with respect to the cost distribution, however, are not always intuitive in our

12Even though in our model, neighborhoods i and j are of equal size, we could think
of neighborhood j as being split into identically small neighborhoods as as to justify that
τi ≫ τj , in line with the size asymmetry just suggested.
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model. Using simulations, we show that a first order stochastic shift in Gj

with respect to Gi does not necessarily imply that Wj/Wi decreases, as one
might expect.

Specifically, in our simulations, we consider two cases. First, a situation
in which costs are uniformly distributed on [0, 0.1] in neighborhood i and
uniformly distributed on [0, 0.3] in neighborhood j. Second, a situation in
which costs are uniformly distributed on [0, 0.5] in neighborhood i and uni-
formly distributed on [0.5, 1] in neighborhood j. (See Figure 6 below, case
without quotas). In the second situation, the “disadvantaged” neighborhood
has more seats than the “advantaged” neighborhood. This counter-intuitive
effect is due to the fact that it is on average more “risky” for students in
neighborhood j to apply to an elite college, hence only the best students ap-
ply to H . This increases the admission threshold, which induces more self-
selection in neighborhood i. In equilibrium, students in j end up more opti-
mistic about their admission chances than students in i, yielding q′j/q′i > qj/qi

and W ′
j/W

′
i > Wj/Wi.

4.3 Policy Instruments

We discuss the effect of three possible policy interventions. The first one
consists in imposing quotas, pre-defining the number of seats each neighbor-
hood should have in proportion to the size of the neighborhood. The second
one considers an affirmative action policy consisting in boosting the ability
index θ in one neighborhood in the admission process. Both these interven-
tions amount to modifying the number of seats reserved to each neighbor-
hood as compared with the laissez-faire outcome. Finally, the third policy
consists in changing the compositions of the two neighborhoods by impos-
ing some degree of mixing while leaving the equilibrium force determines
the number of seats assigned to each neighborhood. When considering these
interventions, we will discuss the effect in terms of welfare, in terms of ex-
pected quality of admitted students as well as a comparison of how the two
neighborhoods benefit from the intervention.

Quotas. While we could consider the effect of more general quota specifi-
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cations, we focus here on the case in which the two neighborhoods should
have a number of seats proportional to their size, i.e. qi = qj . We investigate
the impact on welfare (compared to the first-best allocation). We show that
quotas are a redistribution tool across neighborhoods, but that they do not al-
ways lead to welfare gains. Indeed, in the uniform case with small capacities
at elite colleges quotas are welfare neutral.

PROPOSITION 7. Consider two neighborhoods with costs uniformly distributed on
[0, ci] and [0, cj] with ci < cj . As the number q of seats gets small, quotas increase the
welfare of neighborhood i, but have no effect on aggregate welfare at the first order.

The redistributive advantage of quotas applies more generally as illus-
trated by the following Proposition.

PROPOSITION 8. Consider two neighborhoods with costs uniformly distributed
on [0, ci] and [0, cj]. Suppose that q < max{supθ q̂i(θ), supθ q̂j(θ)}. With quotas,
subjective admission chances decrease in the advantaged neighborhood, and increase
in the disadvantaged neighborhood compared to the case without quotas.

The welfare neutrality result of Proposition 7, however, seems more spe-
cific to the conditions of that Proposition. As the next proposition shows,
if inequality across neighborhoods is initially very large then quotas can in-
crease the quality of admitted students which can increase aggregate welfare.
This is illustrated under an extreme specification of our model with uniform
distributions.

PROPOSITION 9. Suppose that cost is zero for all students in neighborhood i and
uniformly distributed on [0, cj] in neighborhood j. As cj −→ 0 and q −→ 0, quotas
increase aggregate welfare compared to the case without quotas.

The intuition for the welfare-enhancing effect of quotas in Proposition 9
is as follows. Without quotas, many average-ability students from neighbor-
hood i get admitted to an elite college because applications are costless for
them, and many high-ability students from j self-select. With quotas, how-
ever, the best students from both groups get admitted, which raises welfare.
Moreover, as cost in the poor neighborhood vanishes, inefficient applications
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in this neighborhood have no impact on welfare, thereby leading to a welfare
advantage for the quota intervention.

In our simulations with uniform cost distribution with support [0, 0.1] in
neighborhood i and uniform cost distribution with support [0, 0.3] in neigh-
borhood j, we do not see much effect of quotas on welfare and ability. How-
ever, quotas have a significant redistributive effect. They are useful to trans-
fer welfare from neighborhood i to neighborhood j, as shown in the next
figure. Without quotas, the welfare in neighborhood j represents half of the
welfare in neighborhood i for low capacity at elite colleges. Instead, with
quotas, welfare in the two neighborhoods are roughly identical.
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Figure 6: Relative distribution of welfare across neighborhoods. (Left) Cost is uni-
formly distributed on [0, 0.1] in i and [0, 0.3] in j. (Right) Cost is uniformly dis-
tributed on [0, 0.5] in i and [0.5, 1] in j.

As we mentioned in the previous section, when costs are high, some
counter-intuitive statics may arise in terms of which neighborhood gets more
seats. In such cases, quotas may reinforce inequalities, since then quotas
would take away seats from the “disadvantaged neighborhood” as com-
pared to the situation without quotas.

Place-Based Affirmative Action. Another common policy intervention is
to provide a boost to the score of students from the disadvantaged neighbor-
hood. We assume that there is a bonus κ > 0, such that a student in neighbor-
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hood i with ability θ is treated similarly as a student in neighborhood j with
ability θ+κ. As a result, the equilibrium condition 3 of Definition 7 should
be replaced by θ(σi, qi) + κ = θ(σj, qj) (with the other conditions being un-
changed). Our main result is that in the uniform distribution case, when the
number of seats is small, a small affirmative action intervention is welfare
neutral and benefits the neighborhood enjoying the intervention.

PROPOSITION 10. Consider two neighborhoods with costs uniformly distributed
on [0, ci] and [0, cj] with ci < cj , and assume that q < max{supθ q̂i(θ), supθ q̂j(θ)}.
As the intervention κ gets small, affirmative action increases the welfare of neigh-
borhood i, but has no effect on aggregate welfare at the first order.

At some abstract level, the affirmative action policy κ has an effect simi-
lar to that of quotas to the extent that any κ can be associated with a quota
policy in which the number of seats reserved to i corresponds to the num-
ber of seats obtained by i in equilibrium when the affirmative action policy
κ prevails. The limiting case κ small would correspond to reserving slightly
more seats to neighborhood i as compared with the laissez-faire. Proposition
10 establishes a neutrality result similar to that in Proposition 7 even if it
does not follow from it (given that in Proposition 7 we assumed that the two
neighborhoods should receive the same number of seats).

Mixed Neighborhoods. We investigate here whether moving students from
the high cost neighborhood to the low cost neighborhood (and vice versa)
increases welfare. Unlike quotas which do not change students’ social net-
work, this intervention exactly aims at reducing inequalities of social capital.
We consider random reallocation, i.e. from two initial neighborhoods with
cost distributionsGi andGj we draw new neighborhoods from the following
compound distributions:

G̃i = αGi + (1− α)Gj

G̃j = αGj + (1− α)Gi

The parameter α scales the equalization across neighborhoods: for α = 1

there is no reallocation of students, and for α = 1
2

the new neighborhoods
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Figure 7: Welfare loss and quality loss with respect to the first best allocation (i.e.,
rational expectations). Mixing is obtained with α = 1/2 and cost is uniformly
distributed on [0, 0.5] in i and [0.5, 1] in j.

have equal cost distributions.
Our main analytical result is that mixing is welfare neutral in the uniform

case when the number of seats is small.

PROPOSITION 11. Consider two neighborhoods with costs uniformly distributed
on [0, ci] and [0, cj]. Suppose that q < max{supθ q̂i(θ), supθ q̂j(θ)}. Subjective
admission chances pi, pj are independent of the degree of mixing α. Therefore, mixing
is neutral on welfare and average quality.

More general analysis of the effect of mixing has proven difficult. Figure
7 reports simulations where mixing can be welfare-enhancing.

4.4 Equilibrium Multiplicity

We conclude by investigating the role of equilibrium multiplicity on belief
traps. In most of the analysis so far, we have assumed that cost and ability
are independent. It turns out that this independence rules out equilibrium
multiplicity.
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PROPOSITION 12. Suppose that for each neighbourhood i = 1, 2, Ji(p, θ∗) is mono-
tonically decreasing in both arguments, then the local sampling equilibrium is unique.

In some practical situations, however, it could be that cost and ability are
not independently distributed. When multiple neighborhoods compete for
the same seats at elite colleges, this can lead to equilibria with belief traps
in which one neighborhood takes many more seats than the other—even if
both neighborhoods are ex-ante identical. Clearly, given the symmetry of the
problem, any neighborhood can take the role of being favored in equilibrium,
thereby illustrating the possibility of multiple equilibria with possibly very
strong asymmetries. The following Proposition illustrates this in an extreme
form.

PROPOSITION 13. Suppose that in both neighborhoods there is a mass α of stu-
dents with (θ, c) = (0, 0) and a mass 1 − α of students with (θ, c) > (0, 0) (with
arbitrary distribution) and assume 1 > q > 0. Then for α small enough, there is an
equilibrium in which all seats at H are taken by students from neighborhood i.

In the equilibrium of Proposition 13, only very low ability students in
neighborhood j apply to elite college, and they all get rejected. They apply
to elite colleges because their costs of rejection are negligible (even null in the
formal statement). But, by applying and being rejected such students create
a strong negative externality on high ability students in neighborhood j, as
the latter get convinced they are better off not applying (even for moderate
rejection costs). On the other hand, when 1 > q > 0 and α is small enough,
one can guarantee that at the same time there is a mass no less than q of stu-
dents from neighborhood iwith θ > 0 who apply toH , thereby ensuring that
all seats are taken by students in i.13 While extreme, we believe that Proposi-
tion 13 is suggestive that multiple equilibria can easily arise in our setting (in
particular when low rejection cost students tend to have low ability), which
in turn may suggest that some asymmetries in outcome may sometimes be
the result of historical factors rather than fundamental asymmetries.

13The limit α → 0 corresponds to the model studied above and when q < 1 and there is
only one neighborhood, the equilibrium is such that the demand for the elite college in that
neighborhood exceeds the capacity, thereby providing the required property.
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5 CONCLUSION

We have introduced a model of expectation formation in a career choice prob-
lem. Unlike the rational expectations framework, students were assumed to
have no prior information and no prior belief as to how elite colleges ad-
mit students. We have assumed instead that students non-parametrically
estimate the distribution of outcomes conditional on actions by averaging
past experiences from their peers with similar characteristics. Formally, we
have introduced a new solution concept—the local sampling equilibrium—in
which players best respond to their subjective expectations, and expectations
are consistent with the average outcomes of their peers. We believe this pro-
vides a coherent framework for thinking the strategic interactions between
expectation formation and the social environment.

We have derived three main results. First, expectation formation leads to
belief traps whereby high-achieving disadvantaged students self-select out
of elite colleges, and average-ability advantaged students take their seats at
elite colleges. This is due to the fact that average students create a strategic
externality on high-achieving students by distorting their perceived admis-
sion chances toward the mean. This leads to multiple inefficiencies: on the
supply side, high-achieving disadvantaged students go on the labor market
instead of attending elite colleges, whereas low-achieving advantaged stu-
dents spend resources applying to elite colleges even though their actual ad-
mission chances are zero. On the demand side, the pool of admitted students
is of lower quality compared to the rational expectations benchmark.

Second, in our setting with multiple neighborhoods, we have suggested
that a decrease in the average cost in one neighborhood may have a neg-
ative impact on self-selection in other neighborhoods. This type of cross-
neighborhood externality arises because rationing at elite colleges acts as a
propagation mechanism of local demand shocks. Indeed, a reduction of cost
in one neighborhood induces a higher admission cutoff, leading to a lower
admission rates in other neighborhoods hence more self-selection. This may
suggest that growth inequality across locations disproportionately benefits
advantaged neighborhoods at the expense of poor neighborhoods.

Finally, we have suggested a potential benefit of quotas and affirmative
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action in mitigating the effects of neighborhood inequalities. While more
work would be needed to quantify these effects and study their robustness,
we believe that our model of expectation formation can serve as a building
block in empirical studies on education choices.14

14For example, our insights and framework can be used to shed light on why there is
little empirical support for the “mismatch hypothesis” which asserts that affirmative action
policies results in minority students being admitted to colleges for which they are otherwise
unqualified—leading to lower graduation rates and eventually harming minority students.
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APPENDIX A APPLICATION COST

An alternative to the opportunity cost is to consider an application cost: all
else equal, it is harder for disadvantaged students to apply to elite colleges
because they don’t have access to peers or professional who can help them
in the process.

The payoffs are as follows:

– If student (θ, c) goes on the labor market L her utility is 0.

– If student (θ, c) applies to H and obtain a seat, her utility is θ − c.

– If student (θ, c) applies to H but does not get a seat, she goes on the
labor market and her utility is −c.

Student (θ, c) applies to H whenever p(θ)θ − c ≥ 0, that is, whenever
cH(θ, p) ≤ p(θ)θ. Define welfare as

W (σ) =

∫ θ

θ∗

∫ cH

0

θf(θ, c) dc dθ −
∫ 1

0

∫ cH

0

cf(θ, c) dc dθ

It is readily verified that with one neighborhood: (i) the rational expecta-
tion equilibrium with application cost is identical than with opportunity cost,
and (ii) the local-sampling equilibrium with application cost is identical than
with opportunity cost (up to the thresholds cH). Therefore, with one neigh-
borhood the analysis and the qualitative predictions are very similar.

With multiple neighborhoods, the welfare effect of policy instruments is
similar with application cost and opportunity cost. For instance, quotas are
welfare neutral with uniform cost.

PROPOSITION 14. Consider two neighborhoods with costs uniformly distributed
on [0, ci] and [0, cj]. As q −→ 0, quotas have no effect on aggregate welfare at the
first order.

Proof of Proposition 14. First, we derive subjective admission chances in the
case with quotas. We consider the following neighborhood specific quotas:
qi = qj = q

2
. The subjective admission chances for each neighborhoods write:

pi =
√
ciq pj =

√
cjq
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The neighborhood specific admission cutoff θ̃∗i solves∫ 1

θ̃∗i

pi
ci
θ dθ =

q

2
⇐⇒ θ̃∗i =

√
1− q ci

pi
. (6)

The admission cutoff in neighborhood j is similar, replacing pi with pj .
Second, we approximate W (θ∗) at the first order and show that it is inde-

pendent of ci and cj . As q −→ 0, we have

Wi(θ
∗) = pi

1− (θ∗)3

3ci
− p2

i

6ci
.

For q −→ 0, we make the following approximation: (θ∗)3 ≈ 1 − 3
√
qci.

Therefore we obtain Wi ≈ 5
6
q at the first order. Hence, W (θ∗) ≈ 5

3
q is inde-

pendent of ci, cj .

APPENDIX B BUNDLING ON COST

In the main text, we assume that students bundle peers based on ability (and
indirectly based on cost when there are multiple neighborhoods). Here we
explore the converse where students bundle peers based on cost directly.
Overall, this increases the various inefficiencies (as students bundle on a di-
mension that is irrelevant for admissions), up to the point that as τ −→ 0 we
do not converge to the rational expectation equilibrium, unlike the case with
bundling on ability.

PROPOSITION 15. Suppose that students bundle peers only based on cost c. Then,
as τ −→ 0, the local sampling equilibrium does not converge to the rational expec-
tation equilibrium.

Proof. Let A(τ) ⊂ [c, c] × [θ, θ] be the set of admitted students in any lo-
cal sampling equilibrium. For this to converge to a REE, we must have
limτ→0A(τ) = [c, c] × [θ∗, θ] and p(c) = 0 or 1 for any c. But notice that
limτ→0A(τ) = [c, c]× [θ∗, θ] implies limτ→0 p(c) = 1− θ∗ which is not equal to
0 or 1, a contradiction.
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APPENDIX C PROOFS

Existence of Local Sampling Equilibria. Consider the following scheme:

p 7−→ σBR(p, ·) 7−→ b(σBR, ·) 7−→ p(b)

By Tychonoff’s theorem, the scheme is compact-valued p(b) ∈ [0, 1]Θ. Hence
to obtain a fixed point, we just need to prove that the scheme is continuous.
Fix a subjective belief map p : Θ −→ [0, 1]. The action space is binary and
the subjective admission chances p enter payoffs linearly, hence σBR is the
following measurable threshold strategy:

σBR(p, ·) =

1 if p(·) ≥ γ(·)

0 if p(·) < γ(·)

where γ(θ, c) = c
θ+c

. Take any converging sequence pn −→ p. We need to
show that p 7−→ σBR(p, ·) is continuous in the L1-weak topology, namely∫

σBR(pn, (θ, c)) dF −→
∫
σBR(p, (θ, c)) dF.

We have ∫
σBR(pn, (θ, c)) dF =

∫
1 {pn(θ) ≥ γ(θ, c)} dF.

Therefore, continuity follows from Lebesgue’s dominated convergence the-
orem. We now show the continuity of σBR 7−→ b(σBR, ·). By Berge’s maxi-
mum theorem, σBR 7−→ b(σBR, ·) is upper-hemicontinuous. The loss function
|θ− θ̃| is strictly quasi-convex, hence σBR 7−→ b(σBR, ·) is continuous. Finally,
the continuity of b 7−→ p(b) follows directly from the integrability of p to-
gether with the continuity of the functions max{·, ·} and min{·, ·}. Therefore,
by the Schauder fixed point theorem the set of local sampling equilibria is
nonempty.

Proof of Proposition 1. Fix the admission cutoff at θ∗ = H−1(1 − q). If
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σR(θ, c) = 1 for all θ > H−1(1− q) and 0 otherwise, then the beliefs

pR(θ) =

1 when θ > H−1(1− q)

0 when θ < H−1(1− q)

are rationally consistent with σR by definition of θ∗. Given these subjective
beliefs, σR(θ, c) = 1 for all θ > H−1(1− q) and 0 otherwise is optimal. There-
fore, (σR, pR) is a rational expectations equilibrium.

We now prove uniqueness. Suppose that σ(θ, c) < 1 for some (positive
mass of) θ > θ∗ and σ(θ, c) > 0 for some (positive mass of) θ < θ∗. By belief
consistency, students with ability θ > θ∗ know that pR(θ) = 1 (i.e. they can
obtain a seat at H for sure) hence they have a profitable deviation.

Proof of Proposition 2. First we show that all students (θ, c) with ability
θ > θ∗ = H−1(1− q) and cost c > cH(θ∗, p(θ∗)) self-select out of elite colleges.
Student (θ, c) applies to H only if p(θ∗) ≥ c

θ∗+c
. As long as q < 1 and τ > 0,

we must have p(θ∗) < 1 because the last admitted student (θ∗, c) includes
rejected students in her sample. Therefore, as limc→∞

c
θ∗+c

= 1 there must
exist a positive g-measure of costs such that p(θ∗) < c

θ∗+c
because g has full

support on R+. This proves that self-selection arises in equilibrium.
Second, we show that students with ability θ < θ̃∗ and cost c < cH(θ̃∗, p(θ̃∗))

apply to H but are rejected. Student (θ, c) with θ = θ̃∗ − ε for ε > 0 arbitrar-
ily small applies to H only if p(θ∗) ≥ c

θ̃∗+c
. As long as q < 1 and τ > 0,

p(θ∗) > 0 because this student includes in her sample admitted peers for ε
small enough. Therefore, as limc→0

c
θ̃∗+c

= 0 there must exist a positive g-
measure of costs such that p(θ̃∗) > c

θ̃∗+c
because g has full support on R+.

This proves that inefficient applications arise in equilibrium.

Proof of Proposition 3. We can rewrite the implicit equation for subjective
beliefs as follows:

p− 1

τ

∫ θ

θ

1{θ−b(θ,σ)<θ̃<θ+b(θ,σ)}∩{θ̃>θ̃∗}G

(
p(θ̃)

1− p(θ̃)

)
dH(θ̃) = 0 (7)

We first consider the case in which τ → 1. By definition of b(θ, σ) we have
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limτ→1{θ − b(θ, σ) < θ̃ < θ + b(θ, σ)} ⊇ {θ̃ > θ̃∗}. Therefore,

lim
τ→1

[
p(θ)− 1

τ

∫ θ

θ

1{θ−b(θ,σ)<θ̃<θ+b(θ,σ)}G

(
p(θ̃)

1− p(θ̃)

)
dH(θ̃)

]
= 0

⇐⇒ p =

∫ θ

θ

G

(
p

1− p

)
dH(θ̃)

where the second line uses the fact that, as τ → 1, the subjective probability
becomes independent of θ.

We now consider the case τ → 0. There are two cases to consider.
Case 1: There exists τ∗ small enough such that θ + b(θ, σ) < θ̃∗. Then we

have limτ→1{θ − b(θ, σ) < θ̃ < θ + b(θ, σ)} ∩ {θ̃ > θ̃∗} = ∅. Hence taking the
integral in equation (7) is zero, and we directly have that p(θ) = 0.

Case 2: There exists τ ∗ small enough such that θ − b(θ, σ) > θ̃∗. Then we
have limτ→1{θ − b(θ, σ) < θ̃ < θ + b(θ, σ)} ⊆ {θ̃ > θ̃∗}. Therefore,

lim
τ→0

[
p(θ)− 1

τ

∫ θ

θ

1{θ−b(θ,σ)<θ̃<θ+b(θ,σ)}G

(
p(θ̃)

1− p(θ̃)

)
dH(θ̃)

]
= 0

Take p(θ) = 1 and using the fact that limx→∞G(x) = 1 we can rewrite the
above equation as follows:

lim
τ→0

[
1− 1

τ

∫ θ+b(θ,σ)

θ−b(θ,σ)

h(θ̃) dθ̃

]
= 0

By L’Hospital’s rule and Leibniz integral rule,

lim
τ→0

∫ θ+b(θ,σ)

θ−b(θ,σ)
h(θ̃) dθ̃

τ
= lim

τ→0

[
h(θ + b(θ, σ)) + h(θ − b(θ, σ))

]∂b(θ, σ)

∂τ
(8)

By definition, b(θ, σ) is the smallest b > 0 that solves:∫ θ+b

θ−b
h(θ) dθ > τ ⇐⇒ H(θ + b)−H(θ − b)− τ︸ ︷︷ ︸

=Φ(b,τ)

> 0
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We apply the implicit function theorem to obtain the derivative of b(θ, τ):

∂Φ

∂b

∂b

∂τ
+
∂Φ

∂τ
= 0 ⇐⇒ ∂b

∂τ
=

1

h(θ + b) + h(θ − b)

Substituting this expression in equation (8) concludes the proof.

Proof of Proposition 4. By contradiction, suppose that there exist two equi-
libria A and B. Without loss of generality suppose that we have pA > pB.
By independence, the set of students who apply to H in equilibrium A is a
superset of the set of students who apply to H in equilibrium B because sub-
jective admission chances are higher in A. Note however that p is the ratio of
seats to the number of applicants, i.e. p = q

/[∫ 1

0
min

{ p
1−p

θ

c
, 1
}

dθ
]
. Hence,

we must have pA < pB, a contradiction.

Proof of Proposition 5. When limn τ
n
i = 0, we already showed that pi =

1{θi ≥ θ∗}, hence {i : σi = 1} = {i : θi ≥ θ∗} and qi = |{i : σi = 1 and θi ≥
θ∗}| = |{i : θi ≥ θ∗}|. By contradiction, suppose that qi < qj . Then |{j :

σj = 1 and θj ≥ θ∗}| > |{i : θi ≥ θ∗}|. Note that {j : σj = 1 and θj ≥ θ∗} ⊆
{j : θj ≥ θ∗}, hence |{j : θj ≥ θ∗}| ≥ |{j : σj = 1 and θj ≥ θ∗}|. But then,
|{j : θj ≥ θ∗}| > |{i : θi ≥ θ∗}|, which contradicts the fact that fi = fj .

Proof of Proposition 6. When Gi = δ0 we have that σi = 1 for all i. Hence,
qi = |{i : σi = 1 and θi ≥ θ∗}| = |{i : θi ≥ θ∗}|. We conclude using the same
reasoning as in the proof of Proposition 5.

Proof of Proposition 7. First, we derive subjective admission chances in the
case with quotas. We consider the following neighborhood specific quotas:
qi = qj = q

2
. The subjective admission chances (computed in Section 3.1) for

each neighborhoods write:

pi = −ciq
2

+

√
c2
i q

2

4
+ ciq pj = −cjq

2
+

√
c2
jq

2

4
+ cjq
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The neighborhood specific admission cutoff θ̃∗i solves∫ 1

θ̃∗i

pi
ci(1− pi)

θ dθ =
q

2
⇐⇒ θ̃∗i =

√
1− qci

1− pi
pi

. (9)

The admission cutoff in neighborhood j is similar, replacing pi with pj .
Second, we approximate W (θ∗) at the first order and show that it is inde-

pendent of ci and cj . As q −→ 0, we have

Wi(θ
∗) =

pi
1− pi

1− (θ∗)3

3ci
−
(

p

1− p

)2
(θ∗)3

6ci
.

Again for q −→ 0, we make the following approximations: pi ≈
√

2qci,
pi

1−pi ≈ pi and (θ∗)3 ≈ 1 − 3
2

√
2qci. Therefore we obtain Wi ≈ 2

3
q at the first

order. Hence, W (θ∗) ≈ 4
3
q is independent of ci, cj .

Proof of Proposition 8. We already derived subjective admission chances
in the case of quotas in Proposition 7. Therefore, we derive them in the case
without quotas.

When there are no quotas, both neighborhoods compete for the same q
seats. Subjective admission chances in neighborhoods i are obtained by di-
viding the number of seats by the mass of applicants in this neighborhood:

pi =
qi∫ 1

0
min

{
pi

ci(1−pi)θ, 1
}

dθ
(10)

where qi + qj = q are the seats taken by students from neighborhoods i and
j in equilibrium. We consider first the case in which the minimum does not
bind in both neighborhoods. The above equation rewrite:

pi = 2qici
1− pi
pi

(11)

The market clearing condition in neighborhood i writes:∫ 1

θ̃∗i

min

{
pi

ci(1− pi)
θ, 1

}
dθ = qi ⇐⇒ 1− θ̃∗2i = 2qici

1− pi
pi
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Together with the fact that admission cutoffs must be equal across neigh-
borhoods θ̃∗i = θ̃∗j , this shows that subjective beliefs are identical pno quotas

i =

p
no quotas
j = pno quotas.

Using the market clearing condition together with the identity q = qi + qj

we obtain the number of seats taken by each neighorhoods in equilibrium:

qi = q
cj

ci + cj

Solving the quadratic form (11) and substituting the expression for qj yields
a closed form solution for subjective beliefs:

pno quotas = −q cicj
ci + cj

+

√(
q
cicj
ci + cj

)2

+ 2q
cicj
ci + cj

.

Now consider the situation with quota qi = q + j = q/2, and assume that
ci > cj . It is readily verified that i receives more seats with quotas than
without quotas and given the monotonicity of qi → pi(qi), we conclude that
p

quotas
i > pno quotas > p

quotas
j .

Proof of Proposition 9 All students in neighborhood i are indifferent hence
apply to H . Then without quotas all students {(θ, c) : θ ≥ θ∗} are admitted to
H in neighborhood i. In neighborhood j, all students

{
(θ, c) : θ ≥ θ∗ and c ≤ pj

cj(1−pj)
θ
}

are admitted to H . Overall welfare is

W (θ∗) =

∫ 1

θ∗
θ dθ︸ ︷︷ ︸
i

+

∫ 1

θ∗

∫ cH

0

θ dc dθ −
∫ θ∗

0

∫ cH

0

cgj(c) dc dθ︸ ︷︷ ︸
j

(12)

With quotas, each neighborhood has q/2 reserved seats. In neighborhood
j, quotas must increase subjective admission chances pj . Indeed, as cj −→ 0

the best students in both neighborhoods apply to H hence the admission
cutoff solves 2(1 − θ∗quotas) = q. Instead, without quotas the admission cutoff
solves 1 − θ∗ = q, which is strictly smaller than with quotas. This raises
the quality of admitted students in both neighborhoods, which increases the
first two terms in the welfare equation (12). Now the third term vanishes as
cj −→ 0, which yields the result.
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Proof of Proposition 10. Consider one neighborhood with c uniformly dis-
tributed on [0, c] and q seats. As explained in subsection 3.1, for q small
enough, we have

p = −qc+
√
q2c2 + 2qc

which defines p(q).
Moreover, the condition relating the admission threshold to p and q writes

p

1− p
1− (θ∗)2

2c
= q

which implicitly defines a function θ∗(q) (using p = p(q) as just defined to
eliminate the dependence in p).

Finally, total welfare in this neighborhood writes

W̃ (p, θ∗) =
1

c

∫ 1

θ∗

p

1− p
θ2dθ − 1

2c

∫ θ∗

0

(
p

1− p
θ)2dθ

W̃ (p, θ∗) =
1

c

p

1− p
1− (θ∗)3

3
−
(

p

1− p

)2
1

2c

(θ∗)3

3

Totally differentiating w.r.t q yields

dW

dq
(q) =

∂W̃

∂p

dp

dq
+
∂W̃

∂θ∗
dθ∗

dq
.

Consider now a two neighborhood case with cost distributions uniformly
distributed on [0, ci] and [0, cj] in i and j, respectively.

As already established, in the laissez-faire case, we have

pi = pj

ciqi = cjqj

It is then readily verified using the expression of W̃ (p, θ∗) that around the
laissez-faire, we have that

dWi(qi)

dqi
=
dWj(qj)

dqj
.
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Letting W (κ) denote the total welfare induced by the policy intervention, we
have that

dW

dκ
=

(
dWi(qi)

dqi
− dWj(qj)

dqj

)
dqi
dκ

which is null given our observation that dWi(qi)
dqi

=
dWj(qj)

dqj
at the laissez-faire.

Proof of Proposition 11. Subjective admission chances in neighborhoods i
are obtained by dividing the number of seats by the mass of applicants in
this neighborhood:

pi =
qi∫ 1

0
αmin

{
pi

ci(1−pi)θ, 1
}

+ (1− α) min
{

pi
cj(1−pi)θ, 1

}
dθ

(13)

where qi + qj = q are the seats taken by students from neighborhoods i and
j in equilibrium. We consider first the case in which the minimum does not
bind in both neighborhoods. The above equation rewrite:

pi = 2qi
1− pi
pi

[
α

ci
+

1− α
cj

]−1

(14)

and in neighborhood j:

pj = 2qj
1− pj
pj

[
α

cj
+

1− α
ci

]−1

(15)

The market clearing condition in neighborhood i writes:∫ 1

θ̃∗i

αmin

{
pi

ci(1− pi)
θ, 1

}
+ (1− α) min

{
pi

cj(1− pi)
θ, 1

}
dθ = qi

⇐⇒ 1− θ̃∗2i = 2qi
1− pi
pi

[
α

ci
+

1− α
cj

]−1

Together with the fact that admission cutoffs must be equal across neighbor-
hoods θ̃∗i = θ̃∗j , this shows that subjective beliefs are identical pi = pj = p.
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Solving for qi yields

qi = q

(
α

cj
+

1− α
ci

)−1
[(

α

cj
+

1− α
ci

)−1

+

(
α

ci
+

1− α
cj

)−1
]−1

Solving the quadratic form (15) yields a closed form solution for subjective
beliefs:

p =

−qi +

√
q2
i + 2qi

(
α
ci

+ 1−α
cj

)
(
α
ci

+ 1−α
cj

) .

which is constant in α. Therefore, for small q welfare and average quality is
independent of α.

Proof of Proposition 12. Consider two equilibria, denoted A and B, such
that qA1 > qB1

qA2 < qB2

⇐⇒

p1(qA1 ) > p1(qB1 )

p2(qA2 ) < p2(qB2 )

where we used the monotonicity of subjective admission chances. By defini-
tion of H , the following system must hold in equilibrium for the cutoff θ∗A

that is common in both neighborhoods:J1(p1(qA1 ), θ∗A) = 0

J2(p2(qA2 ), θ∗A) = 0

But now, by monotonicity of H , we must haveJ1(p1(qB1 ), θ∗A) > 0

J2(p2(qB2 ), θ∗A) < 0

which contradicts the fact that B is an equilibrium.

Proof of Proposition 13. Suppose that all seats are taken by students from
neighborhood i (qi = q). First note that some seats must be allocated to high
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ability students (otherwise they have a profitable deviation as p = 1 if only
students with (θ, c) = (0, 0) apply). Therefore, the admission cutoff satisfies
θ∗ > 0. Moreover, for α small the admission probability converges to q

ζ
where

ζ is the fraction of high ability students who apply to H, with θ q
ζ
> c(1 −

q
ζ
). Hence all seats are occupied by students from neighborhood i for this ζ .

Suppose that all low-ability students from neighborhood j apply toH but are
being rejected because θj = 0 < θ∗. Then we have pj = 0, and no high-ability
student in neighborhood j applies to H . There are no profitable deviations
and beliefs are consistent, hence this is a local sampling equilibrium.
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