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Abstract

Families of normal-form two-player games are categorized by players

into K analogy classes applying the K-means clustering technique to the

data generated by the distributions of opponent’s behavior. This results

in Calibrated Analogy-Based Expectation Equilibria in which strategies are

analogy-based expectation equilibria given the analogy partitions and anal-

ogy partitions are derived from the strategies by the K-means clustering

algorithm. We discuss various concepts formalizing this, and observe that

distributions over analogy partitions are sometimes required to guarantee

existence. Applications to games with linear best-responses are discussed

highlighting the differences between strategic complements and strategic

substitutes.
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1 Introduction

Many economists recognize that the rational expectation hypothesis that is central

in solution concepts such as the Nash equilibrium seems very demanding, espe-

cially in complex multi-agent environments involving lots of different situations
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(games, states or nodes, depending on the application). Several approaches have

been proposed to relax it. When the concern with the hypothesis is that there

are too many situations for players to fine tune a specific expectation for each

such situation, a natural approach consists in allowing players to lump together

situations into just a few categories, and only require that players form expecta-

tions about the aggregate play in each category (as opposed to forming a different

expectation for each situation separately).

The analogy-based expectation equilibrium (Jehiel, 2005) is a solution concept

that has been proposed to deal with this. In addition to the usual primitives

describing a game form, players are also endowed with analogy partitions, which

are player-specific ways of partitioning situations or contingencies in the grand

game. In equilibrium, the expectations in each analogy class correctly represent

the aggregate behavior in the class, and players best-respond as if the behavior in

every element of an analogy class matched the expectation about the aggregate

play in the corresponding analogy class. This approach has been developed and

applied to a variety of settings (see Jehiel (2022) for a recent account of this), but

in almost all these developments, the analogy partitions are taken as exogenous.

In this paper, we propose endogenizing the choice of analogy partitions made

by the players on the basis of simple clustering techniques routinely used in Ma-

chine Learning. Specifically, we will rely on the K-means clustering technique

used in Machine Learning to cluster datapoints into a pre-specified number K of

categories. The K-means technique was originally proposed by Steinhaus (1957),

Lloyd (1957) and MacQueen (1967).1 Roughly, it works as follows. Datapoints are

the primitives, and the clustering problem consists in partitioning the datapoints

into K clusters with representative points for each cluster defined so that the

original datapoints are best approximated by the representative points in their

cluster. In general, the retained criterion is that of minimizing the sum of the

prediction errors, where errors are measured using some notion of distance (or

divergence) to represent how far a datapoint is from the representative point in

the cluster. The most widely used criterion is the sum of the squared Euclidean

distance of the datapoints to the representative points, in which case the criterion

1See Jain et al. (1999) for a comprehensive survey on data clustering or Blömer et al. (2016)
for a theoretically oriented survey on K-means clustering.
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amounts to minimizing the total variance. K-means clustering has also been ex-

tended to Bregman divergences (that include the Kullback-Leibler divergence and

the squared Euclidean distance) by Banerjee et al. (2005). Solving the clustering

problem is hard (NP-complete) and practitioners most of the time rely on the

following simple algorithm to approximate its solution. Start with K initial cen-

troids, assign each data point to the closest one. Based on this assignment, new

centroids are formed (defined as the mean points or Barycenters of the data points

assigned to the various centroids). Repeat the process until an iteration is reached

and the centroids do not change anymore. This algorithm is simple to implement

and converges very fast in practice. It always converges to a partitioning which is

a local solution to the clustering problem. It is illustrated in the following Figure.2

(a) Iteration 0.
Random Initialization: c1,
c2

(b) Iteration 1. Step 1.
Assigning data to closest c

(c) Iteration 1. Step 2.
Recompute centroids c1 and
c2

(d) Iteration 2. Step 1 and 2. (e) Iteration 3. Step 1 and 2.
Stop.

Figure: A simple illustration of the K-means algorithm at work

In this paper, we consider a strategic environment consisting of different normal

form two-player games drawn by nature according to some prior distribution where

we have in mind that the various games are played at many different times by many

different subjects. In each of the normal form games ω ∈ Ω, player j = 1, 2 has the

same action set Aj. An analogy partition for player i takes the form of a partition

2In the figure the filled dots represent the new centroids, while the empty dots are the old ones.
Different colors (or shapes) represent different clusters formed at step 1 of an iteration, while
the dashed line separates the points closest to each centroid after these have been recomputed
in step 2.
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of the set of games Ω, which is used by player i to assess the behavior of player j

in the various games. From the clustering perspective, the data points accessible

by players consist of the empirical frequencies of past play of the subjects assigned

to the role of the opponent in the various games. That is, a typical data point for

player i consists of an element of ∆Aj for each of the games ω. To make sense

of these data points (and prior to knowing which specific game ω will apply), a

subject assigned to the role of player i is viewed as clustering these data points into

an exogenously given (typically small) number of categories. When called (later)

to pick an action in a randomly selected game ω, this subject then identifies

the behavior of his opponent in this game ω with the representative expectation

that comes out from the clustering stage, and best-responds to it. This in turn

generates new data points, and we are interested in the steady states - referred

to as calibrated analogy-based expectation equilibria - generated by such dynamic

processes.

Intuitively, the calibrated analogy-based expectation equilibria (C-ABEE) can

be described as profiles of analogy partitions and strategies such that i) given the

analogy partitions, players’ strategies form an analogy-based expectation equilib-

rium and ii) given the strategies, clustering leads players to adopt the analogy

partitions considered in steady state.

Different formalizations of clustering can be considered whether we insist on an

exact resolution of the clustering problem (variance minimization, say) or whether

we consider a possible outcome of the K-means algorithm leading only to a local

optimality condition. But, no matter what approach to clustering is adopted, a

key observation is that it may not be possible in some cases to have a steady state

with a single analogy partition for each player. This is so because unlike in the

usual clustering problem, there is here an extra endogeneity of the dataset. A

change in analogy partitions may affect the adopted strategies through the work-

ing of the analogy-based expectation equilibrium, which in turn may affect how

clustering is done. This extra channel from the clustering to the dataset makes it

sometimes impossible to have a calibrated analogy-based expectation equilibrium

with a single analogy partition for each player. This will be illustrated with a

simple example involving three normal form games and binary action spaces.

The above observation leads us to extend the basic definition of C-ABEE to
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allow for distributions of analogy partitions in which each analogy partition in

the support is required to solve (either locally or globally) the clustering problem

for that player and the strategies now also parameterized by the chosen analogy

partition satisfy the requirements of the analogy-based expectation equilibrium

appropriately extended to cope with distributions of analogy partitions. We re-

fer to such an extension as a calibrated distributional analogy-based expectation

equilibrium (CD-ABEE).

We show that in finite environments (i.e. environments such that there are

finitely many normal form games and finitely many actions for each player), there

always exists at least one CD-ABEE. We also provide a learning foundation to CD-

ABEE, establishing that they are the steady states of learning dynamics involving

populations of players randomly matched in each period where the payoffs as well

as the data used at the clustering stage are subject to player-specific perturbations.

In the last part of the paper, we consider an application to families of games

with linear best-responses parameterized by the magnitude of the impact of op-

ponent’s action on the best-response (a one-dimensional parameter). We analyze

separately the case of strategic complements and the case of strategic substitutes

allowing us to cover applications such as Bertrand or Cournot duopoly with prod-

uct differentiation, linear demand and constant marginal costs, or moral hazard

in teams. In this part, we consider a continuum of games and a continuum of

actions, which simplifies the exposition of the results.

Our main results in the application part are as follows. In the case of strategic

complements, one can always find a Calibrated ABEE in which a single anal-

ogy (interval) partition is used by the players. Our proof is constructive, and

we exhibit one such C-ABEE before providing a characterization of all of them.

More precisely, we show this when using the local optimality version of cluster-

ing whereas for the global optimality one, we are able to provide a similar result,

only when the interaction effect (the strategic part in the best-response) is not

too strong. By contrast, in the case of strategic substitutes, we show that there

is no Calibrated ABEE in which a single analogy interval partition is used by the

players.

When heterogeneous analogy partitions are required in CD-ABEE, we note

that faced with the same objective datasets and the same objective constraints
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(as measured by the number of classes), players must be processing information

in a heterogeneous way in equilibrium. Our derivation of this insight follows from

the strategic nature of the interaction (leading, as highlighted above, the dataset

to be affected by how players categorize games). It should be contrasted with

other possible motives of heterogeneity, for example, based on the complexity of

processing rich datasets.3

It should be noted that throughout the paper, we take as exogenous the number

of categories a player considers for clustering purposes. From a Machine Learning

perspective, a natural next step would be to endogenize this number. In this

regard, while various approaches have been proposed, it should be mentioned

that there is no consensus on how to endogenize this number, and it is still a

subject of active research in Machine Learning. From another more psychological

perspective, it has long been recognized that there are severe constraints on how

many items human beings can remember in short-term memory (see in particular

Miller (1956) for pioneering research on this). As the number of categories in

our setting can naturally be related to the number of items remembered from

the dataset, this psychological perspective would lead to treat this number as

exogenous, as we do in this paper.

In the rest of the paper, we develop the framework (solution concepts, existence

results, learning foundation) in Section 2. We discuss the application to games

with linear best-responses in Section 3. We conclude in Section 4.

1.1 Related Literature

This paper belongs to a growing literature in behavioral game theory, proposing

new forms of equilibrium to capture various aspects of misperceptions or cogni-

tive limitations. While some papers in this strand posit some misperceptions of

the players and propose a corresponding notion of equilibrium (see Eyster-Rabin

(2005) on misperceptions about how private information affects behavior, Spiegler

(2016) on misperceptions on the causality links between variables of interest or

Esponda-Pouzo (2016) for a more abstract and general formulation of misspecifi-

3Such forms of heterogeneity are implicitly suggested in Aragones et al (2005) (when they
highlight that finding regularities in complex datasets is NP-hard) or Sims (2003) (who de-
velops a rational inattention perspective to model agents who would be exposed to complex
environments).

6



cations), other papers motivate their equilibrium approach by the difficulty players

may face when trying to understand or learn how their environment behaves (see

Jehiel (1995) on limited horizon forecasts, Osborne-Rubinstein (1998) on sam-

pling equilibrium, Jehiel (2005) on analogical reasoning or Jehiel-Samet (2007) on

coarse reinforcement learning). Our paper has a motivation more in line with the

latter, but it adds structure on the coarsening of the learning based on insights

or techniques borrowed from machine learning (which the previous literature just

mentioned did not consider).

This paper also relates to papers dealing with coarse or categorical thinking in

decision-making settings (see, in particular, Fryer and Jackson (2008) for such a

model used to analyze stereotypes or discrimination, Peski (2011) for establishing

the optimality of categorical reasoning in symmetric settings or Al-Najjar and

Pai (2014) and Mohlin (2014) for models establishing the superiority of using

not too fine categories in an attempt to mitigate overfitting or balance the bias-

variance trade-off). While our paper considers a clustering technique (K-means)

not discussed in those papers, another essential difference is that in our setting the

data-generating process is itself affected by the categorization due to the strategic

character of our environment.4

2 Theoretical setup

2.1 Strategic environment

We consider a finite number of normal form games indexed by ω ∈ Ω where game

ω is chosen (by Nature) with probability p(ω). To simplify the exposition, we

restrict attention to games with two players i = 1, 2, and we refer to player j as

the player other than i.5 In every game ω, the action space of player i is the same

and denoted by Ai. It is assumed in this part to be finite. The payoff of player i

in game ω is described by a von Neumann-Morgenstern utility where ui(ai, aj, ω)

4Some papers consider categorization in games (see in particular Samuelson (2001) or Mengel
(2012)) with the view that the strategy should be measurable with respect to the categorization.
This is somewhat different from the expectation perspective adopted here.

5The framework, solution concept and analysis extend in a straightforward way to the case of
more than two players, provided the behavioral data of the various players are treated separately
from one another at the clustering stage. If bundling occurs also across players (as permitted in
Jehiel (2005)), additional work is required.
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denotes the payoff obtained by player i in game ω if player i chooses ai ∈ Ai and

player j chooses aj ∈ Aj. Let pi ∈ ∆Ai denote a probability distribution over Ai

for i = 1, 2. With some abuse of notation, we let:

ui(pi, pj, ω) =
∑
ai,aj

pi(ai)pj(aj)ui(ai, aj, ω)

denote the expected utility obtained by player i in game ω when players i and j

play according to pi and pj, respectively.

We assume that players observe the game ω they are in. A strategy for player

i is denoted σi = (σi(ω))ω∈Ω where σi(ω) ∈ ∆Ai denotes the (possibly mixed)

strategy employed by player i in game ω. The set of player i’s strategies is denoted

Σi, and we let Σ = Σi × Σj.

A Nash equilibrium is a strategy profile σ = (σi, σj) ∈ Σ such that for every

player i, ω ∈ Ω, and pi ∈ ∆Ai,

ui(σi(ω), σj(ω), ω) ≥ ui(pi, σj(ω), ω).

2.2 Analogy-based expectation equilibrium

Players are not viewed as being able to know or learn the strategy of their opponent

for each game ω separately as implicitly required in Nash equilibrium. Maybe

because there are too many games ω, they are assumed to learn the strategy of

their opponent only in aggregate over collections of games, referred to as analogy

classes. Throughout the paper, we impose that player i considers Ki different

analogy classes, where Ki is kept fixed. We have in mind that Ki is no greater

(and typically smaller) than |Ω|, the number of possible normal form games. We

refer to Ki as the set of partitions of Ω with Ki elements. Formally, considering for

now the case of a single analogy partition for each player i (this will be extended to

distributional approaches later on), we let Ani =
{
α1
i , . . . α

Ki
i

}
denote the analogy

partition of player i. It is a partition of the set Ω of games with Ki classes, hence

an element of Ki. For each ω ∈ Ω, we let αi(ω) denote the (unique) analogy class

to which ω belongs.

βi(αi) ∈ ∆Aj will refer to the (analogy-based) expectation of player i in the

analogy class αi. It represents the aggregate behavior of player j across the various
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games ω in αi.

We say that βi is consistent with σj whenever for all αi ∈ Ani,

βi(αi) =
∑
ω∈αi

p(ω)σj(ω)/
∑
ω∈αi

p(ω).

In other words, consistency means that the analogy-based expectations cor-

rectly represent the aggregate behaviors in each analogy class when the play is

governed by σ.

We say that σi is a best-response to βi whenever for all ω ∈ Ω and all pi ∈ ∆Ai,

ui(σi(ω), βi(αi(ω)), ω) ≥ ui(pi, βi(αi(ω)), ω).

In other words, player i best-responds in ω as if player j played according to

βi(αi(ω)) in this game.

Definition 1. Given the strategic environment and the profile of analogy partitions

An = (Ani, Anj), σ is an analogy-based expectation equilibrium (ABEE) if and

only if there exists a profile of analogy-based expectations β = (βi, βj) such that

for each player i (i) σi is a best-response to βi and (ii) βi is consistent with σj.

This concept has been introduced with greater generality in Jehiel (2005) (al-

lowing for multiple stages and more than two players) and in Jehiel and Koessler

(2008) (allowing for private information).6 Roughly, the premise is that players

can only base their choice of strategy on the aggregate behaviors of their oppo-

nent in their various analogy classes. The proposed notion of best-response views

the players as adopting the simplest representation of their opponent’s strategy

that is compatible with such aggregate statistics. Moreover, the consistency of

the analogy-based expectations is viewed as the outcome of a learning process in

which players would only focus on the aggregate behaviors of their opponent in

each analogy class. An analogy-based expectation equilibrium can be thought of

as a steady state of such a learning environment (see Jehiel (2022) for further dis-

cussions of the concept and subsection 2.6 for further elaborations on the learning

dynamics we have in mind in the present context).

6See Jehiel (2022) for a definition in a setting covering both aspects and allowing for distri-
butions over analogy partitions.
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2.3 Calibrated clustering

The general idea behind clustering as considered in machine learning is to group

(data) points by proximity into clusters. The K-means clustering algorithm that

is very commonly used considers the square of the Euclidean distance as the no-

tion of proximity, but other notions of proximity can be considered as well. In

our problem, the objects to be clustered by player i concern the distributions of

opponent j’s actions over the different games. That is, for player i, the cluster-

ing (into Ki clusters) concerns σj(ω) ∈ ∆Aj for the various games ω in Ω. We

will be considering several notions of proximity that can be captured by a diver-

gence function d(pj, p
′
j) where d(pj, p

′
j) > d(pj, p

′′
j ) indicates that pj is less well

approximated by p′j than by p′′j .

Throughout the paper, we will consider for d either the square of the Euclidean

distance d(pj, p
′
j ) =

∥∥pj − p′j
∥∥2 defined over (∆Aj)

2 as in the standard K-means

approach, or the Kullback-Leibler divergence applied to distributions d(pj, p
′
j) =∑

aj

pj(aj) ln
pj(aj)

p′j(aj)
which can be given a likelihood interpretation (see more on this

below). In the application with linear best-responses to be developed later, the

actions will take values in the set of real numbers, and we will be considering for

d the square of the Euclidean distance applied to the mean of each distribution,

i.e. d(pj, p
′
j) =

(
E(pj)− E(p′j)

)2
.

A fundamental property of the (divergence) functions d just mentioned is:7

Lemma 1. For i = 1, 2 and any subset αi of Ω, let d be either the square of the

Euclidean distance or the Kullback-Leibler divergence. Then

∑
ω∈αi

p(ω | αi)σj(ω) = arg min
q∈∆Aj

∑
ω∈αi

p(ω | αi)d(σj(ω), q).

This lemma implies that the best representative q of a cluster αi should

be the mean value of the points in the cluster,8 for the purpose of minimizing

the expected value of d(σj(ω), q) within the cluster αi.
9 Interestingly,

∑
ω∈αi

p(ω |

7This result is not new. For completeness, we have included a proof of it in the online
appendix.

8Since the mass of data corresponding to σj(ω) would be proportional to p(ω), the mean has
to respect the weighting shown in the lemma.

9Banerjee, Guo and Wang (2005) show that a necessary and sufficient condition for this to
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αi)σj(ω) coincides with βi(αi) =
∑
ω∈αi

p(ω)σj(ω)/
∑
ω∈αi

p(ω) as introduced above in

the context of ABEE, which we will be using when interpreting our proposed

solution concept later on (see the learning foundation section). But, the prop-

erty derived in the lemma is also essential to prove the convergence of the K-

means clustering algorithm in which Ki representatives are initially randomly

drawn, and at each subsequent iteration of the algorithm, first points are allo-

cated to the cluster with closest representative, then, a representative, identi-

fied with the mean, is determined in each cluster (see Introduction).10 While

such an algorithm always converges to what we refer to as a locally calibrated

clustering, it may sometimes fail to solve fully the clustering problem defined as

argminq1,...qKi

∑
ω∈Ω

p(ω)minq∈{q1,...qKi} d(σj(ω), q), where q1,...qKi
are the represen-

tative points in the various clusters.

This discussion leads us to provide the following definitions, where for com-

pleteness we include in the online appendix (Lemma 3) a proof that global cali-

bration implies local calibration.

Definition 2. A partition Ani of Ω is locally calibrated with respect to σj iff for

every classes αi, α
′
i of Ani and every ω ∈ αi,

d(σj(ω), βi(αi)) ≤ d(σj(ω), βi(α
′
i)).

It is globally calibrated with respect to σj iff

Ani ∈ arg min
Pi∈Ki

∑
ci∈Pi

p(ci)
∑
ω∈ci

p(ω | ci)d(σj(ω), βi(ci))

where, for all c ⊆ Ω, βi(c) =
∑
ω∈c

p(ω | c)σj(ω).

We note that given σj, there always exists a partition that is globally calibrated

with respect to σj. This is because in our finite environment there are finitely many

partitions Pi ∈ Ki and at least one of them must minimize
∑
ci∈Pi

p(ci)
∑
ω∈ci

p(ω |

hold is that d is a Bregman divergence.
10The function

∑
ω∈Ω

p(ω)minq∈{q1,...qKi} d(σj(ω), q) where q1,...qKi
are the representative points

in the various clusters can be shown to monotonically decrease along the various steps of the
algorithm, which can be used to prove the convergence of the algorithm (since this function
constitutes a Lyapounov function for the dynamic process defined by the algorithm).
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ci)d(σj(ω), βi(ci)). Since global calibration implies local calibration, this also

shows the existence of a locally calibrated partition for any given σj.

From the viewpoint of the analogy-based expectation equilibrium, the local

calibration of the analogy-based expectation Ani of player i means that player j’s

behavior in game ω ∈ αi, i.e. σj(ω), is no less well approximated by β(αi) than by

any alternative βi(α
′
i) with α′

i ∈ Ani. When d is the Kullback-Leibler divergence,

it amounts to requiring that the likelihood of observing behaviors governed by

σj(ω) is no smaller if the assumed behavior is βi(αi) than if it is any alternative

theory β(α′
i), α

′
i ∈ Ani. It can be viewed as a stability idea in which, assuming

the possible theories are βi(α
′
i) for the various α′

i ∈ Ani, player i would find no

reason to reassign any game ω to an analogy class other than the one it is assigned

to in Ani.

Global calibration on the other hand means that in the face of data points as

given by σj(ω) for ω ∈ Ω, the clustering into Ani is best for the purpose of solving

arg min
q1,...qKi

∑
ω∈Ω

p(ω) min
q∈{q1,...qKi}

d(σj(ω), q). (1)

Solving the full clustering problem as represented in (1) is known to be NP-hard

in Computer Science, thereby leading the K-means clustering algorithms to be

widely used in practice to find out the clusters. Given that such algorithms only

ensure the finding of local optima, we believe that, with this perspective, it is

meaningful to consider local calibration (even if for theoretical purposes global

calibration would look like the more natural criterion).

2.4 Calibrated analogy-based expectation equilibrium

Combining the above definitions yields:

Definition 3. A pair (σ, An) of strategy profile σ = (σi, σj) and analogy partition

profile An = (Ani, Anj) ∈ Ki ×Kj is a locally (resp. globally) calibrated analogy-

based expectation equilibrium iff (i) σ is an analogy-based expectation equilibrium

given An and (ii) for each player i, Ani is locally (resp. globally) calibrated with

respect to σj.

The more interesting and novel aspect in this definition is the fixed point

element linking analogy partitions to strategies and vice versa. With respect to
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the previous papers (using the ABEE framework), it suggests a way to endogenize

the analogy partitions (given the numbers Ki and Kj of allowed analogy classes).

With respect to the clustering literature, the novel aspect is that the set of points

to be clustered ((σj(ω))ω∈Ω for player i) is itself possibly influenced by the shape

of the clustering, as captured by the analogy-based expectation equilibrium.

When either player 1 or 2 has a dominant strategy in all games ω ∈ Ω, there

always exists a (locally or globally) calibrated ABEE. To see this, suppose player

i has a dominant strategy in all ω. The behavior of player i coincides with the

dominant strategy irrespective of the profile of analogy partitions. This ensures

that on player j’s side, the analogy partition can simply be obtained by using the

standard clustering techniques applied to the exogenous dataset given by player

i’s dominant strategy in the various games. Once such a clustering is derived, the

rest of the construction of a calibrated ABEE is easily derived.

When no player has a dominant strategy across all games ω ∈ Ω, we will now

illustrate that there may be no (σ,An) that is a (locally or globally) calibrated

analogy-based expectation equilibrium. The basic existence problem can be un-

derstood as follows. Starting from a profile of analogy partitions An, a strategy

profile σ that is an analogy-based expectation equilibrium for An always exists

(see the existence result in Jehiel (2005) or Jehiel and Koessler (2008)). On the

other hand, as already mentioned, starting from a strategy profile σ, it is always

possible to find profile(s) of analogy partitions that are calibrated with respect

to σ. But, when the ABEE strategy profile σ varies with the analogy partitions,

there is no reason why the induced compound correspondence would have a fixed

point, thereby making the existence of a calibrated analogy-based expectation

equilibrium as just defined sometimes impossible. We will address this existence

issue by proposing a distributional approach (that parallels the introduction of

mixed strategies in the context of Nash equilibria), but for now let us illustrate

how calibrated analogy-based expectation equilibria may fail to exist.
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Example 1. The following three games are played, each with probability 1
3
.

The corresponding payoff matrices are given by:

ω1 L R

U (., 1) (., 0)

D (., 1) (., 0)

ω2 L R

U (1 + x, 0) (0, 1)

D (0, 1) (1, 0)

ω3 L R

U (., 0) (., 1)

D (., 0) (., 1)

where 0 < x and the ”.” in the ω1 and ω2 games could take any value.

Proposition 1. Assume that K1 = 2 and K2 = 3, and d is the square of the

Euclidean distance. There is no locally calibrated ABEE when x < 1. There is a

locally but no globally calibrated ABEE when 1 ≤ x < 2.

Proof. 1) We first rule out the case in which α = {ω1, ω3} is the non-singleton

analogy class for player 1. If so, β1(α) =
1
2
L⊕ 1

2
R and in the only (Nash) equilib-

rium of ω2, the Column player would play σ2(ω2) =
1

2+x
L⊕ 1+x

2+x
R so as to make the

Row player indifferent between U and D. But, given that d(R, 1
2+x

L ⊕ 1+x
2+x

R) <

d(R, 1
2
L⊕ 1

2
R) when x > 0, we would have d(σ2(ω3), β1(α)) > d(σ2(ω3), β1({ω2}))

invalidating the local calibration condition for game ω3.

2) Consider next the case in which α = {ω1, ω2} is the non-singleton analogy

class. In the corresponding ABEE, we should have that β1(α) attaches probability

at least 1
2
to L (given that L is played in ω1 and both ω1 and ω2 are equally likely),

and thus the Row player should choose U in ω2 implying that the Column player

chooses R in game ω2 (remember thatK2 = 3 implies that the Column player plays

optimally in each game). But, then d(σ2(ω2), β1(ω3)) = d(R,R) = 0 < d(R, 1
2
L⊕

1
2
R) = d(σ2(ω2), β1(α)) (where β1(α) = 1

2
L ⊕ 1

2
R is derived from consistency),

thereby invalidating the local calibration condition for game ω2, which would have

to be re-assigned to the analogy class α′ = {ω3} instead of α = {ω1, ω2}.
3) Consider last α = {ω2, ω3} as the non-singleton analogy class. In the corre-

sponding ABEE, the strategy of the Column player in game ω2 cannot be pure.11

This implies that σ1(ω2) =
1
2
U ⊕ 1

2
D so as to make the Column player indifferent

between L and R. Now, for the Row player to be indifferent between U and D

11To see this, assume first by contradiction that σ2(ω2) = L, then β1(α) = 1
2L ⊕ 1

2R and
thus, by best-response to β1 in ω2, σ1(ω2) = U . But the best-response to U in ω2 is R, not
L = σ2(ω2).
Assume next by contradiction that σ2(ω2) = R, then β1(α) = R and thus, by best-response

to β1 in ω2, σ1(ω2) = D. But, the best-response to D in ω2 is L, not R = σ2(ω2).
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in ω2, it should be that β1(α) = 1
2+x

L ⊕ 1+x
2+x

R, thereby implying (to satisfy the

consistency condition) that the Column player is choosing σ2(ω2) =
2

2+x
L⊕ x

2+x
R.

For x < 1, it is then readily verified that d(σ2(ω2), σ2(ω1)) < d(σ2(ω2), β1(α))

(given that σ2(ω1) = L and 1− 2
2+x

= x
2+x

< 1
2+x

= 2
2+x

− 1
2+x

) and thus the local

calibration condition is violated for game ω2 (it would have to be re-assigned to

the analogy class α′ = {ω1} instead of α = {ω2, ω3}.
We have shown that there is no locally calibrated ABEE when x < 1, which

of course implies that there is no globally calibrated ABEE in this case too.

When 1 ≤ x, the analogy partition with α = {ω2, ω3} as the non-singleton

analogy class is the only possibility for a locally calibrated ABEE and thus the

only candidate for a globally calibrated ABEE. However, when x < 2, global

calibration would lead to put together ω1 and ω2 given that σ2(ω1) = L, σ2(ω2) =

2
2+x

L⊕ x
2+x

R and σ2(ω3) = R, thereby invalidating the global calibration condition

in this case.Q.E.D.

Comments. 1) If we were to consider the Kullback-Leibler divergence, the

analogy partition with α = {ω2, ω3} as the non-singleton analogy class for player 1

would lead to a locally but not globally calibrated ABEE in the above example for

all x < 2.12 This observation illustrates how different conclusions can be obtained

whether the Euclidean distance or the Kullback-Leibler divergence is considered.

2) In Example 2, the only Nash equilibrium in ω2 employs mixed strategies.

One may wonder whether the inexistence of a pure Nash equilibrium in at least

one game ω is a required property for the inexistence of a locally calibrated ABEE.

To address this, consider a setting in which there is a pure Nash equilibrium in

each normal form game. It is readily verified that when Ki is no smaller than the

number of actions employed by player j across the various pure Nash Equilibria

obtained when the game ω ∈ Ω is varied, the Nash strategy profiles can be played

in a globally calibrated ABEE by considering for player i an analogy partition

Ani that assigns games ω with the same Nash action of player j to the same

analogy class. However, when Ki is smaller than this number for at least one

12For the local calibration part, observe that with the Kullback-Leibler divergence, the mixed
behavior σ2(ω2) =

2
2+xL⊕ x

2+xR would be better explained by β1(α) =
1

2+xL⊕ 1+x
2+xR than by

the pure theory L that could not generate R observations (even if arbitrarily rare).
Global calibration though would still require that game ω2 be assigned together with ω1

whenever x < 2.
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player i, then there may be no locally calibrated ABEE. We illustrate this in the

online appendix (using a three game setting with d(pj, p
′
j) =

(
E(pj)− E(p′j)

)2
and

identifying actions with points on the real line).

3) A globally calibrated ABEE should not be confused with the outcome of a

two-stage game in which in stage 1, players 1C and 2C would simultaneously choose

the analogy partitions of players 1 and 2 who would play a corresponding ABEE

in stage 2 with an objective of player iC as given by (1). The main difference

between the two approaches is the commitment aspect in the two stage version

which would allow player iC to choose an analogy partition that is not optimal

with respect to (1) given the actual play of player i in stage 2.

2.5 Distributional calibrated analogy-based expectation equilibrium

We propose getting around the existence problem by adopting a distributional

approach (that will be interpreted after the definitions are in place). Formally,

we allow the analogy partition Ani of player i to take different realizations in Ki,

and we refer to λi as the distribution of Ani over Ki. The distributions of analogy

partitions of the two players are viewed as independent of one another (formalizing

a random assignment assumption, see the learning dynamics described below for

elaborations). We refer to λ = (λi, λj) as the profile of these distributions, and

we let Λ = ∆Ki × ∆Kj be the set of (λi, λj). For each analogy partition Ani of

player i in the support of λi referred to as Suppλi, we let σi(· | Ani) : Ω → ∆Ai

refer to the mapping describing how player i with analogy partition Ani behaves

in the various games ω ∈ Ω. We refer to σi = (σi(· | Ani))Ani∈Suppλi
as player i’s

strategy, and we let σ = (σi, σj) denote the strategy profile, the set of which is

still denoted Σ.

Given λ ∈ Λ and σ ∈ Σ, we can define the aggregate behaviors of the two

players in each game, as aggregated over the various realizations of analogy parti-

tions. We have in mind that these aggregate behaviors in the various games ω ∈ Ω

constitute the only data accessible to players, thereby implying that only these

aggregates are used to construct the analogy-based expectations and implement

the clustering. Formally, the aggregate strategy of player j in game ω is given by

σj(ω) =
∑

Anj∈Kj

λj(Anj)σj(ω | Anj). (2)
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Let σ̄ = (σ̄i, σ̄j) denote a profile of aggregate strategies and let Σ denote the set

of such profiles.

The analogy-based expectation of player i defines for each analogy partition

Ani ∈ Suppλi and each analogy class αi ∈ Ani, the aggregate behavior of player

j in αi denoted by βi(αi | Ani) ∈ ∆Aj (the dependence on Ani is here to stress

that player i with analogy partition Ani considers only the aggregate behaviors in

the various analogy classes in Ani). Similarly as above, βi(· | Ani) is said to be

consistent with σj iff, for all αi ∈ Ani,

βi(αi | Ani) =
∑
ω∈αi

p(ω)σj(ω)/
∑
ω∈αi

p(ω). (3)

We are now ready to propose the distributional extensions of our previous defini-

tions.

Definition 4. Given λ = (λi, λj) ∈ Λ, a strategy profile σ = (σi, σj) ∈ Σ is a

distributional analogy-based expectation equilibrium (ABEE) iff there exists β =

(βi, βj) such that for every player i and Ani ∈ Suppλi, we have that i) σi(· | Ani)

is a best-response to βi(· | Ani) and ii) βi(· | Ani) is consistent with σj (where σj

is derived from σj as in (2)).

Definition 5. A pair (σ, λ) ∈ Σ× Λ is a locally (resp. globally) calibrated distri-

butional analogy-based expected equilibrium iff i) σ is a distributional ABEE given

λ, and ii) for every player i and Ani ∈ Suppλi (where λ = (λi, λj)), Ani is locally

(resp. globally) calibrated with respect to σj (where σj is derived from σj as in

(2)).

Clearly, a calibrated distributional ABEE coincides with a calibrated ABEE

if the distributions of analogy partitions assign probability 1 to a single anal-

ogy partition for both players i and j. Calibrated distributional ABEE are thus

generalizations of calibrated ABEE. We now establish an existence result.

Theorem 1. In finite environments, there always exists a locally (resp. globally)

calibrated distributional ABEE when d is the square of the Euclidean distance or

the Kullback-Leibler divergence.

To prove this result we focus on the existence of a globally calibrated distri-

butional ABEE, since any globally calibrated distributional ABEE is obviously
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a locally calibrated distributional ABEE. By Kakutani fixed point theorem, we

show that there is a fixed point of a compound correspondence that maps Σ̄× Λ

into itself. This correspondence is defined so that any fixed point of it is a globally

calibrated distributional ABEE.

More precisely, the first aspect of the correspondence is the function mapping

(σ, λ) into the analogy-based expectations β = (βi, βj) for the various analogy par-

titions in the support of λ where such analogy-based expectations β are required

to be consistent with σ. Given (3), this function is obviously continuous. From β,

one can define the best-response correspondences for each of the analogy partitions

in the support of λ, thereby defining for i = 1, 2 sets of best-responses σi(· | Ani)

(to βi(· | Ani)) for the various Ani in the support of λi. Such best-response cor-

respondences are upper-hemicontinuous as in the standard case. Combining with

λ according to (2), this gives rise to sets of σ, and it is readily verified that this

part of the correspondence satisfies the upper-hemicontinuity condition required

for Kakutani’s theorem.

The second aspect of the correspondence concerns the one mapping σ into the

distributions over analogy partitions that would be globally calibrated with respect

to σ. This correspondence defines a convex hull with extreme points given by the

solutions to (1). This correspondence satisfies the upper-hemicontinuity conditions

required for Kakutani’s theorem when we consider the squared Euclidean distance

(variance criterion). For the Kullback-Leibler divergence criterion, some extra care

is needed as d(q, q′) can diverge to infinity when supp[q] ⊈ supp[q′]. We deal with

this by making extra use of the consistency requirement. Details about this and

the overall proof appear in the Appendix.

Example 1 (continued) For x < 2 and whether d is the square of the Eu-

clidean distance or the Kullback-Leibler divergence, there exists a unique globally

calibrated distributional ABEE. In any such ABEE, it should be that σ2(ω2) =

1
2
L ⊕ 1

2
R so that for the purpose of global calibration, one can equally have

An = {{ω1, ω2} , {ω3}} or An′ = {{ω1} , {ω2, ω3}} (given that σ2(ω1) = L and

σ2(ω3) = R).13 Given this, consistency implies that β1({ω1, ω2} | An) = 3
4
L⊕ 1

4
R

and thus σ1(ω2 | An) = U . Similarly, β1({ω2, ω3} | An′) = 1
4
L ⊕ 3

4
R and thus

13For local calibration, there is extra degree of freedom as any σ2(ω2) = qL ⊕ (1 − q)R with
q ∈ [1/3, 2/3] could be used.
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σ1(ω2 | An′) = D for all x < 2. In order to let the Column player be indifferent

between L and R in ω2, it should be that σ1(ω2) =
1
2
U ⊕ 1

2
D, thereby implying

that λ1 = 1
2
An ⊕ 1

2
An′, i.e., the Row player should randomize 50:50 between the

two analogy partitions An and An′. Completing this with the best-response of

player 1 in game ω1to
3
4
L⊕ 1

4
R (resp. L) when using An (resp. An′), and the best-

response of player 1 in game ω3 to R (resp. 1
4
L⊕ 3

4
R) when using An (resp. An′)

provides a complete description of the globally calibrated distributional ABEE.

Comment. In a calibrated distributional ABEE, it is the case that the same

datapoint corresponding to the same game may be assigned to different clus-

ters/analogy classes depending on the analogy partition. More generally, one may

wonder if two games corresponding to datapoints which are nearby would always

be assigned to the same analogy class. Clearly, this is not so in a calibrated distri-

butional ABEE (as just discussed). By contrast, in a globally calibrated ABEE, if

players’ incentives to follow their strategies are strict in each game and if there is

a unique solution to the clustering problem (as would arise for generic values of p),

then games that would correspond to the same equilibrium behavior would have

to belong to the same analogy class. This suggests why some mixing is needed for

this to arise.

2.6 Learning foundation

In this part, we introduce learning dynamics involving populations of players in

the roles of i = 1, 2 the steady states of which correspond to the globally calibrated

distributional ABEE.

Learning dynamics. There is a continuum of mass 1 of subjects assigned

to the role of player i = 1, 2. We refer to the subjects assigned to the role of player

i as population i. In each period, subjects from populations i and j are randomly

matched to play a randomly selected game ω. Throughout this Section, we assume

that the share of game ω that is being played matches the prior probability p(ω)

that game ω is chosen.

We introduce two perturbations that are used to deal with possible indifferences

(both at the stage when strategies are chosen and at the stage when categoriza-
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tions are chosen). First, when playing a game, we assume the payoffs are slightly

perturbed, as is commonly considered in the learning literature (see in particular

Fudenberg and Kreps (1993) or more recently Esponda and Pouzo (2016)). For-

mally, let ρ̃i be a random variable with a continuous density gi on [0, 1] and ε > 0

a number that should be thought of as small (ε measures the degree of perturba-

tion). We assume that before playing game ω, player i attaches an extra payoff

ερi(ai, ω) to action ai as compared with the baseline payoff ui(ai, aj, ω) defined in

the main model where ρi(ai, ω) is a realization drawn from ρ̃i and the draws are

assumed to be independent across actions ai and games ω. As before, we assume

that the distribution of realizations in the population matches the densities and

probabilities induced by p and ρ̃i. To be more specific, player i in game ω (with

draws ρi(ai, ω), ρi(a
′
i, ω)) picks action ai whenever for all a

′
i ̸= ai,

14

ui(ai, βi, ω) + ερi(ai, ω) > ui(a
′
i, βi, ω) + ερi(a

′
i, ω)

where βi refers here to player i’s expectation about player j’s behavior in ω.

The second perturbation concerns how clustering is implemented. Suppose

in the previous period σj(ω) represents the aggregate play of population j when

playing game ω. We assume that subjects in population i before knowing the

game ω, implement the clustering of the corresponding datapoints, but instead

of clustering (σj(ω))ω∈Ω they consider a slight perturbation of these datapoints

(where the perturbed datapoints can be thought of as being the result of measure-

ment errors). Formally, let η̃i be a random vector with continuous density hi over

the interior of ∆Aj. We assume that a given player of population i implements

a (global) clustering into Ki classes of
(
sj(ω) ≡ σj(ω)+εηi(ω)

1+ε

)
ω∈Ω

where ηi(ω) is a

realization drawn from η̃i and the draws are assumed to be independent across

games ω and across subjects. As before, we assume that the distributions of re-

alizations in the population match the density η̃i. To be more specific, player i

(with draws ηi(ω)) picks the partitioning into Ki classes so as to solve15

14Cases of indifference are insignificant whenever ρ̃i is distributed in the continuum as assumed
here.

15For generic ηi(ω), there is a unique solution, thus the handling of indifferences is inconse-
quential when η̃i has a density with no atom, as assumed here.
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arg min
Pi∈Ki

∑
ci∈Pi

p(ci)
∑
ω∈ci

p(ω | ci)d(sj(ω), βi(ci))

where βi(ci) is here the mean of sj(ω) conditional on ω ∈ ci.

The learning dynamics is described as follows. Given the aggregate plays

σt−1(ω) in period t−1, subjects of population i in period t implement the optimal

clustering with respect to the subject-specific perturbed datapoints induced by(
σt−1
j (ω)

)
ω∈Ω as just explained. This fixes for each subject in the population of

player i a belief about how aj is chosen in game ω. More precisely, for each game

in cluster ci, the belief is identified with the mean of sj(ω) conditional on ω ∈ ci,

which corresponds to the representative point in cluster ci found at the clustering

stage.16 Then players are randomly matched to play the various games, and they

choose a perturbed best-response in the game they are assigned to as given by

their expectations βi and the realized perturbations ρi(ai, ω). Integrating over the

various subjects, this generates new aggregate data σt(ω) for the various games ω

in period t. The dynamics is then fully pinned down by the initial values of σ0(ω)

used in period 1 (as well as ε, gi, hi).

Steady state. We first establish that for a fixed ε, there always exists a

steady state of the learning dynamics just described. We next establish that the

limits of such steady states as ε converges to 0 correspond to the globally calibrated

distributional ABEE. The proofs appear in the Appendix.

Proposition 2. For a fixed ε, there always exists a steady state of the learning

dynamics.

Proposition 3. Consider a sequence of steady states (σ(ε), λ(ε)) of the learning

dynamics induced by ε where σ(ε) denotes the ex ante strategy (prior to the re-

alizations of the perturbations ρ) and λ(ε) denotes the distribution of the profile

of analogy partitions.17 Consider an accumulation point (σ, λ) of (σ(ε), λ(ε)) as ε

16This is the extra place where the result of Lemma 1 is being used, in the sense that the
representative points found at the clustering stage can directly be used as expectations at the
strategy selection stage. Note that this also applies to the setting discussed in Section 3 (since
there strategies can be reduced to their expectations both at the clustering stage and at the
best-response stage), but not to the example discussed in the online appendix.

17σ
(ε)
i is a strategy of player i that depends on the game ω and the analogy partition Ani of

player i as in the general construction above.
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tends to 0. (σ, λ) is a globally calibrated distributional ABEE.

Discussion. As already mentioned, the perturbation of payoffs is similar to

that considered in Fudenberg and Kreps (1993), and it allows us to ensure that

the randomization that may arise when players employ mixed strategies are made

independently across players. The perturbation of σ at the clustering stage is

new to the present framework, but it serves a similar purpose of ensuring that the

distributions of analogy partitions are independent across players. We have chosen

to formulate results in terms of steady states and limits of those as the magnitude

of the perturbations (parameterized by ε) vanishes so as to strengthen the link to

the previously introduced solution concept. This is a bit different from Fudenberg

and Kreps (1993) or Esponda and Pouzo (2016) who consider fixed perturbations

and show properties of limit strategies of the learning dynamics when these are

assumed to be converging. Fixing ε, we could establish that if there is convergence,

it must correspond to a steady state of the learning dynamics. This would require

relying on some form of the law of large numbers similarly as in Fudenberg and

Kreps (1993) or Esponda and Pouzo (2016).

The construction of the learning dynamics has been made using global calibra-

tion. One could instead assume that at the clustering stage, players rely on the

K-means algorithm with the perturbed data, and we would then have to spec-

ify which initial conditions are used when implementing the algorithm (possibly

allowing different subjects to use different initial conditions). This would induce

potentially extra complications (compared to the above analysis) as it would re-

quire deriving extra properties regarding how the K-means clustering algorithm

transforms perturbed datasets into analogy partitions. We leave the analysis of

this for future research.

3 Strategic interactions with linear best-replies

In this section we apply the notion of Calibrated ABEE to families of games

with continuous action spaces parameterized by an interaction parameter µ, which

takes values in an interval of the real line. This parameter is a determinant of the

intensity of players’ reactions to their opponent’s behavior. Players have best-

responses which are linear both in the strategy of the opponent and in µ.
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Formally, we consider a family of games parameterized by µ ∈ [−1, 1], where

µ is distributed according to a continuous density function f with cumulative

denoted by F . Players observe the realization of µ and player i = 1, 2 chooses

action ai ∈ R. In game µ, when player i expects player j to play according to

σj ∈ ∆R, player i’s best-response is:

BRi(µ, σj) = A+ µB + µCE(σj),

where E(σj) denotes the mean action derived from the distribution σj, and A,B

and C are constants with 0 < C < 1. We will analyze separately the cases in

which µ ∈ [0, 1] and µ ∈ [−1, 0], and in each case we will assume that f(·) has full
support. In the former case, the games exhibit strategic complementarity. In the

latter, they exhibit strategic substitutability.

The restriction to linear best-replies while demanding in some respects allows

us to illustrate in a simple way the implications of our general framework. It also

allows us to accommodate classic applications.18

In particular, consider the case of strategic complementarity (µ ≥ 0). A game

with linear best-responses arises in a duopoly with differentiated products in which

firms have constant marginal costs, demand is linear, and firms compete in prices

à la Bertrand (see Vives 1999 for a textbook formulation). Alternatively, this

framework can capture a reduced form of moral hazard in team problems (a specific

formulation of the model introduced by Holmström 1982) in which the agents

receive a bonus if the team is successful, agents simultaneously choose how much

effort to exert, the probability of success depends on the profile of effort in a

bilinear way and the cost of effort is quadratic.19

Consider next the case when µ is non-positive so that the game exhibits strate-

gic substitutability. A setting fitting our formulation is one of a duopoly with

differentiated products with constant marginal costs and linear demands, but this

time assuming firms compete in quantities à la Cournot (see again Vives 1999 for

18It may be mentioned that in our formulation, we allow the actions to take any value (positive
or negative) whereas in some of the applications mentioned below it would be natural to impose
that the actions (quantities, prices or effort level) be non-negative. We do not impose non-
negativity constraints to avoid dealing with corner solutions, but none of our qualitative insights
would be affected with such additional constraints.

19Complementarity is obtained for positive coefficients applying to the product of effort levels
in the probability of success.
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elaborations).

Regardless of the sign of µ, it is readily verified that there exists a unique

Nash Equilibrium of the game with parameter µ. It is symmetric, it employs pure

strategies and it is characterized by aNE
1 (µ) = aNE

2 (µ) = A+µB
1−µC

. The function

aNE
i (µ) is continuous and monotone in µ. When B = −AC, the function aNE

i (µ)

is flat. The function is strictly increasing (decreasing) and convex (concave) in µ

for B greater (smaller) than −AC, when µ ∈ [−1, 1].

In our family of games parameterized by µ, it is natural to impose that if two

games µ∗ and µ∗∗ are bundled together in the same analogy class, any game µ

with µ in between µ∗ and µ∗∗ should also be bundled with µ∗ and µ∗∗ as well.20

Accordingly, we will be considering analogy partitions with the property that

each analogy class is an interval of µ, and we will refer to these as interval analogy

partitions.

Specifically, assume that players use (pure) symmetric interval analogy parti-

tions, splitting the interval into K subintervals, so that

An1 = An2 = {[µ0, µ1], (µ1, µ2], . . . , (µK−1, µK ]}

where µ0 = 0, µK = 1 in the case of strategic complements, and µ0 = −1, µK = 0

in the case of strategic substitutes.21

Since analogy partitions are symmetric, we simplify notation by dropping the

subscript that indicates whether player 1 or 2 is considered. We simply denote

the interval (µk−1, µk] by αk for k = 2, ...K − 1 and α1 = [µ0, µ1].

Our general framework as introduced in Section 2 considered the finite case in

which the action and the state spaces are both finite. In general, extending the

definitions of equilibrium and deriving existence results when either of these spaces

lies in the continuum can raise difficulties.22 However, in the present context in

which best-responses are linear, there is an easy way of extending the definitions of

analogy-based expectation equilibrium and consistency restricting attention to the

20Such a desideratum may apply more broadly as soon as there is a natural notion of proximity
between games independently of how players behave.

21Whether µk is assigned to (µk−1, µk) or (µk, µk+1) plays no role in our setting with a
continuum of µ.

22A similar observation applies to other solution concepts such as the sequential equilibrium
as recently illustrated in Myerson and Reny (2020).
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mean action of the opponent as opposed to the entire distribution. Also, in such a

case it is natural to compare the behaviors in different games using the Euclidean

distance between the mean action these games induce, and we will accordingly

consider the square of the Euclidean distance in the space of these mean actions

for clustering purposes.

Specifically, with some abuse of notation, we will refer to βi(αk) as the expected

mean action of player j in the analogy class αk. The consistency of βi with σj

imposes that βi(αk) = 1
F (µk)−F (µk−1)

∫ µk

µk−1
σj(µ)f(µ)dµ, where σj(µ) denotes the

(mean) action chosen by player j in game µ. Moreover in each game µ ∈ αk, best-

response requires that player i chooses action BRi(µ, βi(αk)) = A+µ(B+Cβi(αk))

as given by µ and his analogy-based expectation βi(αk) about the mean action in

αk.

Given a (symmetric) interval analogy partition profileAn1 = An2 = {[µ0, µ1], . . . , (µK−1, µK ]},
an ABEE is a strategy profile (σ1, σ2) such that for each player i, each class αk

and each game µ ∈ αk, we have σi(µ) ∈ BRi(µ, βi(αk)) with the requirement

thate βi is consistent with σj. Exploiting the linearity of the best-response, it is

easily established (through routine calculations provided in the online Appendix)

that there exists a unique ABEE, which is symmetric, whatever the (symmetric)

interval analogy partition.

Proposition 4. Assume players use symmetric interval analogy partitions. There

exists a unique ABEE where, for all k = 1, . . . , K, β1(αk) = β2(αk) =
A+BE[µ|αk]
1−CE[µ|αk]

and for µ ∈ αk, σ1(µ) = σ2(µ) = A+ µ B+AC
1−CE[µ|αk]

.

Since under symmetric interval analogy partitions the ABEE is symmetric, we

drop the subscript that refers to players and we write β1(αk) = β2(αk) = β(αk).

We also let a(µ|αk) refer to A+µ B+AC
1−CE[µ|αk]

for the remainder of this section where

as seen in Proposition 4, a(µ|αk) = A+µ B+AC
1−CE[µ|αk]

describes the ABEE strategies

of players 1 and 2 in the analogy class αk. The function a(µ|αk) is linear in

µ. Similarly to the discussion of Nash Equilibrium above, when B = −AC, the

function a(µ|αk) is flat, and it is strictly increasing (decreasing) in µ for B greater

(smaller) than −AC, if µ ∈ [0, 1].

As far as clustering is concerned, and as already mentioned, we consider the

square of the Euclidean distance in the mean actions. That is, considering a

symmetric interval analogy partition given by {αk}Kk=1 and the associated ABEE
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(as described by β(αk) and a(µ | αk)), {αk}Kk=1 is locally calibrated, if for all

k = 1, . . . , K and all µ ∈ αk,
23

(β(αk)− a(µ|αk))
2 ≤ (β(αk′)− a(µ|αk))

2, ∀k′ ̸= k.

By the monotonicity of the function a(µ|αk) the problem of local calibration boils

down to verifying the above inequalities only at the extreme points of each anal-

ogy class. That is, the sequence {µ0, µ1, . . . , µK} generates an interval analogy

partition that is locally calibrated with respect to the corresponding ABEE, if

and only if, for k = 1, . . . , K − 1,

(β(αk)− a(µk|αk))
2 ≤ (β(αk+1)− a(µk|αk))

2

and

(β(αk+1)− a(µk|αk+1))
2 ≤ (β(αk)− a(µk|αk+1))

2 (4)

As far as global calibration is concerned, one has to check for a given candidate

interval analogy partition An = {αk}Kk=1 whether

An = arg min
{α′

k}
K
k=1

∑
k

∫
α′
k

[
β(α′

k)− aABEE(µ)
]2
f(µ)dµ

where aABEE(µ) ≡ A+ µ
∑K

k=1 1{µk−1<µ≤µk]}
B+AC

1−CE[µ|αk]
is the ABEE strategy given

An and β(α′
k) = E(aABEE(µ) | µ ∈ α′

k).

3.1 Strategic Complements

In this part we assume that µ is distributed according to a continuous density f

with support on [0, 1].

Given (µk)
K
k=0, we make the important observation that

aABEE(µ) = A+ µ
K∑
k=1

1{µk−1<µ≤µk]}
B + AC

1− CE[µ|αk]

23Clearly, for local calibration, we could consider the Euclidean distance instead of the square
of the distance. This is so because comparisons are only in terms of the mean action, which is
one-dimensional.
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has discontinuities at µ1, µ2, . . . , µK−1. If B ≥ −AC, the function aABEE(µ) is

increasing in µ and the discontinuities take the form of upward jumps. Similarly,

if B < −AC, the function aABEE(µ) is decreasing in µ and the discontinuities take

the form of downward jumps. The direction of the jumps is a consequence of the

strategic complement aspect, and it will play a key role in the analysis of local

calibration. Indeed assuming B ≥ −AC, as one moves in the neighborhood of

µk from the analogy class (µk−1, µk] to the analogy class (µk, µk+1], the perceived

mean action of the opponent jumps upwards and this leads to an upward jump in

the best-response.

There is a simple geometric characterization of local calibration. Assuming

B ≥ −AC, we have that β(αk) ≤ β(αk+1), for all k. The local calibration re-

quirements summarized by inequalities in (4) are equivalent to the condition that

the arithmetic average of the analogy-based expectations of two adjacent analogy

classes should be between the largest action in the first and the smallest action in

the second analogy class. That is,

a(µk|αk) ≤
β(αk) + β(αk+1)

2
≤ a(µk|αk+1).

Similarly, when B < −AC, the ABEE function is strictly decreasing and (4) can be

reduced to a(µk|αk) ≥ β(αk)+β(αk+1)

2
≥ a(µk|αk+1). These inequalities can receive

a simple graphical interpretation as illustrated in Figure 1 where the horizontal

dashed lines in black represent the arithmetic average between the analogy-based

expectations of two consecutive classes, and whenever aABEE(µ) does not cross

any dashed line, the requirements for local calibration are satisfied by that analogy

class.24

24Figure 1 shows how the (simplified) local calibration requirements would appear graphically.
There are two graphs, one for B > −AC on the left and one for B < −AC on the right.
Both graphs depict how the Nash Equilibrium function aNE(µ) = A+µB

1−µC (in blue) and the

ABEE function aABEE(µ) (in orange) change as µ varies. For these graphs we assume that µ is
distributed uniformly over [0, 1], we letK = 4, and we pick the interval analogy partition induced
by the equal splitting sequence {0, 1

4 ,
2
4 ,

3
4 , 1}. When B > (<)AC, aNE(µ) and aABEE(µ) are

strictly increasing (decreasing).
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One can easily see from Figure 1 that the analogy partitions depicted in the

graphs are locally calibrated. As a matter of fact, and as we will show later,

when µ is uniformly distributed between 0 and 1, an analogy partition that splits

the interval into K subintervals of equal size leads to a locally calibrated ABEE.

For more general distributions, we introduce the notion of equidistant-expectations

sequence µ0, µ1, . . . , µK defined so that for any µk, with k ̸= 0, 1, the Euclidean

distance between µk and the mean value of µ in (µk−1, µk] is equal to the Eu-

clidean distance between µk and the mean value of µ in (µk, µk+1]. That is,

µk − E[µ|(µk−1, µk]] = E[µ|(µk, µk+1]] − µk. We refer to the corresponding in-

terval partition (αk)
K
k=1 with αk = (µk−1, µk] as the equidistant-expectations par-

tition. We note that when µ is uniformly distributed on [0, 1], the equidistant-

expectations sequence is uniquely defined by µk =
k
K
, and in this case we refer to it

as the equal splitting sequence. For more general density functions f , it is readily

verified (by repeated application of the intermediate value theorem) that:25

Lemma 2. There always exists at least one equidistant-expectations partition.

3.1.1 Locally calibrated ABEE

Proposition 5. In the environment with strategic complements, consider an equidistant-

expectations partition An, and let aABEE(µ) be the corresponding ABEE. (aABEE, An)

is a locally calibrated ABEE.

25See the online appendix for details. We also conjecture that there may be multiple such
sequences in some cases. Toward this end, consider the pdf f(µ) being ε in [0, 1

2 ] and 2 − ε in
( 12 , 1]. As ε → 0, two sequences would satisfy the property: {0, 1/2, 1} and {0, 3/4, 1}. This
discontinuous pdf is excluded by our assumptions, but we conjecture that we can construct
densities with continuous pdf with the same property.
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The rough intuition for this result can be understood as follows. Suppose we

were considering games with no interaction term, i.e., such that C = 0. Then in

game µ, players would be picking their dominant strategy a(µ) = A+µB irrespec-

tive of the analogy partition, given that players would not care about the action

chosen by their opponent. It is readily verified that the K-means clustering of the

points a(µ) would lead to pick an equidistant-expectations partition in this case,

and this would force a locally calibrated ABEE when C = 0 to be relying on such

equidistant-expectations partitions. Allowing for non-null interaction parameters

C makes the problem of finding a locally calibrated ABEE a priori non-trivial

due to the endogeneity of the data generated by the ABEE with respect to the

chosen analogy classes, as explained in Section 2. However, what the Proposition

establishes is that using the same analogy classes as those obtained when C = 0

can be done to construct a locally calibrated ABEE. Intuitively, this is so because

the strategic complement dimension makes the points obtained through ABEE in

a given class of the equidistant-expectations partition look closer to one another

relative to points outside a class, as compared with the case in which C = 0. As a

result, the local calibration conditions which hold for the equidistant-expectation

partition when C = 0 hold a fortiori when C is non-null. This rough intuition is

confirmed in the Appendix.

Building on Proposition 5, one may seek to characterize the set of interval

partitions that can arise in locally calibrated ABEE. Clearly, not all interval par-

titions can arise as for example with K = 2 if µ1 is either too close to 0 (resp. 1),

the game µ slightly above (resp. below) µ1 would not satisfy the local calibration

requirement. The following proposition characterizes the set of interval partitions

that can arise in locally calibrated ABEE.

Proposition 6. Consider the strategic complements environment. Let An be a

pair of symmetric interval analogy partitions generated by the increasing sequence

{µ0, µ1, . . . , µK} with corresponding ABEE aABEE. (aABEE, An) is a locally cali-

brated ABEE if and only if the following conditions hold:

(i) µ0 = 0 and µK = 1;

(ii) given (µk−1, µk), µk+1 satisfies E[µ|(µk, µk+1]] ≥ 2µk−E[µ|(µk−1,µk]]

1+2C(µk−E[µ|(µk−1,µk]])
,

for k = 1, . . . , K − 1;

(iii) given (µk−1, µk), if E[µ|(µk−1, µk]] <
1
2C

, then µk+1 satisfies
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E[µ|(µk, µk+1]] ≤ µk +
µk−E[µ|(µk−1,µk]]

1−2CE[µ|(µk,µk−1]]
for k = 1, . . . , K − 1.

Proof. First, note that condition (i) simply requires that the sequence starts

at 0 and ends at 1, so that {µk}Kk=1 generates in fact an analogy partition. Hence, it

is a necessary condition. Due to the monotonicity of aABEE, an analogy partition

is locally calibrated w.r.t aABEE if and only if (4) holds for k = 1, . . . , K − 1.

Straightforward computations show that condition (ii) is equivalent to (a(µk|αk)−
β(αk))

2 ≤ (a(µk|αk)−β(αk+1))
2, while condition (iii) is equivalent to (a(µk|αk+1)−

β(αk+1))
2 ≤ (a(µk|αk+1) − β(αk))

2. Hence conditions (i), (ii) and (iii) are neces-

sary and sufficient conditions for an increasing sequence {µk}Kk=1 to generate An

such that (aABEE, An) is a locally calibrated ABEE. Q.E.D.

Proposition 6 shows the range of interval partitions that can arise in locally

calibrated ABEE. Condition (i) ensures that the sequence starts and ends at the

extremes of the interval. Conditions (ii) and (iii) provide conditions required

to build the sequence, given the first values µ0 and µ1 of the sequence. Since

E[µ|(µk, µk+1]] is increasing in µk+1, condition (ii) gives a lower bound on the

set of µk+1 that can be picked, given µk−1 and µk. Similarly, condition (iii)

gives an upper bound on µk+1, but this upper bound needs to be satisfied only if

E[µ|(µk−1, µk]] <
1
2C

. Note that, when C tends to 0, the upper bound will always

play a role. By contrast, when C tends to 1, the upper bound condition is not

binding for µk−1, µk large enough.26 Observe that when C tends to 0, the above

conditions force the interval partition to be an equi-distant expectation partition.

As C increases, more interval partitions can arise in a calibrated ABEE.

3.1.2 Globally calibrated ABEE

We now turn to the analysis of globally calibrated ABEE, and, to simplify the

analysis, we focus on the case in which µ is uniformly distributed on [0, 1]. Since

a globally calibrated ABEE must be a locally calibrated ABEE and the equal

splitting interval partition gives rise to a locally calibrated ABEE in this case, we

first explore when the stronger conditions for global calibration are satisfied for

this interval partition.

26This is so because the slope of aNE(µ) is constant for C = 0, and aNE(µ) is more convex as
C increases when B > −AC (and concave for B < −AC). As we mentioned in the description
of Figure 1, the size of the jumps is increasing with the steepness of aNE(µ).
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Proposition 7. Let µ follow a uniform distribution over [0, 1]. Denote by An the

pair of symmetric analogy partitions generated by the equal splitting sequence and

aABEE the corresponding ABEE. In the environment with strategic complements,

there exist C∗ and C∗∗ such that i) for all C < C∗, (aABEE, An) is a globally

calibrated ABEE; and ii) for all C > C∗∗ and K > 3, (aABEE, An) is not a

globally calibrated ABEE.

At some rough level, one might have thought that the first part of Propo-

sition 7 derives from the observation that when C gets small, aABEE(µ) gets

close to A + Bµ for which the equal splitting partition is the only way to en-

sure global calibration. However, this intuition is incomplete, as we need to es-

tablish that for C away from 0 (even if small), the clustering of the datapoints

aABEE(µ) = A + µ
∑K

k=1 1{µk−1<µ≤µk]}
B+AC

1−CE[µ|αk]
leads to the equal splitting parti-

tion for global calibration purposes. In other words, we are not just requesting

that for C small, the optimal clustering of aABEE(µ) be close to the equal split-

ting partition. We are requesting that it is exactly the equal splitting partition.

This stronger requirement turns out to be satisfied because as we show that there

is no partition other that the equal splitting partition that allows to satisfy the

local conditions for local calibration with respect to aABEE(µ) when C is small

enough.27

Regarding the second part of Proposition 7, we note that when C is above

some threshold C∗∗, the function aABEE(µ) in the analogy class αK (with highest

µ) is so much steeper than in the first analogy class α1 that it would be better -for

variance minimization purposes- to split the last interval in half and merge the

first two intervals together. Thus, for C large enough, the equal splitting partition

does not satisfy the global optimality condition, and it cannot be part of a globally

calibrated ABEE.

When the equal-splitting partition is not part of a globally calibrated ABEE

(i.e. when C is too large), an open question is whether there exists another

interval partition that can be used to support a globally calibrated ABEE. We

would expect such an interval partition to use finer classes for larger values of µ

so as to better reduce the variance in classes with large µ. While we can easily

27Moving away from the uniform distribution, we conjecture that the same result holds for a
selection of equidistant-expectations partition (the one that solves the clustering problem when
C = 0).
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generate examples of globally calibrated ABEE with such features, we have not

found a general argument showing the existence of a globally calibrated ABEE

in all cases (as unlike for the analysis of locally calibrated ABEE we were not

able to guess a potential candidate and verify whether the required conditions are

satisfied).

3.2 Strategic Substitutes

We now assume that µ is distributed according to a continuous density function

f with support [−1, 0].

Note that, differently from the strategic complements environment, here the

ABEE function aABEE(µ) = A +
∑K

k=1 1{µ∈[µk−1,µk)}µ
B+AC

1−CE[µ|αk]
is not monotone

in µ. This is due to the fact that at the discontinuity points the jumps of the

function are in the opposite direction with respect to the slope of a(µ|αk) =

A+ µ B+AC
1−CE[µ|αk]

, and this is a fundamental difference induced by the change from

strategic complements to strategic substitutes. To illustrate this, consider the

case where a(µ|αk) has a positive slope, that is, B < −AC. Recall that β(αk) =
A+BE[µ|αk]
1−CE[µ|αk]

. Since µ is non-positive, B < −AC and E[µ|αk] < E[µ|αk+1] imply

that β(αk) < β(αk+1). Since in the strategic substitutes environment the best-

response is decreasing in the analogy-based expectations, at the adjacency point

between two classes, the action played in equilibrium will be greater in the first

of the two classes: β(αk) < β(αk+1) implies that a(µk|αk) > a(µk|αk+1). Hence,

when a(µ|αk) is increasing in µ, the ABEE function jumps downwards at the

discontinuity points. We can see this in the graphs of Figure 2.
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The non-monotonicities that arise in the ABEE strategies with interval anal-

ogy partitions in turn make it impossible to satisfy local calibration in a neigh-

borhood of µ = µk. This is so because it cannot be simultaneously the case that

limµ→µ+
k
aABEE(µ) is closer to β((µk, µk+1]) and aABEE(µk) is closer to β((µk−1, µk]).

28

Formally, we have:

Proposition 8. In the strategic substitutes environment, whenever B ̸= −AC,

there are no symmetric interval analogy partitions that are locally calibrated with

respect to the induced ABEE.

Proposition 8 implies that there is no symmetric calibrated ABEE employing

a single interval analogy partition. Given our general considerations in Section

2, it is natural to look for locally calibrated distributional ABEE and investigate

whether we can have such equilibria with support of analogy partitions contained

in the set of interval partitions. In our setup with a continuum of games, there are

technical difficulties addressing this. In the online appendix, we consider a version

with three values of µ, and we establish the existence of a symmetric calibrated

distributional ABEE in this case.

4 Conclusion

In this paper we have introduced the notion of Calibrated ABEE defined so that i)

given the analogy partitions, players choose strategies following the ABEE machin-

ery, and ii) given the raw data on the opponent’s strategies, players select analogy

partitions following the K-means clustering prescriptions. We have observed that

distributions over analogy partitions are sometimes required to guarantee exis-

tence whether local or global calibration is considered and whatever the notion of

distance or divergence used at the clustering stage. We have applied our approach

to one-dimensional families of games with linear best-responses, and shown that

when games exhibit strategic complements, Calibrated ABEEs with symmetric

interval partitions can arise, while mixing over partitions is needed for games with

strategic substitutes. We hope our approach can fruitfully be applied in future

28For example when B + AC > 0, we would have β((µk, µk+1]) > aABEE(µk) >
limµ→µ+

k
aABEE(µ) > β((µk−1, µk]), making it impossible to satisfy the local calibration condi-

tions for µ = µk and µ = µ+
k (i.e., µ slightly above µk).
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works (theoretical, experimental or empirical) to shed more light on how economic

agents categorize games into analogy partitions to form expectations about their

opponents’ strategies.

Appendix

The proofs of Proposition 4 and Lemmas 1, 2, 3 and 4 (which we have included

for completeness) appear in the online Appendix.

Proof of Theorem 1. Compared to classic existence results in game the-

ory, the main novelty is to show that the global calibration correspondence has

properties that allow to apply Kakutani fixed point theorem to a grand mapping

M : Σ̄× Λ ⇒ Σ̄× Λ, which is a composition of the following functions and corre-

spondences. Given (σ̄, λ) we compute the analogy-based expectations β through

consistency and we call this function C. Given (β, λ), the Best Response corre-

spondence (BR) yields the optimal strategies for each analogy partition in the

support of λ. We aggregate the strategies following (2) obtaining σ̄′ and define

β′ to be consistent with σ̄′. We denote this function AG. We perform global

calibration (GC) on (σ̄′, β′). Then, we obtain the following composition:

(σ̄, λ) 7→C (β, λ) 7→BR (σ′, λ) 7→AG (σ̄′, β′) 7→GC (σ̄′, λ′)

where M(σ̄, λ) denotes the set of (σ̄′, λ′) that can be obtained through this com-

position.

Note that C and AG are continuous functions, while BR and GC are correspon-

dences. The mapping BR is upper-hemicontinuous (uhc) with non-empty, convex

and compact values by standard arguments. Since, as we will prove later, GC is

also upper-hemicontinuous (uhc) with non-empty, convex and compact values, it

follows that:

(i) M is nonempty;

(ii) M is uhc as a composition of uhc mappings;

(iii) M is convex-valued since BR and GC are convex-valued;

(iv) M is compact-valued because BR being compact-valued and uhc implies

that BR(β, λ) is compact. Also, since, AG is single-valued and continuous, and

GC is compact-valued and uhc, then GC ◦ AG ◦ BR ◦ C(σ̄, λ) is compact, for all
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(σ̄, λ) ∈ Σ̄× Λ.

Since Σ̄× Λ is a compact and convex set, properties (i) to (iv) ensure that M

has a fixed point by Kakutani’s theorem.

To conclude the proof we need to show the properties of the GC correspon-

dence. GC maps Σ̄× Σ̄ into Σ̄×Λ, where both Σ̄ and Λ are convex and compact.

The image of the correspondence is defined as follows:

GC(σ̄, β) = {σ̄} ∪ {λ ∈ Λ|λi(Ani) > 0 ⇐⇒ Ani ∈ arg min
An′

i∈Ki

V (σ̄j, β
′
i)}

where Vi(σ̄j, β
′
i) =

∑
αi∈An′

i
p(αi)

∑
ω∈αi

p(ω|αi)d (σ̄j(ω), βi(αi|An′
i)).

For ease of exposition, let us denote the latter set in the union above as Gi(σ̄j)∪
Gj(σ̄i). Note that Gi is nonempty because Ki is finite, thereby implying that there

is always a solution to the minimization problem. Also, Gi is a simplex hence it

is convex and compact. Thus, GC is nonempty, convex and compact valued. Let

us check now that GC(σ̄, β) is upper-hemicontinuous, by verifying that it has a

closed graph. In order to show this, we must prove that for σ̄n
j → σ̄j and λn

i → λi,

then λn
i ∈ Gi(σ̄

n
j ) =⇒ λi ∈ Gi(σ̄j).

We first establish the continuity of Vi by verifying that d is a continuous func-

tion. When d is the squared Euclidean distance, d is clearly continuous in σ̄ and

in β. Instead, when d represents the KL divergence, it is not generally continu-

ous because whenever there is ω ∈ αi such that supp[σ̄j(ω)] ̸⊂ supp[βi(αi|Ani)],

then d(σ̄j, βi) goes to infinity. However, the consistency requirements impose

supp[σ̄j(ω)] ⊆ supp[βi(αi|Ani)]. Since global calibration imposes for both players

that βi is consistent with σ̄, for all ω, αi and Ani, then d(σ̄j, βi) is finite. Recall

that, d(x, y) =
∑

a(xa lnxa − xa ln ya). Since xa, ya ∈ [0, 1] and xa > 0 implies

ya > 0, under the convention that 0 ln 0 = 0, d is continuous when it represents

the KL divergence. Hence, Vi is continuous, if βi is consistent with σ̄j for both

players.

We can now proceed to establish that GC is uhc. Assume by contradiction

that λn
i → λi and λn

i ∈ Gi(σ̄
n
j ), but λi /∈ Gi(σ̄j). Note that λi /∈ Gi(σ̄j) implies

that there ∃Ãni ∈ Ki|λi(Ãni) > 0 and ε′, ε > 0 such that

+∞ > Vi(σ̄j, β̃i) ≥ Vi(σ̄j, βi) + ε+ ε′,

where β̃i is consistent with σ̄j according to Ãni. Also, let β̃n
i be consistent with
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σ̄n
j , according to Ãni. We want to show that ∃n ∈ N|λn

i (Ãni) > 0 ∧ Vi(σ̄
n
j , β̃

n
i ) >

Vi(σ̄
n
j , β

n
i ). For λ

n
i → λi and λi(Ãni) > 0, for any n large enough, λn

i (Ãni) > 0. By

continuity of Vi, when σ̄n
j → σ̄j, for n large enough, Vi(σ̄j, βi) > Vi(σ̄

n
j , βi) − ε ≥

Vi(σ̄
n
j , β

n
i ) − ε, where the last inequality holds by Lemma 1. Then, Vi(σ̄j, β̃i) ≥

Vi(σ̄j, βi) + ε + ε′ > Vi(σ̄
n
j , β

n
i ) + ε′. Also, σ̄n

j → σ̄j implies that, for any n large

enough, Vi(σ̄
n
j , β̃

n
i ) > Vi(σ̄j, β̃

n
i ) − ε′ ≥ Vi(σ̄j, β̃i) − ε′, where the last inequality

holds by Lemma 1. Thus,

Vi(σ̄
n
j , β̃

n
i ) > Vi(σ̄j, β̃i)− ε′ ≥ Vi(σ̄j, βi) + ε > Vi(σ̄

n
j , β

n
i )

We get Vi(σ̄
n
j , β̃

n
i ) > Vi(σ̄

n
j , β

n
i ) and λn

i (Ãni) > 0, which contradicts λn
i ∈

Gi(σ̄
n
j ). It follows that GC is uhc. Q.E.D.

Proof of Proposition 2. The proof shares similarities with the purification

techniques introduced by Harsanyi (1973). We consider the same grand mapping

M that we introduced in the proof of Theorem 1, but now in the perturbed

environment. The perturbations of the payoffs make best-responses single-valued

as commonly observed in the previous learning literature. The main novelty here is

that the perturbations on the strategies at the clustering stage make the calibration

mapping single-valued too. The argument to show this is a bit more involved than

for the payoff perturbation part because the perturbations at the clustering stage

do not allow for additive separability.

More precisely, consider the compound mapping (σ̄, λ) 7→C (β, λ) 7→BR (σ′, λ) 7→AG

(σ̄′, β′) where σ̄′ is the profile of aggregate best-responses, given λ.

Fix the probability distributions over analogy partitions λ. From the profile

of aggregate strategies σ̄ = (σ̄1, σ̄2) we can compute the corresponding analogy-

based expectations (βi(·|Ani))Ani∈suppλi
that are consistent with σ̄. The mapping

(σ̄, λ) 7→ (β, λ) is continuous, single-valued and defined over convex and compact

sets.

We consider best-responses in the perturbed environment. Let us order the

actions in Ai, so that azi is the z-th element in Ai. We denote by a∗i (ω|Ani)(·) the
function that maps each realization of the profile of random variables ρ̃i for each

action ai ∈ Ai in game ω into a best-response, and we write ai = a∗i (ω|Ani)(ρi)

to indicate that ai is played when the profile of realizations is ρi(ω) = (ρi(a
′
i, ω))a′i
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where ρi = (ρi(ω))ω. We denote by Xz
i (a

∗
i (ω|Ani)) the set of perturbations under

which the action azi is chosen according to a∗i (ω|Ani). That is:

Xz
i (a

∗
i (ω|Ani)) = {ρi|azi = a∗i (ω|Ani)(ρi)}. (5)

The mixed strategy played by player i, under the analogy partition Ani in game ω

is induced by a∗i (ω|Ani) if and only if σi(ω|Ani) assigns probability pi(a
z
i ;ω,Ani)

to azi where

pi(a
z
i ;ω,Ani) =

∫
· · ·
∫
ρi∈Xz

i (a
∗
i (ω|Ani))

dρi(a
1
i , ω) . . . dρi(a

|Ai|
i , ω)gi(ρi(a

1
i , ω)) . . . gi(ρi(a

|Ai|
i , ω))

(6)

and gi(ρi) is the continuously differentiable pdf of ρ̃i.

Consider first the mapping BR : (β, λ) 7→ (σ′, λ), where σ′ is a profile of

mixed strategies that is a best-response to β. Let a∗i (ω|Ani) prescribe actions that

are best responses to βi(·|Ani), given the perturbed payoffs. Then BR is single-

valued (because the set of realizations of the perturbations under which there are

indifferences has measure zero), and it is readily verified that BR is a continuous

function over convex and compact sets.

Consider the AG function, (σ′, λ) 7→ (σ̄′, β′) which aggregates the strategies

over games and computes consistent expectations. AG is single-valued and con-

tinuous. Thus, the compound mapping (σ̄, λ) 7→C (β, λ) 7→BR (σ′, λ) 7→AG (σ̄′, β′)

is also continuous and single valued over convex and compact sets.

For the calibration part, the argument is somewhat similar to the best response

part. Consider the calibration mappingGC : (σ̄′, β′) 7→ (σ̄′, λ′), where λ′ = (λ′
i, λ

′
j)

is such that λ′
i solves the global clustering problem for player i.

Consider the perturbed strategies s̄, where s̄j(ω) =
σ̄j(ω)+εηi(ω)

1+ε
and impose that

βi is consistent with s̄j. As established in Theorem 1, for each ω ∈ α, the function

d(s̄j(ω), βi(α|Ani)) is continuous in s̄j.

We define An∗
i (ηi) as the function mapping the realization of the perturbation

η̃i to an analogy partition Ani that solves the clustering problem. As before, we

denote by Xk
i (An

∗
i ) = {ηi|Ank

i = An∗
i (ηi)} the set of realizations such that the

k-th analogy partition is prescribed by An∗
i .

The mixture of analogy partitions λi is induced by An∗
i (·) iff λi assigns probabil-

ity q(Ank
i ) toAn

k
i where q(An

k
i ) =

∫
· · ·
∫
ηi∈Xk

i (An∗
i )
dηi(ω1) . . . dηi(ωN)hi(ηi(ω1))....hi(ηi(ωN)),
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where hi is the continuously differentiable pdf of ηi. We show now that the calibra-

tion mapping is single-valued. To establish this, we rely on results from chapter

2 in Milnor (1965). More precisely, we show that if Ani and An′
i yield the same

V value (the criterion used for the clustering problem), then the set of realiza-

tions of η̃i that allow this has measure zero. Given, σ̄j we can define the function

h(ηi) = Vi(s̄j, βi(·|Ani))− Vi(s̄j, βi(·|An′
i)), which is a mapping h : U → R, where

ηi ∈ U .29 The function h is smooth (all partial derivatives exist and are continu-

ous). Since ηi(ai, ω) > 0, for all ω and all ai, then U is an open set. As h(ηi) = 0

is a regular value,30 then the set {η̂i|h(η̂i) = 0} is a smooth manifold of dimension

dim(U)− 1 = |Ai| · |Ω| − 1, which has measure zero in U . Then, the argument for

C being single valued and continuous are the same as those used for BR.

Thus, the compound mapping

M : (σ̄, λ) 7→C (β, λ) 7→BR (σ′, λ) 7→AG (σ̄′, β′) 7→GC (σ̄′, λ′)

is single-valued and continuous, and it maps Σ̄×Λ into Σ̄×Λ, which are convex

and compact sets. By Brouwer’s fixed point theorem, this mapping has a fixed

point.

It is then readily verified that the fixed point (σ, λ) is a steady state of the

learning dynamics. Q.E.D.

Proof of Proposition 3. If limε→0(σ
(ε), λ(ε)) = (σ, λ), then for ε small enough

supp[σi(ω)] ⊆ supp[σ
(ε)
i (ω)] and supp[λi] ⊆ supp[λ

(ε)
i ], for i = 1, 2 and ω ∈ Ω.

Since (σ(ε), λ(ε)) is a steady state, any Ani ∈ supp[λ
(ε)
i ] solves the clustering

problem for player i in the perturbed environment. Thus, for ε = 0, Ani ∈
supp[λi] solves the clustering problem because d is continuous in ε (as established

in Theorem 1, imposing consistency on β suffices to guarantee continuity in the

case of KL divergence). The same argument can be made to show that σ is a

best-response to λ. Thus, (σ, λ) is a steady state of the learning dynamics when

ε = 0.

It follows that (σ, λ) is a globally calibrated ABEE because the requirements for

the equilibrium and the steady states coincide when ε = 0 and the independence

29Vi is defined as in the proof of Theorem 1.
30To show this, we note that the first derivatives of h(·) wrt to ηi(ai, ω) are linearly independent

as one varies ai and ω.
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of the random draws ensures that σ ∈ Σ1 × Σ2 and λ ∈ Λ1 × Λ2. Q.E.D.

Proof of Propositions 5. We show Proposition 5 as a corollary of Proposition

6 (P6). Consider the increasing sequence {µk}Kk=0 with µ0 = 0, µK = 1 and

µk = E[µ|(µk−1,µk]]+E[µ|(µk,µk+1]]

2
. The existence of such a sequence is ensured by

Lemma 2. We simply check that the sequence we propose satisfies the conditions

of P6.

Note that µ0 = 0 and µK = 1, then condition (i) in P6 holds.

Condition (ii) in P6 requires that E[µ|(µk, µk+1]] ≥ 2µk−E[µ|(µk−1,µk]]

1+2C(µk−E[µ|(µk−1,µk]])
. By

substituting µk in the inequality with E[µ|(µk−1,µk]]+E[µ|(µk,µk+1]]

2
we obtain:

E[µ|(µk, µk+1]] ≥
E[µ|(µk, µk+1]]

1 + 2CE[µ|(µk, µk+1]]

which is true because the denominator is greater than 1.

To show that condition (iii) in P6 is satisfied, we need to check that, when-

ever E[µ|(µk−1, µk]] <
1
2C

, the following inequality holds: E[µ|(µk, µk+1]] ≤ µk +
µk−E[µ|(µk−1,µk]]

1−2CE[µ|(µk−1,µk]]
. Recalling that µk =

E[µ|(µk−1,µk]]+E[µ|(µk,µk+1]]

2
, we obtain

E[µ|(µk, µk+1]]− E[µ|(µk−1, µk]]

2
≤

E[µ|(µk,µk+1]]−E[µ|(µk−1,µk]]

2

1− 2CE[µ|(µk−1, µk]]

which holds because 0 < 1 − 2CE[µ|(µk−1, µk]] < 1 when E[µ|(µk−1, µk]] <
1
2C

.

Q.E.D.

Proof of Proposition 7. Let µ be uniformly distributed over [0, 1]. Let

µ∗ denote the equal-splitting sequence where µ∗
k = k

K
, for k = 0, . . . , K, and let

aABEE(µ) = A+ µ
∑K

k=1 1{µ∗
k−1<µ≤µ∗

k}
B+AC

1−C
µ∗
k−1

+µ∗
k

2

.

C small

We want to show that, for C small enough, the equal splitting µ∗ generates the

unique symmetric analogy partition profile that is locally calibrated wrt aABEE.

We proceed in the following way: we approximate aABEE with Taylor expansions

(in C) around C = 0, and we establish a necessary condition for local calibration

wrt the induced approximated strategies. Then, starting nearby (but away from)

µ∗ for low values of µk, we build the next µk in the sequence so that the local

calibration requirements are satisfied for those. We show that the final value in

the sequence µK cannot be equal to 1, thereby establishing a contradiction to the
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existence of a locally calibrated sequence other than µ∗.

More precisely, for C = 0, the upper bound and lower bound identified in

Proposition 6 coincide and it is readily verified that the unique locally calibrated

-thus, globally calibrated- partition wrt aABEE is generated by the equal-splitting

sequence. For C small enough, any solution to the minimization problem is in a

neighborhood of µ∗.

Consider first the case where both B and C are close to zero, the 1st order

Taylor expansion around (B,C) = (0, 0) yields aABEE(µ) ≈ A + µ(B + AC), for

µ ∈ [0, 1]. This is a continuous line so the equal-splitting would satisfy global

calibration. Hence, we can now restrict attention to situations where B is not

close to zero. First-order approximation around C = 0 yields:

aABEE(µ) ≈ A+ µ(S +
K∑
k=1

1{µ∗
k−1<µ≤µ∗

k}(k − 1)D) ≡ a(µ)

where S = B + C(A + B
2K

) and D = BC
K
. Since B is not close to zero, for C

small enough, a(µ) is strictly increasing (decreasing) in µ for B > 0(<) and its

slope is weakly increasing (decreasing) in µ. We let β be the expectations that

are consistent with the approximated action function a(µ). We focus on the case

with B > 0 (the argument for B < 0 is analogous).

We establish that any increasing sequence {µℓ}Kℓ=0 generating analogy parti-

tions that are locally calibrated wrt a(µ) must satisfy the condition that µℓ+1 ≤
2µℓ − µℓ−1, for all ℓ such that a(µ) is continuous at µ = µℓ: whenever µ∗

k <

µℓ < µ∗
k+1, local calibration requirements for µℓ reduce to β(µℓ, µℓ+1) = 2a(µℓ) −

β(µℓ−1, µℓ). If a(µ) were a straight line, this condition would imply that µℓ+1 =

2µℓ+µℓ−1. But a(µ) has discontinuities and its slope is weakly increasing in µ, so

it must be the case that µℓ+1 ≤ 2µℓ + µℓ−1.

We now consider sequences in a neighborhood of µ∗. We distinguish between

two cases: we show that any sequence that starts below or above µ∗ cannot satisfy

locally calibration requirements and end at µK = 1.

Case 1.

Let {µk}Kk=0 be an increasing sequence with µk′ = µ∗
k′ , for all 0 ≤ k′ < k−1 < K

and µk−1 < µ∗
k−1. Assume that {µk}Kk=0 satisfies the conditions for local calibration

wrt to a(µ). As established above, local calibration requires µk ≤ 2µk−1 − µk−2 <

2µ∗
k−1 − µ∗

k−2 = µ∗
k. That is, the k-th element in the sequence will also be below
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the respective element in µ∗. And not only this: it must also be the case that

the interval from µk−1 to µk is shorter than 1/K, the length of intervals for µ∗.

To see this, note that µk − µk−1 ≤ µk−1 − µk−2 < µ∗
k−1 − µ∗

k−2 = 1
K
. We show

by induction that the sequence must be such that µK < µ∗
K = 1. Assume the

following induction hypothesis, for some integer k ≤ ℓ < K:

(hp) :


µℓ−2 ≤ µ∗

ℓ−2

µℓ−1 < µ∗
ℓ−1

µℓ−1 − µℓ−2 < µ∗
ℓ−1 − µ∗

ℓ−2

=⇒

µℓ < µ∗
ℓ

µℓ − µℓ−1 < µ∗
ℓ − µ∗

ℓ−1

we show that hp implies that, under local calibration, µℓ+1 < µ∗
ℓ+1 ∧ µℓ+1 − µℓ <

µ∗
ℓ+1 − µ∗

ℓ .

If ∄t ∈ {k, . . . , ℓ − 1} s.t. µℓ = µ∗
t , then a(µ) is continuous at µℓ and we

have already proven that local calibration requires µℓ+1 ≤ 2µℓ − µℓ−1. By hp,

we assume that 2µℓ − µℓ−1 < 2µ∗
ℓ − µ∗

ℓ−1 = µ∗
ℓ+1, so that µℓ+1 < µ∗

ℓ+1. Also,

µℓ+1 − µℓ ≤ µℓ − µℓ−1 < µ∗
ℓ − µ∗

ℓ−1 = µ∗
ℓ+1 − µ∗

ℓ .

If instead µℓ = µ∗
t , for some t ≤ ℓ− 1, the function a(µ) is discontinuous at µℓ

and, when B > 0, local calibration requires 2a(µ−
ℓ ) ≤ β(µℓ−1, µℓ) + β(µℓ, µℓ+1) ≤

2a(µ+
ℓ ), where a(µ−

ℓ ) = A+ µ∗
t (S + (t− 1)D) and a(µ+

ℓ ) = A+ µ∗
t (S + tD).

By hp, it must be the case that µ∗
t−1 < µℓ−1 < µ∗

t , so we write µℓ−1 = µ∗
t −ε, for

0 < ε < 1
K
and β(µℓ−1, µℓ) = A+(µ∗

t− ε
2
)(S+(t−1)D)). Assume that µℓ+1 = µ∗

t+1.

Then β(µℓ, µℓ+1) = A+
µ∗
t+µ∗

t+1

2
(S+ tD). Therefore, the local calibration condition

for B > 0 writes (after rearranging)

0 ≤ (µ∗
t+1 − µ∗

t − ε)(S + (t− 1)D) + (µ∗
t + µ∗

t+1)D ≤ 4µ∗
tD

as C → 0, D → 0, while S → B, at the limit we would obtain 0 ≤ (µ∗
t+1 −

µ∗
t − ε)B ≤ 0. But then, there exists C small enough such that (µ∗

t+1 − µ∗
t −

ε)(S + (t − 1)D) + (µ∗
t + µ∗

t+1)D > 4µ∗
tD, which implies that, when µℓ+1 = µ∗

t+1,

then β(µℓ, µℓ+1) is too large to satisfy the local calibration conditions. Then,

the induction argument works even when we hit discontinuity points along the

sequence.

Noticing that the induction hypothesis holds for ℓ = k, then we have µK < 1.

That is, for C small enough, any sequence that goes below µ∗ at some point cannot
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be locally calibrated and end at 1 at the same time.

Case 2. (i.e. when a sequence goes above µ∗ at some point) is treated analo-

gously. See details in the online appendix.

Hence, for C small enough, the only locally calibrated sequence in a neighbor-

hood of µ∗ is µ∗. Q.E.D.

C large

We now show that, for K ≥ 4, when C is large enough, the analogy partition An∗

generated by µ∗ is not a globally calibrated wrt aABEE.

We establish this showing that for C large enough less variance is induced by

the alternative analogy partition An′, generated by the sequence {µ′
k}Kk=0, where

the first two intervals of the equal splitting sequence are merged together and the

last interval is split in half. That is, µ′
0 = 0, µ′

K = 1, µ′
K−1 =

µ∗
K−1+µ∗

K

2
= 2K−1

2K

and µ′
k = µ∗

k+1 = k+1
k
, for k = 1, . . . , K − 2. We compare the variance induced

by An∗ and An′, denoted respectively V ar∗(An∗) and V ar∗(An′) when aABEE is

generated by the equal splitting partition.

Under µ∗, the within variance of the analogy class α∗
k is

V ar(α∗
k) =

∫ µ∗
k

µ∗
k−1

(aABEE(µ)− β(α∗
k))

2

µ∗
k − µ∗

k−1

dµ =

(
B +AC

1− C
µ∗
k+µ∗

k−1

2

)2
(µ∗

k − µ∗
k−1)

2

12

and V ar∗(An∗) =
∑K

k=1(µ
∗
k − µ∗

k−1)V ar(α∗
k).

Note that by construction, V ar(α′
k) = V ar(α∗

k+1), for k = 2, . . . , K − 2. We

need to compute the variance for α′
1, α

′
K−1 and α′

K . Since α′
1 consists of the first

two merged classes, β(α′
1) =

β(α∗
1)+β(α∗

2)

2
, while β(α′

K−1) =
A(2−C(µ′

K−µ′
K−1)+B(µ′

K−2+µ′
K−1)

2−C(µ′
K+µ′

K−2)

and

β(α′
K) =

A(2−C(µ′
K−2−µ′

K−1)+B(µ′
K+µ′

K−1)

2−C(µ′
K+µ′

K−2)
. We can now proceed to compute the

variance in the analogy classes (algebra is omitted). Recalling that µ′
1 = 2µ∗

1, then

direct computation shows

V ar(α′
1) =

1

2µ∗
1

∫ 2µ∗
1

0

(aABEE(µ)−β(α′
1))

2dµ = µ∗2
1

(B + AC)2(5C2µ∗2
1 − 8Cµ∗

1 + 16)

3(2− 3Cµ∗
1)

2(2− Cµ∗
1)

2

Also, from the fact the last two analogy classes of An′ are along the same

segment and have the same length:
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V ar(α′
K−1) = V ar(α′

K) =
(B + AC)2

(1− C 2K−1
2

µ∗
1)

2

µ∗2
1

48

Recalling that µ∗
1 =

1
K
, we get that if K ≥ 4, then

lim
C→1

V ar∗(An∗)− V ar∗(An′) =
(B + A)2(8K(2K3 − 8K2 + 7K − 6) + 9)

4K(4K2 − 8K + 3)2
> 0.

Q.E.D.
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Online Appendix

Proof of Lemma 1.

Consider first the case of squared Euclidean distance.

Let d be the squared Euclidean distance and define a loss function as

L =
∑

ω∈αi
p(ω|αi)

∑
a∈Aj

(σj,a(ω)−qa)
2, where σj,a(ω) indicates the probability

that action a is played according to strategy σj(ω). Then, the FOCs are

q∗a =
∑
ω∈αi

p(ω|αi)σj,a(ω), ∀a ∈ Aj

Moreover, ∂2L
∂q2a

= 2 > 0: L is strictly convex and q∗a minimizes the function on the

interior of the simplex.

Notice that the equations obtained for q∗ allow for q∗a = 0 whenever a is not in the

support of σj. In some sense, conditions in q∗ include also some corner solutions.

Can corner solutions different from q∗ be a global minimum? If σj,a(ω) = 0,∀ω ∈
αi, then qa = 0 would allow to minimize the objective function, and the equations

above can describe this instance. Assume that ∃(â, q) ∈ Aj×∆Ajs.t.qâ = 0andâ ∈
Suppσj. Since

∑
a qa = 1 and q∗â > 0, by FOCs, then qâ = 0 < q∗â, which

implies that ∃a′ ∈ Aj|qa′ > q∗a′. Let qε be such that qεa = qa,∀a ∈ Aj \ {â, a′},
and let qεâ = ε and qεa′ = qa′ − ε, where ε ∈ (0, qa′ − q∗a′]. For q∗a′ ≤ qεa′ < qa′,∑

ω∈αi
p(ω|αi)(σj,a′(ω)− qa′)

2 >
∑

ω∈αi
p(ω|αi)(σj,a′(ω)− qεa′)

2 by FOCs and strict

convexity. Also,
∑

ω∈αi
p(ω|αi)(σj,â(ω) − qâ)

2 −
∑

ω∈αi
p(ω|αi)(σj,â(ω) − qεâ)

2 =

ε(2
∑

ω∈αi
p(ω|αi)σj,â(ω)− ε) > 0 if and only if 0 < ε < 2q∗â.

Then, for ε̄ ∈ {ε ∈ (0, qa′−q∗a′]|ε < 2q∗â}, qε̄ improves upon the objective compared

to q. Hence, q cannot be the global minimum. Then, q∗ is the global minimum of

L.

Consider the case of Kullback-Leibler divergence.

Let d be the Kullback-Leibler divergence and define the loss function as

L =
∑

ω∈αi
p(ω|αi)

∑
a∈Aj

σj,a(ω) ln
σj,a(ω)

qa
. Note that, if some q minimizes

L+1, then it minimizes L. Recall that q is a probability distribution, so
∑

a∈Aj
qa =

1. Therefore we minimize the function
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L+ 1 =
∑

ω∈αi
p(ω|αi)

∑
a∈Aj

σj,a(ω) ln
σj,a(ω)

qa
+
∑

a∈Aj
qa. The FOCs are:

q∗a =
∑
ω∈αi

p(ω|αi)σj,a(ω), ∀a ∈ Aj

Moreover, ∂2

∂q2a
(L + 1) = 1 > 0: L + 1 is strictly convex and q∗a minimizes the

function.

Analogously to the case of Euclidean distance, also in this case the conditions for

q∗ yield a global minimum. In particular, if ∃(â, q) ∈ Aj ×∆Ajs.t.qâ = 0andâ ∈
Suppσj, then, dKL(σj(ω), q) → ∞. Thus, q∗ is a global minimum of L. Q.E.D.

Lemma 3. Let σ be some strategy profile and d be either the squared Euclidean

distance or the KL divergence. If Ani ∈ Ki is a globally calibrated analogy partition

for player i with respect to σ, then Ani is a locally calibrated analogy partition for

player i with respect to σ.

Proof. Let Ani be a globally calibrated analogy partition with respect to σ. Let βi

be consistent with σ. Assume by contradiction that Ani is not locally calibrated.

Then, ∃αi, α′i ∈ Ani ∧ ω̂ ∈ αi s.t. d(σj(ω̂), βi(αi)) > d(σj(ω̂), βi(α′i)).
Let α̂i = αi \ {ω̂} and α̂′i = α′i ∪ {ω̂}. Then,∑

ω∈αi

p(ω)d(σj(ω), βi(αi)) +
∑
ω∈α′i

p(ω)d(σj(ω), βi(α′i))

>
∑
ω∈α̂i

p(ω)d(σj(ω), βi(αi)) +
∑
ω∈α̂′i

p(ω)d(σj(ω), βi(α′i))

= p(α̂i)
∑
ω∈α̂i

p(ω|α̂i)d(σj(ω), βi(αi)) + p(α̂′i)
∑
ω∈α̂′i

p(ω|α̂′i)d(σj(ω), βi(α′i))

> p(α̂i)
∑
ω∈α̂i

p(ω|α̂i)d(σj(ω), βi(α̂i)) + p(α̂′i)
∑
ω∈α̂′i

p(ω|α̂′i)d(σj(ω), βi(α̂′i))

where the second inequality holds by Lemma 1.

Let Âni = α̂i ∪ α̂′i ∪ {Ani \ {αi, α′i}}, then:

∑
αi∈Ani

p(αi)
∑
ω∈αi

p(ω|α)d(σj(ω), βi(αi)) >
∑

αi∈Âni

p(αi)
∑
ω∈αi

p(ω|αi)d(σj(ω), βi(αi))

which contradicts Ani being a globally calibrated analogy partition. Q.E.D.
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Proof of Proposition 4.

By definition, σj(µ) ∈ BRj(µ, βi(αk)) implies that the following equations must

hold in equilibrium:

σj(µ) = A+ µB + µC

∫ µk

µk−1

f(µ)

F (µk)− F (µk−1)
σi(µ)dµ

= A+ µ

(
B + AC +BCE[µ|αk] + C2E[µ|αk]

∫ µk

µk−1

f(ν)

F (µk)− F (µk−1)
σj(ν)dν

)

Taking the weighted average of σj(µ) over the interval [µk−1, µk], according to

the distribution of µ, yields the following equation:∫ µk

µk−1

f(µ)

F (µk)− F (µk−1)
σj(µ)dµ

= A+E[µ|αk]

(
B + AC +BCE[µ|αk] + C2E[µ|αk]

∫ µk

µk−1

f(ν)

F (µk)− F (µk−1)
σj(ν)dν

)
By consistency of βi(αk), the equation above simplifies into βi(αk) =

A+BE[µ|αk]
1−CE[µ|αk]

.

In equilibrium, both players have the same expectations β1(αk) = β2(αk).

Substituting the expression of βi(αk) into the best-responses yields the following

equilibrium (pure) strategies: for all αk ∈ An1 (and An2) and for all µ ∈ αk,

σ1(µ) = σ2(µ) = A+ µ
B + AC

1− CE[µ|αk]

This is the unique ABEE and it is symmetric. Q.E.D.

Lemma 4. (Reverse Truncation) Let X be a RV on [0, 1] with continuous pdf fX

and cdf FX . There exists a continuous pdf g over [0,+∞), such that:

gX|[0,1](x) = fX(x), where gX|[0,1](x) =
gX(x)

Prg[0 ≤ X ≤ 1]

Proof of Lemma 4.

We want to find a continuous function gX such that:

gX(x) =

Prg[0 ≤ X ≤ 1]fX(x) 0 ≤ x ≤ 1

v(x) 1 < x < ∞
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Note that gX is continuous if v(·) is continuous and v(1) = Prg[0 ≤ X ≤ 1]fX(1).

Also, gX must be a pdf, so it must be the case that
∫ +∞
0

gX(x)dx = 1. That is,∫ 1

0
Prg[0 ≤ X ≤ 1]fX(x)dx+

∫ +∞
1

v(x)dx = Prg[0 ≤ X ≤ 1] + (1− Prg[0 ≤ X ≤
1]) = 1.

Let us pick the right function v(.). This function must be continuous and sat-

isfy two conditions: (i)
∫ +∞
1

v(x)dx = 1 − T , and (ii) v(1) = TfX(1), where

T ≡ Prg[0 ≤ X ≤ 1]. Let v() be defined as v(x) = Tf(1)e
Tf(1)
1−T

(1−x) which

is continuous since, for a, b ∈ R, the function aebx is continuous in x. Also,

v(1) = Tf(1)e
Tf(1)
1−T

(0) = Tf(1).

And finally:
∫ +∞
1

v(x)dx = Tf(1)e
Tf(1)
1−T

∫ +∞
1

e−
Tf(1)
1−T

xdx = 1− T . Q.E.D.

Proof of Lemma 2.

To prove the existence result in Lemma 2, we show that there always exists a

sequence {µk}kk=0 with µ0 = 0, some µ1 ∈ [0, 1] and, for k = 2, . . . , K, µk defined

so that E[µ|(µk−1, µk]] = 2µk−1−E[µ|(µk−2, µk−1]]. We note that if µ1 is too large,

µK might be above 1. Lemma 4 allow us to consider µ to be a random variable

from [0,+∞) distributed according to a continuous strictly positive pdf g, and cdf

G, with g(µ) = f(µ)G(1), for 0 ≤ µ ≤ 1 (see the online appendix for details).

Let µk ≥ µk−1 ≥ 0. Since g(µ) is striclty positive and continuous in µ, then

E[µ|(µk−1, µk]] =
1

G(µk)−G(µk−1)

∫ µk

µk−1
µg(µ)dµ is continuous and strictly decreasing

in µk−1, and it is continuous and strictly increasing in µk. Moreover, if µk ≤ 1, we

have: ∫ µk

µk−1
µg(µ)dµ

G(µk)−G(µk−1)
=

∫ µk

µk−1
µG(1)f(µ)dµ

G(1)(F (µk)− F (µk−1))

so the term G(1) cancels out and we are back to the original distribution F .

Fix µk−1. The function m(µk) ≡ E[µ|[µk−1, µk]] is continuous and strictly in-

creasing over (µk−1,+∞), with image (µk−1,+∞). Then the inverse function m−1

exists over (µk−1,+∞) and it is continuous and strictly increasing over (µk−1,+∞).

Given µk−2, µk−1, we use the inverse function to retrieve µk from the equa-

tion E[µ|(µk−1, µk]] = 2µk−1 − E[µ|(µk−2, µk−1]]. Let h(µk−2, µk−1) ≡ 2µk−1 −
E[µ|(µk−2, µk−1]]. Note that h(·) is a continuous function and h(µk−2, µk−1) ≥
µk−1.

Starting from µ0 = 0 and some µ1(µ1) ≡ µ1, we recursively define µk as a
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function of µ1 as follows: µ2(µ1) = m−1(h(µ0, µ1)) and

µk(µ1) = m−1(h(µk−2(µ1), µk−1(µ1)))

for k = 3, . . . , K. Note that, for each k, the function µk(µ1) is well defined. Since

h(µk−2, µk−1) ≥ µk−1, then the inverse function exists at the point h(µk−2, µk−1).

Since m−1 : (µk−1,+∞) → (µk−1,+∞) is also strictly increasing and continu-

ous, then µk(µ1) is continuous, being a composition of continuous functions, and

µk(µ1) ≥ µk−1, with equality if and only if h(µk−2, µk−1) = µk−1 ⇐⇒ µk−1 =

E[µ|(µk−2, µk−1]] ⇐⇒ µk−1 = µk−2. So, either we get the sequence with 0

everywhere, or a strictly increasing sequence.

Let µ1 = 0, then µK(0) = 0. Let µ1 = 1, then µK(1) > 1. Then, by the

intermediate value theorem, there must exist 0 < µ∗
1 < 1 such that µK = 1.

Q.E.D.

Case 2 in Proof of Propostion 7

Let {µk}Kk=0 be an increasing sequence with µk′ = µ∗
k′ , for all 0 ≤ k′ < k−1 < K

and µ∗
k−1 < µk−1. Assume that {µk}Kk=0 satisfies the conditions for local calibration

wrt to a(µ). Let µk−1 = µ∗
k−1 + ε, where 0 < ε < 1

2KK
. Note that this assumption

implies that the a(µ) is continuous at µk−1 and we have shown that, for local

calibration, it must be the case that µk ≤ 2µk−1 − µk−2 = µ∗
k + 2ε. We show that

the local calibration requirements imply that the next element in the sequence

should be greater than the respective element in µ∗ and that the interval should

be larger than 1
K
, i.e. µk > µ∗

k and µk − µk−1 > µ∗
k − µ∗

k−1.

Since a(µ) is continuous at µk−1, local calibration requires that 2a(µk−1) =

β(µk−2, µk−1) + β(µk−1, µk). We have that a(µk−1) = A+ µk−1(S + kD) and

β(µk−2, µk−1) =

∫ µk−1

µk−2

a(µ)f(µ|µk−2 ≤ µ ≤ µk−1)dµ = A+
µk−2 + µk−1

2
(S+(k−1)D)+

µ2
k−1 − µ∗2

k−1

2(µk−1 − µk−2)
D

where the last term of the expression comes from the fact that there is a jump at

µ∗
k−1. Let µk = µ∗

k+ε. Similarly, β(µk−1, µk) = A+ µk−1+µk

2
(S+kD)+

µ2
k−µ∗2

k

2(µk−µk−1)
D.

For B > 0, we check that the chosen µk is too small, when C is small enough:

β(µk−1, µk) < 2a(µk−1)− β(µk−2, µk−1) ⇐⇒

(µk + µk−1)(S + kD) +
µ2
k − µ∗2

k

µk − µk−1
D < (3µk−1 − µk−2)(S + kD) +

µ∗2
k−1 − µ2

k−2

µk−1 − µk−2
D ⇐⇒
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µ2
k − µ∗2

k

µk − µk−1
D < ε(S + kD) +

µ∗2
k−1 − µ2

k−2

µk−1 − µk−2
D

where the last equivalence hold because µk−2 = µ∗
k−2, µk−1 = µ∗

k−1 + ε and

µk = µ∗
k + ε = 2µ∗

k−1 − µ∗
k−2. As C → 0, the last inequality is satisfied because

D → 0 and S → B > 0.

We now proceed to show by induction that this sequence must be such that

µK > 1. Assume the following induction hypothesis (hp′), for some integer k ≤
ℓ < K:

(hp′) :


µℓ−2 = µ∗

ℓ−2 + δ2

µℓ−1 = µ∗
ℓ−1 + δ1

0 ≤ δ2 < δ1 ≤ 2δ2 ≤ 2ℓ−2ε

=⇒

µℓ = µ∗
ℓ + δ

δ1 < δ ≤ 2δ1 ≤ 2ℓ−1ε

we show that hp′ implies also that µℓ+1 > µ∗
ℓ+1 and µℓ+1 − µℓ > µ∗

ℓ+1 − µ∗
ℓ and

µℓ+1 ≤ 2µℓ − µℓ−1. Note that, differently from the case of hp, here we have

both an upper and lower bound on the next element of the sequence. This is

because we have already shown from before that, if a(µ) is continuous at µℓ ,

then µℓ+1 ≤ 2µℓ − µℓ−1. At ℓ = k this condition is satisfied by the assumption

on ε. Furthermore, the initial conditions on hp′ ensure that the condition will

keep being satisfied at subsequent steps. Thus, we check the implication coming

from hp′ only for the case when µℓ is not at a jump point. Since δ ≤ 2ℓ−1ε,

then µℓ < µ∗
ℓ+1 , and so a(µℓ) = A + µℓ(S + ℓ)D, while the expectations are:

β(µℓ−1, µℓ) = A + µℓ−1+µℓ

2
(S + (ℓ − 1)D) +

µ2
ℓ−µ∗2

ℓ

2(µℓ−µℓ−1)
D and β(µℓ, µℓ+1) = A +

µℓ+1+µℓ

2
(S + ℓD) +

µ2
ℓ+1−µ∗2

ℓ+1

2(µℓ+1−µℓ)
D. We can check that the following inequality holds:

β(µℓ, µℓ+1) < 2a(µℓ)− β(µℓ−1, µℓ) ⇐⇒

(µℓ+1 + µℓ)(S + ℓD) +
µ2
ℓ − µ∗2

ℓ

µℓ − µℓ−1
D < (3µℓ−1 − µℓ−2)(S + ℓD) +

µ∗2
ℓ−1 − µ2

ℓ−2

µℓ−1 − µℓ−2
D ⇐⇒

µ2
ℓ+1 − µ∗2

ℓ

µℓ+1 − µℓ
D < (δ − δ1)(S + ℓD) +

µ∗2
ℓ − µ2

ℓ−1

µℓ − µℓ−1
D

as C → 0 we get: (δ − δ1)B > 0. Then, for local calibration, we must have that

µℓ+1 = µ∗
ℓ+1 + δ′, for δ′ > δ. However, recall also that local calibration requires

δ′ ≤ 2δ, then δ′ℓε. Applying the argument by induction we show that µK > 1.
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The argument works in a similar fashion for B > 0, keeping in mind that a(µ)

will now be decreasing in µ. Q.E.D.

Example 2. The following three games are played each with probability 1
3
.

ω1 L M R

U (1, 1) (0, 0) (1, 0)

D (0, 0) (2, 0) (0, 1)

ω2 L M R

U (., 0) (1, 1) (., 0)

D (., 0) (0, 1) (., 0)

ω3 L M R

U (0, 1) (2, 0) (0, 0)

D (1, 0) (0, 0) (1, 1)

with K1 = 2 and K3 = 3. For the clustering made by player 1, we identify L

with 0, M with 1 and R with 3 on the real line and we identify a probability

distribution pj ∈ ∆({L,M,R}) with the resulting mean location on the line, i.e.

pj(M) + 3pj(R). The clustering is made using the Euclidean distance in this

one-dimensional space.

There is a unique Nash equilibrium in each game (UL in ω1; UM in ω2; DR

in ω3) and it employs pure strategies.

If ω1 and ω2 are put together in one analogy class, then the resulting ABEE

is unique and leads to DR in ω1, thereby leading player 1 to cluster ω1 with ω3

(where R would be played).

If ω2 and ω3 are put together in one analogy class, then the resulting ABEE

is unique and leads to UL in ω3, thereby leading player 1 to cluster ω3 with ω1

(where L would be played).

If ω1 and ω3 are put together in one analogy class, then the ABEE is the same

as the Nash equilibrium leading to an average value of 0+3
2

= 1.5 in this cluster,

but then game ω1 would have to be clustered with ω2 given that 0 is closer to 1

than to 1.5. Thus there is no calibrated ABEE in this case.

Strategic Substitutes Discrete version

We illustrate how a distributional calibrated ABEE with only “interval” analogy

partition would look like in the strategic substitutes environment when there are

only three values of µ and players can use two categories K = 2. That is, we

consider now µ to be a discrete random variable that takes value µs with proba-

bility 0 < ps < 1, where s = 1, 2, 3, 0 < µ1 < µ2 < µ3 < 1 and p1 + p2 + p3 = 1.
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There are three possible ways to partition the state space into two analogy classes:

An1 = {{µ1}, {µ2, µ3}} or An2 = {{µ2}, {µ1, µ3}} or An3 = {{µ3}, {µ1, µ2}}. We

think of the first and third analogy partitions as the discrete version of an inter-

val partition, while the second partition cannot be related to intervals since the

extreme values µ1 and µ3 are bundled together separately from the middle value

µ2. We refer to the probability distribution of agent i over analogy partitions

as λi and we maintain the symmetry assumption on analogy partitions, so that

λ1 = λ2 ≡ λ. We have:31

Proposition 9. In the discrete version of the strategic substitutes environment

there always exists a symmetric globally calibrated distributional ABEE. If B ̸=
−AC and µ2 ̸= p1µ1+p3µ3

p1+p3
, any globally calibrated distributional ABEE is such that

only interval analogy partitions are in the support of λ (An2 /∈ suppλ).

Proof. Let λs ≡ λ(Ans), where Ans = {{µs}, {µs′ , µs′′}}, for s ̸= s′ ̸= s′′ ∈
{1, 2, 3}. We show that there exists a (distributional) globally calibrated (GC)

ABEE such that it assigns 0 probability to An2, i.e. λ2 = 0 (and that any such

equilibrium must be such that λ2 = 0).

We first show that any GC ABEE is such that λ2 = 0.

First, consider the case with λ2 = 1. The equilibrium strategies are the same

as those identified for the continuous environment in Proposition 4. The local

calibration requirements -which are necessary condition for GC- on µ1 and µ3 are

satisfied iff µ2 =
p1µ1+p3µ3

p1+p3
, case that is excluded in our proposition.

Let |supp[λ]| > 1. Denote the total variance in analogy partition An by

V arλ(An). That is, V arλ(An) =
∑

α∈An p(α)
∑

p(µ|α)(ā(µ) − β(α))2. Given

Ans, β(µs) = ā(µs) and β(µs′ , µs′′) =
ps′ ā(µs′ )+ps′′ ā(µs′′ )

ps′+ps′′
. Thus, the total variation

in Ans can be expressed simply by V arλ(An
s) =

ps′ps′′
ps′+ps′′

(ā(µs′)− ā(µs′′))
2.

Note that the aggregate behavior, defined as in (2), must differ for different µs:

if ā(µs) = ā(µs′) = a, then β(µs, µs′) = a by consistency. Note that |supp[λ]| > 1

implies λs > 0 or λs′ > 0. Take λs′ > 0. Then, to satisfy local calibration, it must

be the case that β(µs, µs′′) = a (otherwise µs would be reassigned). But then

ā(µs′′) = a and so a(µ|Ans̃) = A + µ(B + Ca), for s̃ = 1, 2, 3, and, in aggregate,

31We leave for future research whether in the substitute case, one can always (i.e., when there
are more than three games and for general K values) find a calibrated distributional ABEE with
support of analogy partitions contained in the subset of interval partitions.
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a = A + µ(B + Ca). Hence, ā(µs) = ā(µs′) if and only if µs = µs′ . Therefore, we

can assume ā(µs) < ā(µs′) < ā(µs′′).

Let λ have full support. To show that λ is not GC wrt to ā, it suffices to show

that V arλ(An
s′′) < V arλ(An

s′). Since λs′ > 0, Ans′ must be locally calibrated,

which implies that ā(µs′) = β(µs, µs′′). Then, V arλ(An
s′) = ps(ā(µs)− ā(µs′))

2 +

ps′′(ā(µs′′) − ā(µs′))
2, whereas V arλ(An

s′′) =
psps′
ps+ps′

(ā(µs) − ā(µs′))
2. Since ps >

psps′
ps+ps′

, then V arλ(An
s′) > V arλ(An

s′′). Thus, λ cannot have full support.

Consider now λ with support of size 2 and λ2 > 0. If ā(µ2) is strictly between

ā(µ1) and ā(µ3), the argument used in the full support case can be applied here

too. We show that whenever ā(µ2) is not between ā(µ1) and ā(µ3), we reach a

contradiction. We focus on two cases, all other cases can be dealt with in a similar

fashion: let λ3 = 0 and either (i) ā(µ2) < ā(µ1) < ā(µ3) or (ii) ā(µ1) < ā(µ3) <

ā(µ2). Since µs < 0, for all s, the above inequalities imply that a(µ1|An1) >

a(µ1|An2), a(µ2|An1) < a(µ2|An2) and a(µ3|An1) > a(µ3|An2) in both cases

(i) and (ii). If B + Cβ(µ2, µ3) ≥ 0, in case (i) a(µ1|An1) ≤ a(µ2|An1) and so

ā(µ1) < ā(µ2) -contradiction- and in case (ii) a(µ3|An2) ≥ a(µ2|An2) and again

a contradiction: ā(µ3) > ā(µ2). Similarly, if B + Cβ(µ2, µ3) < 0, one can show

that ā(µ3) < ā(µ2) in case (i) and ā(µ2) < ā(µ1) in case (ii). This concludes the

argument for support of size 2.

Therefore, there is no globally calibrated ABEE such that λ2 > 0.

We now show that there always exists a globally calibrated distributional

ABEE with λ = (λ1, 0, 1 − λ1). Note that ā(µ) is a continuous function of λ1

for all µ. This can be checked through standard computations. Abusing notation,

we write V arλ1(An) ≡ V arλ(An) and V arλ1(Ans) =
ps′ps′′
ps′+ps′′

(ā(µs′) − ā(µs′′))
2 is

also continuous in λ1.

Note that if λ1 = 1 and V ar1(An
1) < V ar1(An

3), then (a(·|An1), An1) is

a globally calibrated ABEE. Also, if λ1 = 0 and V ar0(An
3) < V ar0(An

1), then

(a(·|An3), An3) is a globally calibrated ABEE. There might be values of µ1, µ2 and

µ3 such that neither analogy partition is GC. That is, V ar1(An
1)−V ar1(An

3) > 0

and V ar0(An
1) − V ar0(An

3) < 0. By continuity, there exists λ̂1 such that

V arλ̂1(An1) = V arλ̂1(An3). Note that this equality implies that ā(µ2) is be-

tween ā(µ1) and ā(µ3), so V arλ̂1(An1) < V arλ̂1(An2). Then, (a, λ̂) is a globally

calibrated distributional ABEE. Q.E.D
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