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Abstract

We propose a model of expectation formation in which students es-

timate their admission chances by sampling within their neighborhood

a pool of given size of applicants with ability characteristics as close

as possible to their own. Two types of inefficiencies arise in a one-

neighborhood setting: high-achieving disadvantaged students self-select

out of elite colleges, and average students from advantaged families ap-

ply to elite colleges and get rejected. We then explore a multi-neighborhood

setting in which students from all neighbrohoods compete for the same

seats, thereby highlighting externalities related to the comparative neigh-

borhood compositions. Several policy instruments are discussed.
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1 INTRODUCTION

According to the rational expectations paradigm that is commonly used by
economists, students when applying to elite colleges should form correct be-
liefs about their admission chances, in particular assessing correctly how the
admission chances vary with observable characteristics such as the results
obtained in ability tests. By contrast, sociologists argue that students are em-
bedded in their social environment and obtain information by observing the
decisions made by others, leading to mistakes and biases.1

In this paper, we propose a framework for understanding the two-way in-
teractions between expectation formation and the social environment in the
particular context of a career choice problem in which students have to de-
cide whether or not to apply to elite colleges. Our approach uses the method-
ology of economics adopting an equilibrium formulation, but it takes inspi-
ration from sociology when modeling the specific way students form their
expectations based on their accessible environment.

Specifically, we assume that students differ in two dimensions: their abil-
ity (accessible through standardized test, say), and their cost of being rejected
from elite colleges (that can alternatively be thought of as an opportunity cost
induced by rejection).2 Students choose one out of two occupations: unqual-
ified jobs on the labor market (or non-selective vocational training), and elite
colleges. Elite colleges have limited seats and select only the best students
up to their capacity. Importantly, we assume that students do not form ra-
tional expectations regarding their admission chances. We consider instead that
they form their expectations by estimating the admission probability using
a sample of past experiences from their peers in their neighborhood. This
estimation procedure is constrained in three ways: First, the sample is en-
dogenous and consists only of students in the neighborhood who applied

1 We note that there is ample evidence that agents hold incorrect beliefs that are correlated
across agents in the social network. For example, on the social network dimension, Altmejd
et al. (2020) show that older sibling’s enrollment in college increases a younger sibling’s
probability of enrolling in college at all.

2We can equally consider application costs and we discuss later on why we believe in a
number of contexts these costs can be significant. These include cases in which there is some
preparation time required before applying (and the alternative in case of rejection after the
training is less good because the skills are not transferable).

2



in the past to elite colleges. This can be motivated on the ground that it is
very hard in practice to have access to counterfactual information (here, the
admission outcomes of students who did not apply). Second, the sample
must have a size no smaller than some threshold τ viewed as necessary to
make the statistics derived from the sample sufficiently reliable. This can be
viewed as a reduced-form approach formalizing the bias-variance trade-off
faced by students in their estimation procedure. We note it is similar to the K-
nearest neighbor algorithm that is very commonly used in machine learning
and statistics. Third, students ask in priority peers with similar ability. This
can be viewed as reflecting that students have the correct understanding that
admission chances are related to ability.

We introduce the “local sampling equilibrium” viewed as a steady state of
a dynamic process in which students best respond to their subjective beliefs
as derived from the aggregate empirical frequencies of admissions observed
in the samples drawn in past cohorts, and subjective beliefs are consistent
with the sequential sampling estimation procedure. It is parameterized by
τ , the mass q of seats as well as the distributions of ability and costs in the
various neighborhoods.

We first consider a one-neighborhood economy, highlighting the ineffi-
ciencies that arise as compared with the rational expectations equilibrium
benchmark. We next explore a multi-neighborhood economy competing for
the same seats in elite colleges, and importantly we impose that sampling is
made within the neighborhood.

In our model with a continuum of students and no aggregate uncertainty,
under rational expectations, students perfectly sort in each occupation based
on their ability, and the equilibrium is efficient. Things are different in the
sampling equilibrium. Two types of inefficiencies arise in the one-neighborhood
case. First, some disadvantaged (i.e., with high rejection costs) students with
ability above the admission threshold self-select out of elite colleges. Second,
some advantaged students with ability below the required ability threshold
apply to elite colleges but are rejected. This equilibrium mismatch is due to
the fact that students with ability below the required threshold ability who
apply and get rejected induce a strategic externality on high-achieving stu-
dents by distorting their perceived admission chances downward, and con-
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Figure 1: The x-axis represents students’ cost, the y-axis represents ability, and the
z-axis is the population density. There are two occupations: H are elite colleges that
have limited capacity, and L are jobs with no qualifications. (Left) Allocation of stu-
dents to occupations in a rational expectations equilibrium. (Right) Allocation of
students to occupations in a local sampling equilibrium. The shaded areas represent
students who are mismatched: the top-right square corresponds to high-achieving
disadvantaged students who self-select in non-selective colleges; the bottom-left tri-
angle corresponds to average-achieving advantaged students who apply to elite col-
leges but are rejected.

versely students with ability above the required ability threshold who apply
and get accepted induce a strategic externality on low-achieving students by
distorting their beliefs upward. These strategic externalities arise because
of the combination of rationing at elite colleges and the non-rational charac-
ter of expectations, which leads both high and low ability students to rely
on average-ability peers with different admission results to compute their
admission chances. By contrast, there is no rationing on the labor market,
hence there are no payoff-relevant distortions for students in the assessment
of this alternative. See Figure 1 for a graphical representation of the rational
expectations equilibrium and the local sampling equilibrium. We observe
that the local sampling equilibrium moves gradually toward the rational ex-
pectations equilibrium, as one reduces the size τ of the samples. At the other
extreme, when τ is large, all students have the same expectation about the
admission chances irrespective of their type. The sampling procedure can be
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seen as inducing in students’ minds a kind of regression to the mean when
assessing the link between ability and the admission chance, where the mean
admission rate is endogenously determined by the application strategy of
students.

We provide a complete characterization of the welfare and the average
ability of admitted students in a local sampling equilibrium when abilities
and costs are independently distributed and the number of seats is small,
which fits in well the application to elite colleges (see Blair and Smetters
(2021)). We observe among other findings that a higher variance in the ability
distribution induces a higher welfare loss.

Our second main investigation concerns the study of competition across
several neighborhoods where students across all neighborhoods compete for
the same seats, but, as already mentioned, sampling takes place locally, sep-
arately in each neighborhood. Our main question of interest concerns how
asymmetries across neighborhoods in the relative size and/or in the abil-
ity/cost distributions affect the welfare in the various neighborhoods as well
as the average quality of admitted students. Such an extension is important
to understand how the aggregate characteristics of a neighborhood shape the
education decisions made locally, which has been shown empirically to play
an important role (Case and Katz, 1991; Kling et al., 2007; Chetty et al., 2016;
Chetty and Hendren, 2018a,b).3

Specifically, we consider a two-neighborhood environment, and we pro-
vide a complete characterization of the sampling equilibrium when the num-
ber of seats is small and abilities, and costs are independently distributed in
each neighborhood.4 When the two neighborhoods share the same ability
distribution, we note that the neighborhood with larger cost (i.e., the neigh-
borhood with the cost distribution having lower density around 0) gets fewer
seats per head than the neighborhood with smaller costs. We also establish

3Kling et al. (2007) found heterogeneous effects, with education outcomes improving for
females, but degrading for males. Understanding these discrepancies across populations is
an interesting avenue for further empirical and theoretical research.

4In the online appendix, we briefly investigate a case in which abilities and costs are not
independenty distributed, and we observe that such a correlation may open the door to
the possibility of multiple equilibria, even assuming symmetry across neighborhoods. Such
a multiplicity may explain the emergence of inequality across neighborhoods, even when
these have identical ex ante characteristics.
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that if one neighborhood is much bigger than the other one, the bigger neigh-
borhood gets almost all seats per head irrespective of the compositions of the
neighborhoods, thereby formalizing how minorities may be hurt in a sam-
pling equilibrium.

We next study the effect on redistribution, welfare as well as the average
quality of admitted students of standard policy instruments such as quotas or
the mixing of neighborhoods. We establish that when neighborhoods differ
only in the distribution of costs, these policies have no effect on total welfare,
despite allowing for redistribution between neighborhoods. We next char-
acterize when quotas are welfare-enhancing when the distributions of abil-
ities differ across neighborhoods. In particular, we establish that reserving
a number of seats in proportion to the size of the neighborhood is welfare-
enhancing if the neighborhood with larger cost is the one with smaller ability
variance — assuming an equal mean ability across neighborhoods. We also
establish that quotas have a negative impact on the average ability of admit-
ted students. Finally, we characterize the welfare impact of mixing, noting
that in some cases mixing may be welfare-enhancing.

Related Literature At a methodological level, our model of belief formation
can be viewed as offering a balance between strategic sophistication as usu-
ally considered in economics—which is at least partly empirically supported
by some studies (Agarwal and Somaini, 2018)—and the embeddedness of
students’ beliefs as usually considered in sociology. This is to be contrasted
with the “undersocialized” view of an atomic agent that forms correct be-
liefs independently from her environment as well as the “oversocialized” ac-
counts of expectation formation in which students mechanically inherit the
beliefs of their parents or have social capital fully account for educational
choices (the sociology literature has departed from this Bourdieusian view in
the last 20 years, see for instance Aschaffenburg and Maas (1997)).5

There is a growing empirical literature on expectation formation in edu-
cation, broadly divided between beliefs on the returns to schooling and sub-
jective admission chances.

5The distinction between undersocialized and oversocialized explanations is due to Gra-
novetter (1985).
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Very few papers investigate subjective admission chances, which is the
focus of our paper. Most notably, Hastings and Weinstein (2008) show that
providing information about school quality and odds of admission to low-
income families with high-achieving students increases application to good
schools. It is unclear, however, if the effect is driven by growing awareness
about these schools or changing expectations. Kapor et al. (2020) directly
elicit admission probabilities of students facing a centralized school choice
mechanism that rewards strategic behavior. They find that households play
strategically, but do so with miscalibrated beliefs. Belief errors, however, do
not seem to correlate with observable characteristics such as race or economic
status. Finally, Altmejd et al. (2020) show that older sibling’s enrollment in a
better college increases a younger sibling’s probability of enrolling in college
at all, especially for families with low predicted probabilities of enrollment.

The empirical literature on the perceived returns to schooling that is less
directly related to our model has obtained mixed results. In Wisconsin, Do-
minitz and Manski (1994) find that the perceived returns from a Bachelor’s
degree compared to a high school diploma are positive. In Chile, Hastings
et al. (2015) show that low-achieving disadvantaged students who apply to
low-earning college degree programs overestimate earnings for past grad-
uates by over 100%, while beliefs for high-achieving students are correctly
centered. Conversely in the Dominican Republic, Jensen (2010) find that the
perceived returns to secondary school are extremely low, despite high mea-
sured returns.

The first theoretical model of non-rational expectation formation on the
returns to schooling is due to Manski (1993). He postulates an additive log-
income equation, and he assumes that students infer the returns to school-
ing by taking the conditional expectation of log-income. If students omit to
condition on ability—e.g., because they do not observe the ability of their
peers—he shows that more low-ability and less high-ability students enroll
in college.6

6Streufert (2000) considers a related model in which students infer the returns to school-
ing from a distribution of income that is truncated. More precisely, successful children who
are more likely to leave their (disadvantaged) neighborhoods are under-sampled by new
children of such neighborhoods, thereby leading to a potential downward bias in the es-
timated returns to schooling among disadvantaged children. That paper shares with our
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Our model is different in that in our environment there is a strategic in-
teraction across students due to the scarcity of seats in elite colleges, and stu-
dents’ expectations concern their admission chances which are affected by
the application strategy of other students. However, our analysis of the one-
neighborhood case shares some similarity with Manski (1993), most notably
when τ is large. Indeed, in this case, students consider the aggregate admis-
sion rate among all applications as their expectation, and this can be inter-
preted as students not observing the ability characteristics of students in the
sample consisting of the entire neighborhood, similarly as in Manski (1993).
Extending this to the heuristic with lower values of the window parameter
τ (which is similar to the K-nearest neighbor heuristic) has no counterpart
in Manski (1993), and it allows us to develop a framework where one can
go smoothly from the rational expectations paradigm (τ = 0) to the case in
which students do not condition their admission chances on ability (τ large)
as in Manski’s model. Clearly, the multi-neighborhood case considered in
the later part of the paper and that contains our main insights in terms of
policy implications, has no counterpart in Manski (1993).7

Our paper can be viewed as contributing to the recent literature on behav-
ioral economics in education market design as recently surveyed in Rees-
Jones and Shorrer (2023), even if that literature has mostly been concerned
so far with explaining why students do not always report their true prefer-
ences in mechanisms (such as the Gale-Shapley student-preferred deferred
acceptance mechanism) in which it is a (weakly) dominant strategy to report
truthfully. By contrast, in our model there is no dominant strategy due to
the presence of rejection costs and the non-rational aspect concerns the mod-
elling of the expectations about the admission chances, as discussed above,
a form of non-rational expectations not discussed in Rees-Jones and Shorrer
(2023).

approach the local biased sampling idea, but the mechanism as well as the equilibrium ap-
proach (pursued here but not in Streufert (2000)) make the two very different. It may also be
mentioned that in our approach low ability students typically overestimate their chance of
success due to their consideration of students with high ability, a bias that has no counterpart
in Streufert (2000).

7Our model, like Manski (1993), can be viewed as developing an equilibrium approach to
selection neglect. Other equilibrium approaches of selection neglect in various environments
include Esponda (2008); Jehiel (2018); Frick et al. (2022).
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There is a vast literature on social learning illustrating that past cohorts’
behavior influences the expectations of current cohorts (Banerjee, 1992; Bikhchan-
dani et al., 1992; Ellison and Fudenberg, 1995). These papers, however, typi-
cally assume that agents have enough prior information to infer the outcome
of counterfactual actions using Bayes’ rule, which significantly differs from
our non-rational expectation approach.

Finally, several papers in behavioral game theory have introduced vari-
ous departures from the rational expectation hypothesis. These include among
others the cursed equilibrium Eyster and Rabin (2005), the analogy-based
expectation equilibrium (Jehiel, 2005), the Berk-Nash equilibrium Esponda
and Pouzo (2016) or the Bayesian Network Equilibrium (Spiegler, 2016). The
spirit of our approach is maybe closest to Jehiel (2005) who introduces a
model of coarse expectations in which players bundle situations to form
expectations about other players’ behaviors. In equilibrium, players best-
respond to their analogy-based expectations, and expectations correctly rep-
resent the average behavior in every class. Our paper is based on a different
learning rule where students average the outcome of an endogenously cho-
sen group of players and do not assess others’ behaviors directly but only
indirectly through the admission chances, whereas in Jehiel (2005) players
average the behaviors of an exogenously given bundle of situations using
past observations from an exogenously given group of players (see however
Jehiel and Mohlin (2022) for a model that endogenizes the analogy classes
of Jehiel (2005) based on a similar bias-variance trade-off as the one used to
motivate our sampling heuristic, see also Mohlin (2014) on the bias-variance
trade-off).

2 SETUP

We introduce a stylized model of career choice with strategic students and
rationing at elite colleges. In this Section, we consider a single neighborhood.
Extension to more neighborhoods will be considered in the next Section. In
this part, we normalize the mass of students to be 1 and we let q be the mass
of seats at elite colleges. Students are indexed by their ability θ ∈ [θ, θ] ⊆ R,
and by their cost c ∈ [c, c] ⊆ R+. There is a probability distribution F on
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N ≡ [θ, θ]× [c, c] with continuous density f that has full support.
Students choose among two occupations: going directly on the labor mar-

ket (or a non-selective vocational training) L, or applying to selective colleges
H . The utility of attending an elite college is UH(θ) = θ, whereas we assume
that the utility of going directly on the labor market is UL(θ) = 0 for all θ.

Students can apply to only one occupation: the action space is then A =

{L,H}. There is no rationing for going on the labor market. Elite colleges,
however, have a limited number of seats and they select students with the
highest ability (among the pool of applicants) up to their capacity q � 1.8

The payoffs are as follows:

– If student (θ, c) goes on the labor market L her utility is 0.

– If student (θ, c) applies to H and obtains a seat, her utility is θ.

– If student (θ, c) applies to H but does not get a seat, she goes on the
labor market and her utility is −c.

Even though we have formulated the model in terms of rejection costs
only, the same model can easily accommodate other forms of costs, i.e. ap-
plication costs and/or tuition fees in case of admission by appropriately re-
defining the variables. Specifically, refer to ca as the application cost, cf as a
tuition fee to be paid in case of acceptance and cr as a rejection cost to be paid
only in case of rejection as formulated above. By identifying θ in the main
model with θ − ca − cf and c with ca + cr, it readily verified that the more
general model can be reduced to the simplified formulation adopted above.

Since c in our model can be the viewed as reflecting either rejection costs
or application costs, it is of interest to motivate why these costs may be (sub-
jectively or objectively) significant in practice. Strictly speaking, the appli-
cation costs in US universities are relatively small (most newspapers report
an average fee of $50) and waivers are widely available. Yet, for some less
advantaged households, it may not be known how to obtain the waivers and
these costs, even if small, may be enough to deter a number of applications

8Our results are unchanged if colleges only receive a noisy signal about students’ ability,
as long as students know the signal used for selection purposes (for example, think of the
signal as the student’s performance in past exams).
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whose success is (subjectively) considered to be unlikely.9 Opportunity costs
are objectively more significant in the US context, with universities weighing
students’ academic record, extracurricular activities, athletic activities, etc.
all of which take years of preparation and significant effort.

In France, application costs to elite institutions are similarly small, and
automatically waived for disadvantaged students. By contrast, opportunity
costs are quite high as students need to enroll in Classes Préparatoires dur-
ing two years. Failing admission to STEM oriented schools (such as Poly-
technique or Ecole Normale Superieure) would imply a lost opportunity to
prepare for business schools (such as missing the opportunity to get into
HEC business school), which would translate in high rejection costs in our
model.10

In Japan, some national universities such as Tokyo University explicitly
prevent students from applying to competing universities of nearby rank-
ing. After a national placement test (known as senta shiken), students need
to prepare for university-specific entry exams (known as niji shiken), trans-
lating again in our model in a significant opportunity cost.

Getting back to our model, we will assume for simplicity that θ ≥ 0 so that
if a student were sure of being accepted he would always apply irrespective
of θ. We will assume for most of our analytical results and for tractability
reasons that θ and c are independently distributed (even if we start the pre-
sentation of the model and present some preliminary results without this
extra assumption).

Formally, a strategy profile σ : N −→ ∆A is a (measurable) function
mapping the set of types into application probabilities. We let σ(θ, c) ∈ [0, 1]

denote the probability that student (θ, c) applies to H .
A key object that drives the choice of student (θ, c) is the subjective prob-

ability this student assigns to obtaining a seat at an elite college conditional
on applying to H . In both the rational case and our approach, this subjective
probability turns out to depend only on θ and we denote it by p(θ) accord-

9With this interpretation in mind, a higher cost in our model should clearly be associated
with being less advantaged.

10To some extent, the same applies to the Prep school in the UK.
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ingly. Based on p(θ), student (θ, c) applies to H whenever

p(θ)θ − (1− p(θ))c ≥ 0

This leads to the following definition of an optimal strategy profile.11

DEFINITION 1. σ is optimal given subjective beliefs p(·) if

σ(θ, c) =

1 when c ≤ p(θ)
1−p(θ)θ

0 when c > p(θ)
1−p(θ)θ

For any strategy profile, let θ(σ) denote the cutoff at H such that any stu-
dent with ability θ > θ(σ) who applies to H is admitted. It is defined as
follows: θ(σ) = θ when

∫ θ

θ

∫ c

c

σ(θ, c)f(θ, c) dc dθ < q

Otherwise, θ(σ) is uniquely defined as the largest θ∗ such that

∫ θ

θ∗

∫ c

c

σ(θ, c)f(θ, c) dc dθ = q

Subjective beliefs are rational when they are consistent with the admission
cutoff, given the strategy profile.

DEFINITION 2. pR(·) is rationally consistent with σ if

pR(θ) =

1 when θ ≥ θ(σ)

0 when θ < θ(σ)

Therefore, the rational expectations equilibrium is defined as follows.

DEFINITION 3 (Rational Expectations Equilibrium). σR is a rational expecta-
tions equilibrium if there exist subjective beliefs pR such that σR is optimal given pR

and pR is rationally consistent with σR.
11For completeness, we assume that the student applies to H when indifferent, but how

indifferences are resolved plays no role in the analysis.
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Let us now characterize the unique rational expectations equilibrium—
thus proving existence. Given the strategy profile σ and the consistency of
beliefs, it is optimal to apply to H for all students with ability θ > θ∗ where
θ∗ = θ(σ) as defined above. It follows that in a rational expectations equilib-
rium, the admission cutoff θ∗ solves∫ θ

θ∗

∫ c

c

f(c, θ) dc dθ = q ⇐⇒ θ∗ = H−1(1− q)

where H denoted the cdf of the marginal distribution of θ. In other words,
the equilibrium allocation of students to occupations can be described by
the cutoff strategy consisting in applying to H whenever θ is higher than
H−1(1 − q). This yields the following Proposition whose proof as well as all
other proofs appear in Appendix:

PROPOSITION 1 (Equilibrium Characterization). In the unique rational expec-
tations equilibrium, students NH = {(θ, c) : θ > H−1(1− q)} obtain a seat at elite
colleges, and NL = N \NH go on the labor market.

The rational expectations equilibrium induces perfect assortative match-
ing as students sort across occupations based on their ability. Namely, high-
achieving students (those with ability θ above θ∗) go to elite colleges, and
low-ability students (those with ability θ below θ∗) go on the labor market.
No student applying toH gets rejected. See Figure 1 (Left) above for a graph-
ical illustration of the equilibrium.

Define welfare as

W (σ) =

∫ θ

θ∗

∫ cH(θ,p(θ))

c

θf(θ, c) dc dθ −
∫ θ∗

θ

∫ cH(θ,p(θ))

c

cf(θ, c) dc dθ

where cH(θ, p(θ)) is the cost below which student (θ, c) applies to H condi-
tional on admission chances p(θ). The first term describes the welfare of ad-
mitted students. The second term reflects the welfare of rejected applicants
while the welfare of non-applicants is 0.
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Define next the average quality of the admitted students as

M(q) =

∫ θ
θ∗

∫ cH(θ,p(θ))

c
θf(θ, c) dc dθ∫ θ

θ∗

∫ cH(θ,p(θ))

c
f(θ, c) dc dθ

In the rational expectation equilibrium, cH(θ, p(θ)) = c for all θ ≥ H−1(1− q)
and cH(θ, p(θ)) = c for all θ < H−1(1 − q); no applicant gets rejected and the
welfare optimal allocation of students is achieved.

3 EXPECTATION FORMATION AND BELIEF TRAPS

In this section we introduce a simple model of expectation formation based
on extrapolations and sampling, and we show, among other things, how it
leads to persistent belief distortions and suboptimal application decisions.

Students have no prior over the distribution of admissions conditional on
applications. Instead, students non-parametrically estimate their chance of
being accepted by averaging the acceptance outcome of a sufficient mass τ of
their peers who applied to elite colleges and who are closest to them in terms
of ability. We think of the heuristic used by students as the continuous ana-
log of the K-nearest neighbors algorithm that is routinely used in statistics as
a way to handle the bias-variance trade-off. We also believe it represents a
plausible heuristic for choices made by human beings in line with consider-
ations developed in Gigerenzer and Brighton (2009).

Formally, let B(N) denote the set of measurable subsets of N .

DEFINITION 4. The sample for action H of student (θ, c) conditional on a strategy
profile σ (from the previous generation) is

S(θ, c | σ) = arg inf
B∈B(N)

{∫
B

|θ − θ̃| dF (θ̃, c̃) :

∫
B

σ(θ̃, c̃) dF (θ̃, c̃) ≥ min(τ, τ(σ))

}

where τ(σ) =
∫
N
σ(θ̃, c̃) dF (θ̃, c̃) is the total mass of students applying to H .

In words, S is the set with mass τ of students applying to H and having
ability closest to θ. There is a convex penalty of including students with
dissimilar ability, hence the sample S(θ, c | σ) is rectangular and it can be
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described by a simple index:

b(θ, σ) = inf

{
b > 0 :

∫ min{θ,θ+b}

max{θ,θ−b}

∫ c

c

σ(θ̃, c̃) dF (θ̃, c̃) ≥ τ

}
.

This means that the sample for actionH of student (θ, c) is obtained by taking
all applicants with ability θ′ ∈ [θ − b(θ, σ), θ + b(θ, σ)] regardless of their cost.
See Figure 2 below for a graphical illustration.

We can now define subjective admission chances. As in the previous sec-
tion, we denote by θ(σ) the admission cutoff at elite colleges given the strat-
egy profile σ. The subjective admission chances at elite colleges H are ob-
tained by averaging the experiences of the students in the sample.

DEFINITION 5. Subjective admission chances at elite colleges p are τ -consistent
with σ if12

p(θ) =
1

min(τ, τ(σ))

∫
S(θ,c|σ)

σ(θ̃, c̃)1{θ̃ > θ(σ)} dF (θ̃, c̃).

We now introduce our solution concept, the local sampling equilibrium,
which requires optimality of actions and consistency of beliefs.

DEFINITION 6 (Local Sampling Equilibrium). σ is a local sampling equilibrium
if there exists p such that σ is optimal given p and p is τ -consistent with σ.

We interpret this solution concept as the steady state of an intergener-
ational model of learning in which students of the current generation ask
peers from the previous generation about the outcome of their application.
Therefore, this sample is completely endogenous as it depends on the strat-
egy profile of the previous generation. Importantly, students know nothing
ex-ante about the admission process: it could be either because schools do
not disclose their admission criteria, or because students lack the ability to
understand the admission process, or because they do not trust publicly dis-
closed information. Therefore, students entirely rely on the information pro-
vided by their social network. Of course, this is a stylized assumption and in

12If a mass of students less than τ choosesH , then we divide by
∫
B
σk(θ̃, c̃) dF (θ̃, c̃) instead

of τ .
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practice we expect students to use a mix of information sources to form their
expectations.

We made two assumptions on the learning process. First, students care
about the precision of their estimate hence they must acquire a sufficient
amount of data for each action. Formally, this means that students ask a
mass τ ∈ (0, 1] of students from the previous generation, where τ is inter-
preted as a confidence parameter. This parameter captures a bias-variance
trade-off: if the sample it too small then subjective admission chances are
unbiased because they are computed using students with similar ability, but
the estimator is noisy.13 Conversely, if the sample is too large then subjec-
tive admission chances are precisely estimated but they are more likely to be
biased.

Second, students contact in priority peers with similar ability. This can be
justified on the ground that if students know that the admission probability
is somewhat correlated with their ability, then they might reduce bias by
asking peers with similar ability.14 From another perspective, one can view
our sampling technology as the one inducing the smallest distortions away
from rationality, so that any inefficiency identified within our setup is likely
to persist with alternative sampling specifications. In the online Appendix,
we briefly discuss the case when bundling is made on similarity in c, and we
illustrate how extra inefficiencies would arise in this case.

Note that students include in their sample only peers who actually applied
to H in the previous period. Therefore, students make no inference using
counterfactual outcomes—i.e., they are not asking their peers “What would
have been your admission chances at x conditional on applying there?”. Who
is included in the sample is endogenous and typically differ for each student,
even though sample size is identically equal to τ for each student. Concretely,
the perimeter of the sample for H of low-ability disadvantaged students is
very large because no close ties ever apply to H . Therefore, they will need

13This is a reduced-form interpretation because there is no actual noise in the estimate as
students sample from a continuum of peers.

14Alternatively, one can view this assumption as reflecting the hypthosesis that prior to
applying to colleges, students have been grouped according to their ability, thereby leading
to ties more naturally linked to ability.
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to ask high-achieving peers who have very different characteristics which
induce a large bias in the subjective admission chances. In general, a larger
perimeter implies a larger bias because the sample includes students with
very different characteristics, whereas a smaller perimeter implies a smaller
bias.

Existence. We apply a fixed point argument on the mapping from subjec-
tive beliefs p : Θ −→ [0, 1], to best-responses σ as derived from Definition 1,
compounded with the mapping from strategies σ to subjective beliefs as de-
rived from Definition 5. The fixed point exists if each sub-map is continuous.
It is easy to see that the best response σ has a threshold structure that varies
continuously with p. Moreover, the sample bounds b(θ, σ) are continuous in
the strategy profile σ, and so are subjective beliefs p. This shows the existence
of a pure strategy local sampling equilibrium (see the Appendix for details).
In general, we are not able to prove the uniqueness of a sampling equilibrium
(even if this will be shown to be the case when q is small enough and θ and c
are independently distributed).

Equilibrium Characterization. In the characterization below we make the
simplifying assumption that cost and ability are independently distributed,
i.e., f(θ, c) = h(θ)g(c) and we denote by H and G the cumulative distribu-
tions of f and g, respectively. Fixing ability and the subjective admission
chances, students who apply to H have a cost c < cH(θ, p(θ)) where

cH(θ, p(θ)) =
p(θ)

1− p(θ)
θ.

The total mass of applicants to H is then:

∫ θ

θ

∫ cH(θ,p(θ))

c

f(θ, c) dc dθ.

In a local sampling equilibrium, the ability of the last student admitted to H ,
denoted θ∗, is such that the mass of applicants at H is equal to the capacity
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θ

θ(σ)
H

L
S(θ(σ), c)

θ(σ) + b(θ, σ)

θ(σ)− b(θ, σ)

Figure 2: Construction of the sample for the last student admitted at an elite college
(θ(σ), c) in (c, θ)-space. The sample, represented in the shaded box, includes approx-
imately a mass τ of students who applied to an elite college H . All students above
the dashed line applied to H (i.e. σ(θ, c) = 1) but only those above the solid line got
admitted at an elite college. Rejected students exert a strategic externality on higher
achieving students by distorting their estimated admission chances downard.

of elite colleges: ∫ θ

θ∗

∫ cH(θ,p(θ))

c

f(θ, c) dc dθ = q.

Given our independence assumption, this equation can be simplified into:

∫ θ

θ∗
h(θ)G

(
p(θ)

1− p(θ)
θ

)
dθ = q (1)

Let us now derive the equation that guarantees τ -consistency of subjec-
tive admission chances. The subjective admission chances of student (θ, c)

are τ -consistent if they solve the following equation:

p(θ) =
1

min(τ, τ(σ))

∫ min{θ,θ+b(θ,σ)}

max{θ,θ−b(θ,σ)}

∫ cH(θ̃,p(θ̃))

c

1
{
θ̃ > θ∗

}
dF (c̃, θ̃).

where b(θ, σ) is derived as explained above. With our independence assump-
tion, this can be rewritten as:

p(θ) =
1

min(τ, τ(σ))

∫ min{θ,θ+b(θ,σ)}

max{θ,θ−b(θ,σ)}
G

(
p(θ̃)

1− p(θ̃)
θ̃

)
1
{
θ̃ > θ∗

}
dH(θ̃) (2)
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where

τ(σ) =

∫ min{θ,θ+b(θ,σ)}

max{θ,θ−b(θ,σ)}
G

(
p(θ̃)

1− p(θ̃)
θ̃

)
dH(θ̃)

In equilibrium, θ∗ must solve (1) given p(θ), and p(θ) must solve (2) for all
students (θ, c) given θ∗.

We can now compare equation (1) with the equation that defines the last
student admitted to H in a rational expectations equilibrium:

∫ θ

θ∗
h(θ) dθ = q. (3)

If there are students with sufficiently high costs—e.g. if g has full support
on R+—any small belief distortion in equation (2) will induce self-selection
among disadvantaged students: c > cH(θ, p(θ)). Then, the term under the in-
tegral sign in (1) is smaller than in (3) becauseG(cH(θ, p(θ))) < 1 as cH(θ, p(θ)) <

c ≤ c. Therefore, the ability of the last admitted student at H in a local sam-
pling equilibrium θ∗ must be smaller than in a rational expectations equilib-
rium to fill all the seats in equation (1).

We just proved that two types of inefficiencies arise in a local sampling
equilibrium: high-achieving disadvantaged students self-select out of elite
colleges even though their actual admission probability is one, and low-
achieving advantaged students spend inefficient resources in applications at
elite colleges even though their actual admission chances are zero. See Figure
1 in the introduction for a graphical representation of the two inefficiencies.

PROPOSITION 2 (Equilibrium Characterization). Suppose that g has full sup-
port on R+ and assume ability and cost are independent. For all q < 1 there exists
θ∗ ∈ (0, 1) and (σ(θ), p(θ)) that solve (1) and (2) such that in this local sampling
equilibrium students NH = {(θ, c) : θ > θ∗, c ≤ cH(θ, p(θ))} obtain a seat at elite
colleges and NL = N \ NH go on the labor market. In a sampling equilibrium
characterized by the admission threshold θ∗, there are two types of inefficiencies:

1. Missed opportunities: all students (θ, c) with ability θ > θ∗ and cost c >
cH(θ, p(θ)) self-select out of elite colleges.
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2. Inefficient applications: all students (θ, c) with ability θ < θ∗ and cost c <
cH(θ, p(θ)) apply to H but are rejected and suffer a cost −c.

Observe that compared to the rational expectations equilibrium both the
supply side and the demand side suffer from inefficiencies. On the supply
side, belief distortion arises endogenously and leads to payoff-relevant mis-
takes for high-achieving students and low-achieving advantaged students.
On the demand side, the quality of the pool of admitted students at elite col-
leges is lower than with rational expectations due to equilibrium mismatch.

We also note that in a sampling equilibrium, high ability students are
overly pessimistic about their chances of success, and low ability students
are overly optimistic. Further empirical studies should explore the validity
of these predictions.

In our model, we assumed that the mass of students was 1. When the
mass of students is m, the same analysis as above applies replacing the mass
of seats q by q/m and the window threshold τ by τ/m. Keeping q/m and
τ constant while varying m would thus lead in our model to consider the
comparative statics as τ varies. Clearly, when m grows very large, it corre-
sponds in our model (with normalized population size) to the case in which
τ tends to 0 and then students form their expectations using an infinitesimal
sample of individuals. As it turns out, in our model this leads to rational ex-
pectations because students do not bias their estimate with dissimilar ability
students and admission rate depends only on ability. Indeed, taking the limit
τ → 0 of the implicit equation (2) we can see that if θ < θ∗ then there is τ∗
small enough such that θ+ b(θ, σ) < θ∗ and θ− b(θ, σ) < θ∗. Therefore, the in-
tegral in (2) is zero, and we have p(θ, c) = 0. Similarly, one can verify that for
all θ > θ∗, p(θ, c) = 1. Therefore, only the best students (with θ > θ∗) apply to
elite colleges and the last student admitted in a local sampling equilibrium
coincides with that of the rational expectations equilibrium.

Moving away from the limit m = ∞, students would not form expecta-
tions using one data point, formalized in our model by assuming that τ is
strictly positive, away from 0. Obviously, belief distortions decrease with m

(or increase with the confidence level τ in our normalized model) because
students include peers with more different characteristics in their sample.
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Figure 3: (Left) Subjective admission chances as a function of student ability. Bias
in subjective beliefs increases with the confidence parameter τ . (Right) Density of ap-
plicants to H as a function of student ability. As τ increases, the admission cutoff θ̃∗

decreases, the number of self-selecting students (on the right of the cutoff) increases
and the number of inefficient applicants (on the left of the cutoff) increases as well.

Hence bias in the estimate stems from a selection bias that increases with
τ . When τ becomes so large that students include the entire population in
their sample, the subjective beliefs of the entire population converge to the
same aggregate admission rate. This will arise when we consider the limit
of a small q as then the number of students applying will be small leading
students to consider the entire population of applicants (the mass of it will
fall short of τ , irrespective of τ when q is small enough).

The comparative statics with respect to τ in our model with normalized
population size is illustrated for the case in which θ and c are uniformly dis-
tributed on [0,1] in Figure 3 (Left). In this case, our simulations reveal that
there is a unique local sampling equilibrium for all τ . Figure 3 (Right) illus-
trates the two types of inefficiencies that arise in a local sampling equilib-
rium. We see that as the confidence parameter τ increases, the admission
cutoff θ̃∗τ decreases. Subjective beliefs, however, move smoothly around this
threshold hence the mass of student who apply to H with an ability that is
below the cutoff θ̃∗τ is positive (inefficient applications), and the mass of stu-
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dents who apply to H with an ability that is above the cutoff is below one
(missed opportunities).

PROPOSITION 3. As τ converges to 0, the local sampling equilibrium converges
to the rational expectations equilibrium. Assuming there is a unique local sampling
equilibrium for all τ , a higher confidence parameter τ leads to more self-selection from
high-achieving disadvantaged students and to more inefficient applications from low-
achieving advantaged students.

Comments.

1. When τ is so large (i.e. larger than 1) that students estimate their ad-
mission chances to be the aggregate admission rate in the entire neigh-
borhood irrespective of their ability, an alternative interpretation of the
sampling equilibrium is that students do not observe the ability of their
peers leading them to consider the aggregate admission rate in the en-
tire population to form their estimate. This is the scenario considered
by Manski (1993) in a model focused on returns to schooling. Our
heuristic procedure for more general τ — which is in the spirit of the
K nearest neighbor algorithm — allows us to go smoothly from such a
limit scenario to the rational expectations scenario by varying τ from 1

(or more) to 0.

2. The inefficiencies identified in a sampling equilibrium would not be
the same if students had access to the counterfactual information of the
admission outcome of those students who do not apply (still assum-
ing that students consider a mass τ of students as close as possible to
their own ability to form their expectations). Indeed, the fact that stu-
dents only consider the pool of applicants implies that the bias is bigger
when fewer students with nearby ability types apply. As a result, the
bias is smaller for very large θ students than for very low θ students.
This implies that the missed opportunities (those θ > θ∗ who do not
apply) concern more the students with ability not too far away from θ∗

as compared with the inefficient applications (those θ < θ∗ who apply
and get rejected) which concern also low θ students. This can be seen in
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Figure 3 where the slope of the subjective admission chance is steeper
for θ above θ∗ than it is for θ below θ∗.

3. The conclusion that as τ converges to 0, the rational expectations equi-
librium obtains would not hold if students were to sample in priority
peers with similar cost c as opposed to peers with similar ability θ (this
can be inferred from the observation that in such a case, subjective be-
liefs would depend on cwhen in reality they depend on θ, see the online
Appendix for details).

3.1 Small Number of Seats

In all the formal results to be developed next, we assume that the number
q of seats is small, which fits in well with the the consideration of elite col-
leges (Blair and Smetters, 2021). The assumption that q is small is not only
plausible for this application, but it also allows us to provide closed form
approximations to the sampling equilibrium when θ and c are assumed to
be independently distributed with a smooth joint density f(θ, c) = h(θ)g(c)

having full support on [0, 1]× [0, 1].15

We first note that in the limit as q tends to 0, the mass µ of students ap-
plying to elite colleges must also converge to 0. This is true in the rational
expectation case but also when τ is large so that it leads students to consider
the aggregate acceptance rate, and it can be shown to apply to any intermedi-
ate value of τ .16 Given this observation, it follows that for a fixed τ , when q is
small enough, students make their choice whether or not to apply toH based
on the aggregate acceptance rate p, and (θ, c) applies to H iff c < p

1−pθ.17 The

15A closed form solution to the sampling equilibrium would be hard to obtain outside this
limit.

16This can be established as follows. Suppose by contradiction that the mass µ(q) of appli-
cants is no smaller than µ∗ > 0 for all q. Then it is readily verified that for all θ, p(θ) should
tend to 0 as q tends to 0 (since p(θ) < q

min(µ∗,τ) and q
min(µ∗,τ) → 0 as q → 0).

Since a student with ability θ would only apply if c < p(θ)
1−p(θ)θ and G( p

1−pθ) tends to 0 as

p tends to 0, we would have that µ(q) =
∫ 1

0
G
(

p(θ)
1−p(θ)θ

)
h(θ) dθ tends to 0 as q tends to 0,

leading to a contradiction.
17Given that p is small, the analysis presented here would be unchanged in the case in

which c would be an application cost instead of a rejection cost (this follows because p and
p

1−p are the same at the first order).
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fixed point determination of p in turn implies that

p = q
/∫ 1

0

h(θ)G

(
p

1− p
θ

)
dθ.

In the next Proposition, we establish that the sampling equilibrium is
unique when q is small enough and we provide approximations to θ∗(q), p(q)
as well as the welfareW (q) and the average ability of admitted studentsM(q)

in terms of q for arbitrary densities h and g.

PROPOSITION 4. When q is small, there is a unique sampling equilibrium. More-
over

p(q) =

(
q

g(0)E(θ)

)1/2

+ o(q1/2)

θ∗(q) = 1− 1

h(1)

(
E(θ)q

g(0)

)1/2

+ o(q1/2)

W (q) =

(
1− E(θ2)

2E(θ)

)
q + o(q)

M(q) = 1− 1

2h(1)

(
E(θ)q

g(0)

)1/2

+ o(q1/2)

24



Note that in the first-best (or rational expectations) case, we have

pFB = 1

θFB(q) = 1− q

h(1)
+ o(q)

W FB(q) = q + o(q)

MFB(q) = 1− q

2h(1)
+ o(q)

Compared to the first best, we note that in the sampling equilibrium the
admission cutoff, the welfare and average quality are smaller. The welfare
loss is proportional to E(θ2)

2E(θ)
, meaning that it is larger when the distribution

of ability is skewed towards high ability students. This is due to the fact
that equilibrium mismatch is more costly (from a welfare perspective) when
there are more high ability students. We observe that the welfare is always
increasing in the number of seats. By contrast, the average ability is always
decreasing in the number of seats, as expected. In a sampling equilibrium,
the average quality decreases faster than in a rational expectation equilib-
rium, since we deviate from 1 by

√
q which is greater than q for small values

of q. The drop in average quality is also proportional to
√
E(θ) in a sam-

pling equilibrium, whereas it is independent from the type distribution in a
rational expectation equilibrium. For comparison, we plot the welfare and
the average quality as a function of seats q in a sampling equilibrium and a
rational expectation equilibrium for a uniform distribution.

4 COMPETING NEIGHBORHOODS

We consider now the case of multiple neighborhoods competing for the same
positions. The neighborhood plays a role only in shaping the samples from
which students form their subjective assessment, as we assume the sampling
is made locally (only within the neighborhood to which the student belongs).
The fact that students from the various neighborhoods compete for the same
seats creates a linkage between the various neighborhoods as the threshold
ability θ∗ above which students get admitted has to be the same across neigh-
borhoods. This linkage in turn induces externalities across neighborhoods
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the effects of which are the main subject of interest of this Section.
To formalize the questions of interest, consider a two-neighborhood setup.

Neighborhood i = 1, 2 consists of a mass mi of students with (θi, ci). We let
fi(θi, ci) denote the mass-normalized distribution of (θi, ci). That is, (θi, ci)

is distributed according to mifi(θi, ci). And we let τi denote the sampling
window in neighborhood i.

Consider first neighborhood i in isolation, assume there is a mass qi of
seats available for students in this neighborhood and that students follow
strategy σi (qi will be endogenized in equilibrium). We let θ(σi, qi) be the
corresponding threshold admission ability in this neighborhood. It is com-
puted as shown in Section 3 using there the mass-normalized mass of seats
qi/mi and the mass-normalized sampling window τi/mi. An equilibrium is
formally defined as follows.

DEFINITION 7. A local sampling equilibrium with competing neighborhoods i =

1, 2 (with characteristics fi and τi) and total mass q of seats is a strategy profile
(σ1, σ2) such that there exist q1, q2 satisfying

1. σi is a local sampling equilibrium in the neighborhood iwith a mass qi of seats;

2. q1 + q2 = q and,

3. θ(σ1, q1) = θ(σ2, q2).

We consider the case in which θ and c are independently distributed in
each neighborhood, i.e. fi(θ, c) = hi(θ)gi(c) for i = 1, 2. In the next propo-
sition, we let q be small for a fixed ratio m1/m2. In this case, students in
neighborhood i consider the aggregate admission rate in neighborhood i to
decide whether to apply to elite colleges. Formally, the aggregate admission
rate in neighborhood i is given by pi = qi

µi
where µi is the mass of applicants

in neighborhood i and qi is the mass of seats obtained in neighborhood i. As
in Section 2, a student in neighborhood i with characteristics (θi, ci) applies
to elite colleges whenever ci < pi

1−pi θi.
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PROPOSITION 5. As q gets small, the sampling equilibrium with competing neigh-
borhoods is unique and characterized by

qi =
mihi(1)2gi(0)/E(θi)

m1h1(1)2g1(0)/E(θ1) +m2h2(1)2g2(0)/E(θ2)
q + o(q)

p1

p2

=
E(θ2)

E(θ1)

h1(1)

h2(1)
+ o(1)

Proposition 5 allows us to see how the seats are distributed across neigh-
borhoods as a function of the primitives mi, gi and hi. We can establish the
following comparative statics:

• When h1 = h2 (same distribution of θi), then p1 = p2 and q1
m1g1(0)

=
q2

m2g2(0)
. Thus, if g1(0) > g2(0), neighborhood 1 gets in relative share

more seats than neighborhood 2. The neighborhood with a smaller op-
portunity cost (defined here as arg max gi(0) = 1) applies more to elite
colleges and obtains relatively more seats.

• When h1(1) = h2(1) and g1(0) = g2(0), if E(θ1) > E(θ2), then p1 < p2

and q1/m1 < q2/m2. Namely, the neighborhood with a higher average
quality is more pessimistic about admission chances and obtains fewer
seats at elite colleges. This counter-intuitive result is explained by the
fact that only the highest quality students from neighborhood 2 are ad-
mitted to elite colleges, raising the subjective admission chances in this
neighborhood. The equilibrium effect is strong enough to have more
students admitted from the neighborhood with lower average quality.

• When E(θ1) = E(θ2) and g1(0) = g2(0), if h1(1) < h2(1), then p1 < p2

and q1/m1 < q2/m2. The interpretation is similar to the previous case.

In the next proposition, we consider a different exercise in which neigh-
borhood 1 is assumed to be very big in size m1.

PROPOSITION 6. We consider the limit q →∞, q
m1+m2

→ 0 andm1 →∞ keeping
fixed τ1 = τ2 = τ as well as m2 and hi(θi), gi(ci). In this limit, neighborhood 1 gets
almost all seats per capita as compared with neighborhood 2. Moreover since welfare
is increasing in q (locally around 0) as established in the one neighborhood case,
neighborhood 1 is favored in terms of welfare per capita.
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The intuition for this result is as follows. Neighborhood 1 is assumed here
to be very big so that the sampling heuristic leads students in neighborhood
1 to form rational expectations in the limit. By contrast, neighborhood 2 is of
more limited size leading students in this neighborhood to rely on the aggre-
gate admission rate in that neighborhood to make their decisions whether to
apply to elite colleges. The analysis in the previous section and the require-
ment that the admission threshold should be the same in both neighborhoods
leads then to the result that the big neighborhood obtains most seats in rel-
ative share.18 This result can receive an interesting interpretation given that
the neighborhood in our analysis is only used to determine the pool from
which students make their sample. It shows that everything else being equal
minority groups may be significantly hurt relative to majority groups sim-
ply due to the more biased estimate of minority students that results from
minority students only sampling the minority group and thereby not seeing
enough applicants with nearby characteristics in their observed pool.

Comment. In Proposition 6 we have assumed that the two neighbor-
hoods used the same sample window τ , which has led us to consider the
extreme case in which neighborhood 1 would have an infinitely bigger size
than neighborhood 2. An alternative scenario leading to a similar insight is
one in which the two neighborhoods are of comparable (say, equal) size, and
one neighborhood through access to better aggregate statistics (maybe be-
cause exposed to more knowledgeable peers) has rational expectations while
the other relies on the sampling heuristic. Within our model, this can be cap-
tured by requiring that τ1 = 0 and τ2 = τ > 0 (while assuming the total
number of seats is small as in Proposition 5). Following the same logic as in
Proposition 6 one obtains that neighborhood 1 obtains almost all seats in the
resulting equilibrium.

4.1 Policy Instruments

We discuss the effect of two possible policy interventions. The first one
consists in imposing quotas, pre-defining the number of seats each neigh-

18This is so because θ∗ deviate from 1 in q1/2 in the sampling equilibrium and in q in the
rational expectation equilibrium. Thus to equate the two thresholds it should be that almost
all seats per mass of students are allocated to neighborhood 1.
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borhood. The second one consists in changing the compositions of the two
neighborhoods by imposing some degree of mixing while leaving the equi-
librium force determines the number of seats assigned to each neighborhood.
When considering these interventions, we will discuss the effect in terms of
welfare, in terms of expected quality of admitted students as well as a com-
parison of how the two neighborhoods benefit from the intervention.

Quotas. We investigate the effect on welfare of two types of quotas (assum-
ing the mass q of seats is small and the two neighborhoods are of comparable
size, i.e. Proposition 5 applies in the laissez-faire case).19 First, we consider
allocating to each neighborhood a number of seats that is proportional to its
size, i.e. q1

m1
= q2

m2
. Second, we consider reallocating seats to the neighbor-

hood with the highest opportunity costs (defined here as the neighborhood
with smaller cost density around 0).

PROPOSITION 7. We assume that q is small enough and we consider the following
policies:

1. Giving a number of seats to each neighborhood in proportion to its size is
welfare improving compared to laissez faire if

arg min
i

hi(1)2gi(0)

E(θi)
= arg min

i

E(θ2
i )

E(θi)
.

2. Giving more seats to the neighborhood with higher opportunity cost (inter-
preted as neighborhood arg mini gi(0)) is welfare improving compared to lais-
sez faire if

arg min
i
gi(0) = arg min

i

E(θ2
i )

E(θi)
.

Whether quotas are welfare improving or not depends only on the dis-
tribution of ability, not the distribution of costs. Moreover, if two neighbor-
hoods have the same mean ability but one neighborhood has lower variance,
reserving seats for this neighborhood is welfare improving.

19Total welfare is defined as the sum of welfare in the two neighbrohoods.
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In the next Proposition, we assume that the two neighborhoods have the
same size and we establish that when the mass of seats q is small enough,
assigning to each neighborhood the same mass of seats q/2 always deterio-
rates the average quality of admitted students as compared with the laissez
faire.20

PROPOSITION 8. We assume that q is small enough and that the two neighborhoods
are of equal size m1 = m2 = 1. Reserving the same mass of seats q/2 to each
neighborhood reduces the average quality of admitted students.

The conventional wisdom is that quotas may deteriorate the quality of ad-
mitted students because without quotas, seats are allocated efficiently. This
intuition holds true in the rational expectations paradigm in which the first-
best allocation obtains. Somehow unexpectedly, the same conclusion that
quotas have always a negative impact on the average quality of admitted
students holds true also in our sampling equilibrium environment, despite
the fact that seats are not allocated efficiently.

Of course, another effect of quotas is that the neighborhood receiving
fewer per capita seats in laissez faire benefits in terms of relative welfare from
a policy that assigns seats in proportion to the size of the neighborhood. Al-
together, this observation together with Propositions 7 and 8 can be used to
assess the pros and cons of quotas in a sampling equilibrium environment.

Mixed Neighborhoods. We investigate whether moving students from the
high cost neighborhood to the low cost neighborhood (and vice versa) in-
creases welfare. Unlike quotas which do not change students’ social net-
work, this intervention exactly aims at reducing inequalities of social capital.
We consider random reallocation, i.e. from two initial neighborhoods with
distributions Fi and Fj we draw new neighborhoods from the following com-

20Formally, the overall average quality of admitted students is defined as M = q1M1+q2M2

q1+q2
where Mi is the average quality of admitted students in neighborhood i and as before qi is
the mass of seats in neighborhood i.
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pound distributions:

F̃i = αFi + (1− α)Fj

F̃j = αFj + (1− α)Fi

The parameter α scales the equalization across neighborhoods: for α = 1

there is no reallocation of students, and for α = 1
2

the new neighborhoods
have equal cost distributions. In order to preserve the independence while
mixing, it should be that the heterogeneity is either only on gi or only on hi.

PROPOSITION 9. 1. If h1 = h2, then mixing has no effect on aggregate welfare
for small enough q.

2. If m1 = m2, g1 = g2, a complete mixing (i.e., α = 1
2
) is welfare enhancing for

small enough q whenever 1− E(θ21)+E(θ22)

2(E(θ1)+E(θ2))
is no smaller than

h1(1)2/E(θ1)

h1(1)2/E(θ1) + h2(1)2/E(θ2)

(
1− E(θ2

1)

2E(θ1)

)
+

h2(1)2/E(θ2)

h1(1)2/E(θ1) + h2(1)2/E(θ2)

(
1− E(θ2

2)

2E(θ2)

)

3. If m1 = m2, g1 = g2, E[θ1] = E[θ2], and h1(1) = h2(1) then mixing has no
effect on aggregate welfare.

4. If m1 = m2, g1 = g2, E[θ1] 6= E[θ2], E[θ2
1] = E[θ2

2], and h1(1) = h2(1) then
aggregate welfare is monotonically increasing in mixing α.

Note that we maintain fixed either h or g across neighborhoods to pre-
serve the independence between ability and cost in the compound distribu-
tion. We observe that mixing may sometimes be good for total welfare when
the two neighborhoods have different distributions of ability. The result that
when neighbors differ in average ability, then mixing has a positive effect on
welfare may be viewed in the perspective of the Moving to Opportunity ex-
periment showing that moving disadvantaged students to more advantaged
neighborhoods improve college attendance and efficiency (Chetty et al., 2016;
Chetty and Hendren, 2018a,b).21

21The effect of mixing on the average quality of admitted students is somehow cumber-
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5 CONCLUSION

We have introduced a model of expectation formation in an educational choice
problem. Unlike the rational expectations framework, students were as-
sumed to have no prior information and no prior belief as to how elite col-
leges admit students. We have assumed instead that students non-parametrically
estimate the distribution of outcomes conditional on actions by averaging
past experiences from a sufficient mass τ of applicants with nearby ability
characteristics. Formally, we have introduced a new solution concept—the
local sampling equilibrium—in which students best respond to their subjec-
tive expectations, and expectations are consistent with the average observa-
tion made in the sample viewed as sufficiently reliable and representative.
We believe this provides a coherent framework for thinking of the strategic
interactions between expectation formation and the social environment.

We have derived three main results. First, expectation formation leads
to belief traps whereby relatively high ability disadvantaged students self-
select out of elite colleges, and less able advantaged students take their seats
at elite colleges. This is due to the fact that average students create a strategic
externality on high-achieving students by distorting their perceived admis-
sion chances toward the mean. This leads to multiple inefficiencies: on the
supply side, high-achieving disadvantaged students go on the labor market
instead of attending elite colleges, whereas low-achieving advantaged stu-
dents spend resources applying to elite colleges even though their actual ad-
mission chances are zero. On the demand side, the pool of admitted students
is of lower quality compared to the rational expectations benchmark.

Second, we have extended our study of local sampling equilibrium to the
case of competing neighborhoods, and we have shown among other things
that minority groups may end up getting a disproportionately small number
of seats in elite colleges and how neighborhoods with lower rejection costs
may end up getting a disproportionately high number of seats in elite col-
leges. This type of cross-neighborhood externality arises because rationing
at elite colleges acts as a propagation mechanism of local demand shocks.
Indeed, a reduction of cost in one neighborhood induces a higher admission

some and can go either way in general.
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cutoff, leading to a lower admission rates in other neighborhoods hence more
self-selection. This may suggest that growth inequality across locations dis-
proportionately benefits advantaged/majority neighborhoods at the expense
of poor/minority neighborhoods.

Finally, we have studied the pros and cons of using quotas and/or of
mixing neighborhoods in terms of total welfare and the quality of admitted
students. In particular, we have shown that quotas (imposing that the num-
ber of seats in a neighborhood be proportional to its size) may sometimes be
welfare-enhancing in contrast to the predictions obtained under rational ex-
pectations while the quality of admitted students was shown to be reduced
with quotas similarly as in the rational expectations case. While more work
would be needed to quantify these effects and study their robustness, we be-
lieve that our model of expectation formation can serve as a building block
in empirical studies on education choices. 22

22While our analysis has assumed that costs and ability are independentlty distributed,
we suggest in the online Appendix that allowing for correlations may sometimes lead to
multiple equilibria, suggesting an additional channel of belief traps. More work is needed
though to analyze the general effect of correlation on the analysis.
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PROOFS

Existence of Local Sampling Equilibria. Consider the following scheme:

p 7−→ σBR(p, ·) 7−→ b(σBR, ·) 7−→ p(b)

By Tychonoff’s theorem, the scheme is compact-valued p(b) ∈ [0, 1]Θ. Hence
to obtain a fixed point, we just need to prove that the scheme is continuous.
Fix a subjective belief map p : Θ −→ [0, 1]. The action space is binary and
the subjective admission chances p enter payoffs linearly, hence σBR is the
following measurable threshold strategy:

σBR(p, ·) =

1 if p(·) ≥ γ(·)

0 if p(·) < γ(·)

where γ(θ, c) = c
θ+c

. Take any converging sequence pn −→ p. We need to
show that p 7−→ σBR(p, ·) is continuous in the L1-weak topology, namely∫

σBR(pn, (θ, c)) dF −→
∫
σBR(p, (θ, c)) dF.

We have ∫
σBR(pn, (θ, c)) dF =

∫
1 {pn(θ) ≥ γ(θ, c)} dF.

Therefore, continuity follows from Lebesgue’s dominated convergence the-
orem. We now show the continuity of σBR 7−→ b(σBR, ·). By Berge’s maxi-
mum theorem, σBR 7−→ b(σBR, ·) is upper-hemicontinuous. The loss function
|θ− θ̃| is strictly quasi-convex, hence σBR 7−→ b(σBR, ·) is continuous. Finally,
the continuity of b 7−→ p(b) follows directly from the integrability of p to-
gether with the continuity of the functions max{·, ·} and min{·, ·}. Therefore,
by the Schauder fixed point theorem the set of local sampling equilibria is
nonempty.

Proof of Proposition 1. Fix the admission cutoff at θ∗ = H−1(1 − q). If

34



σR(θ, c) = 1 for all θ > H−1(1− q) and 0 otherwise, then the beliefs

pR(θ) =

1 when θ > H−1(1− q)

0 when θ < H−1(1− q)

are rationally consistent with σR by definition of θ∗. Given these subjective
beliefs, σR(θ, c) = 1 for all θ > H−1(1− q) and 0 otherwise is optimal. There-
fore, (σR, pR) is a rational expectations equilibrium.

We now prove uniqueness. Suppose that σ(θ, c) < 1 for some (positive
mass of) θ > θ∗ and σ(θ, c) > 0 for some (positive mass of) θ < θ∗. By belief
consistency, students with ability θ > θ∗ know that pR(θ) = 1 (i.e. they can
obtain a seat at H for sure) hence they have a profitable deviation.

Proof of Proposition 2. First we show that all students (θ, c) with ability
θ > θ∗ = H−1(1− q) and cost c > cH(θ∗, p(θ∗)) self-select out of elite colleges.
Student (θ, c) applies to H only if p(θ∗) ≥ c

θ∗+c
. As long as q < 1 and τ > 0,

we must have p(θ∗) < 1 because the last admitted student (θ∗, c) includes
rejected students in her sample. Therefore, as limc→∞

c
θ∗+c

= 1 there must
exist a positive g-measure of costs such that p(θ∗) < c

θ∗+c
because g has full

support on R+. This proves that self-selection arises in equilibrium.
Second, we show that students with ability θ < θ̃∗ and cost c < cH(θ̃∗, p(θ̃∗))

apply to H but are rejected. Student (θ, c) with θ = θ̃∗ − ε for ε > 0 arbitrar-
ily small applies to H only if p(θ∗) ≥ c

θ̃∗+c
. As long as q < 1 and τ > 0,

p(θ∗) > 0 because this student includes in her sample admitted peers for ε
small enough. Therefore, as limc→0

c
θ̃∗+c

= 0 there must exist a positive g-
measure of costs such that p(θ̃∗) > c

θ̃∗+c
because g has full support on R+.

This proves that inefficient applications arise in equilibrium.

Proof of Proposition 3. We can rewrite the implicit equation for subjective
beliefs as follows:

p− 1

τ

∫ θ

θ

1{θ−b(θ,σ)<θ̃<θ+b(θ,σ)}∩{θ̃>θ̃∗}G

(
p(θ̃)

1− p(θ̃)

)
dH(θ̃) = 0 (4)

We first consider the case in which τ → 1. By definition of b(θ, σ) we have
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limτ→1{θ − b(θ, σ) < θ̃ < θ + b(θ, σ)} ⊇ {θ̃ > θ̃∗}. Therefore,

lim
τ→1

[
p(θ)− 1

τ

∫ θ

θ

1{θ−b(θ,σ)<θ̃<θ+b(θ,σ)}G

(
p(θ̃)

1− p(θ̃)

)
dH(θ̃)

]
= 0

⇐⇒ p =

∫ θ

θ

G

(
p

1− p

)
dH(θ̃)

where the second line uses the fact that, as τ → 1, the subjective probability
becomes independent of θ.

We now consider the case τ → 0. There are two cases to consider.
Case 1: There exists τ∗ small enough such that θ + b(θ, σ) < θ̃∗. Then we

have limτ→1{θ − b(θ, σ) < θ̃ < θ + b(θ, σ)} ∩ {θ̃ > θ̃∗} = ∅. Hence taking the
integral in equation (4) is zero, and we directly have that p(θ) = 0.

Case 2: There exists τ ∗ small enough such that θ − b(θ, σ) > θ̃∗. Then we
have limτ→1{θ − b(θ, σ) < θ̃ < θ + b(θ, σ)} ⊆ {θ̃ > θ̃∗}. Therefore,

lim
τ→0

[
p(θ)− 1

τ

∫ θ

θ

1{θ−b(θ,σ)<θ̃<θ+b(θ,σ)}G

(
p(θ̃)

1− p(θ̃)

)
dH(θ̃)

]
= 0

Take p(θ) = 1 and using the fact that limx→∞G(x) = 1 we can rewrite the
above equation as follows:

lim
τ→0

[
1− 1

τ

∫ θ+b(θ,σ)

θ−b(θ,σ)

h(θ̃) dθ̃

]
= 0

By L’Hospital’s rule and Leibniz integral rule,

lim
τ→0

∫ θ+b(θ,σ)

θ−b(θ,σ)
h(θ̃) dθ̃

τ
= lim

τ→0

[
h(θ + b(θ, σ)) + h(θ − b(θ, σ))

]∂b(θ, σ)

∂τ
(5)

By definition, b(θ, σ) is the smallest b > 0 that solves:∫ θ+b

θ−b
h(θ) dθ > τ ⇐⇒ H(θ + b)−H(θ − b)− τ︸ ︷︷ ︸

=Φ(b,τ)

> 0
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We apply the implicit function theorem to obtain the derivative of b(θ, τ):

∂Φ

∂b

∂b

∂τ
+
∂Φ

∂τ
= 0 ⇐⇒ ∂b

∂τ
=

1

h(θ + b) + h(θ − b)

Substituting this expression in equation (5) concludes the proof.

Proof of Proposition 4
Step 1. (p → 0 as q → 0): By contradiction, suppose that there exists b

with p > b > 0 for all q, then all (θ, c) such that c < b
1−bθ apply to H. The mass

of applicants m(q) is no smaller than m∗ = Pr(c < b
1−bθ) (and m∗ > 0 where

use is made of the full support assumption). But then p(q) = q
m(q)
→ 0 and

we get a contradiction.
Step 2. (Approximation of p in terms of θ∗): We have

p =

∫ 1

θ∗
h(θ)G( p

1−pθ)dθ∫ 1

0
h(θ)G( p

1−pθ)dθ

≈
∫ 1

θ∗
h(θ) p

1−pθg(0)dθ∫ 1

0
h(θ) p

1−pθg(0)dθ

=

∫ 1

θ∗
h(θ)θdθ∫ 1

0
h(θ)θdθ

=

∫ 1

θ∗
h(θ)θdθ

E(θ)

using a 1st order Taylor approximation of G around 0. This approximation
also implies that θ∗ → 1 as q → 0 to ensure that p → 0 (from Step 1). This in
turn implies that (using h(θ) ≈ h(1) when θ is in (θ∗, 1), with h(1) > 0 because
of full support):

p ≈ h(1)

E(θ)

1− (θ∗)2

2
.

Step 3. (Approximation of θ∗ in terms of q):
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q =

∫ 1

θ∗
h(θ)G

(
p

1− p
θ

)
dθ

≈
∫ 1

θ∗
h(θ)pg(0)θdθ

≈ pg(0)h(1)
1− (θ∗)2

2

where the first approximation uses p
1−p ≈ p and G(pθ) ≈ pθg(0), and the

second approximation uses h(θ) ≈ h(1) for θ ∈ (θ∗, 1).
Writing θ∗ in terms of q, we get

θ∗ = 1− 1

h(1)

(
E(θ)

g(0)

)1/2

q1/2 + o(q1/2).

Step 4. (Approximation of p in q): From steps 3 and 4 we get

p =

(
E(θ)

g(0)

)1/2

q1/2 + o(q1/2).

Step 5. (Approximation of W (q)): We have

W (q) =

∫ 1

θ∗
θh(θ)G

(
p

1− p
θ

)
dθ −

∫ θ∗

0

h(θ)

[∫ pθ
1−p

0

cg(c)dc

]
dθ

≈ g(0)ph(1)(1− θ∗)−
∫ θ∗

0

g(0)
p2θ2

2
h(θ)dθ

≈ g(0)ph(1)(1− θ∗)− g(0)E(θ2)

2
p2

≈ q − E(θ2)

2E(θ)
q

=

(
1− E(θ2)

2E(θ)

)
q + o(q)

using the above approximations.
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Step 6. (Approximation of M(q)): We have

M(q) =

∫ 1

θ∗
θh(θ)G( p

1−pθ)dθ∫ 1

θ∗
h(θ)G( p

1−pθ)dθ

≈ (1− θ∗3) /3

(1− θ∗2) /2

= 1− 1

2h(1)

(
E(θ)

g(0)

)1/2

q1/2 + o(q1/2)

using the above approximations.

Proof of Proposition 5. At equilibrium, the admission cutoff must be equal
between neighborhood 1 and 2. Using the formulas derived in Proposition
4, we have

1− 1

h1(1)

(
E[θ1]q1

g1(0)

) 1
2

= 1− 1

h2(1)

(
E[θ2]q2

g2(0)

) 1
2

⇐⇒ q1 =
g1(0)

g2(0)

(
h1(1)

h2(1)

)2
1/E[θ1]

1/E[θ2]

Using the fact that q2 = q − q1, and rearranging the above formula yields the
desired result. We obtain p1/p2 using the closed form from Proposition 4.

Proof of Proposition 6. From Proposition 4 we know that q1 is the product
of two terms:

lim
m1→∞

m1h1(1)2g1(0)/E(θ1)

m1h1(1)2g1(0)/E(θ1) +m2h2(1)2g2(0)/E(θ2)
= 1 lim

q→∞
q =∞

Therefore, the limit of the product yields q1 −→ ∞. Conversely, we have
q2 −→ 0 using the fact that 1

m1+m2
q → 0 implies am2

bm1+cm2
q → 0 for any positive

constant a, b, c and m2.

Proof of Proposition 7. From the one neighborhood case, we know that
aggregate welfare is (at the first order):

W =

(
1− E[θ2

1]

2E[θ1]

)
q1 +

(
1− E[θ2

2]

2E[θ2]

)
q2
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Therefore, aggregate welfare can be increased only by giving more seats to
neighborhood arg mini

E[θi1]

E[θi]
. Now if we give seats proportionally to the size

of the neighborhood qi = qi
mi

, this will benefit the neighborhood that currently
has the smallest number of seats, i.e. arg mini

hi(1)2gi(0)
E[θi]

. Alternatively, giving
more seats to the most disadvantaged neighborhood will benefit neighbor-
hood arg mini gi(0).

Proof of Proposition 8. Letting Ai = hi(0)2gi(0)/E(θi), the value of M after
the intervention is

MAA = 1− 1

2

[(
q

2A1

)1/2

+

(
q

2A2

)1/2
]

+ o(q1/2)

The laissez-faire value of M is

MLF = 1−
(

q

A1 + A2

)1/2

+ o(q1/2)

That MLF > MAA follows from Jensen’s inequality noting that x → x−1/2 is
convex.

Proof of Proposition 9.

1. Aggregate welfare is the same as in the one neighborhood case and only
depend on h1, h2.

2. Aggregate welfare when α = 1
2

writes

1

2

(
1−

1
2
E[θ2

1] + 1
2
E[θ2

2]

E[θ1] + E[θ2]

)
q +

1

2

(
1−

1
2
E[θ2

1] + 1
2
E[θ2

2]

E[θ1] + E[θ2]

)
q

= 1− E[θ2
1] + E[θ2

2]

2(E[θ1] + E[θ2])

which should be no less than aggregate welfare when α = 0.
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3. In this case we have q1 = q2 = q/2. Hence aggregate welfare writes(
1− αE[θ2

1] + (1− α)E[θ2
2]

2E[θ]

)
q

2
+

(
1− αE[θ2

2] + (1− α)E[θ2
1]

2E[θ]

)
q

2

=

(
2− E[θ2

1] + E[θ2
2]

2E[θ]

)
q

2

which is independent of α.

4. In this case, aggregate welfare writes

q

[(
1− E[θ2]

2(αE[θ1] + (1− α)E[θ2])

) 1
αE[θ1]+(1−α)E[θ2]

1
αE[θ1]+(1−α)E[θ2]

+ 1
αE[θ2]+(1−α)E[θ1]

+

(
1− E[θ2]

2(αE[θ2] + (1− α)E[θ1])

) 1
αE[θ2]+(1−α)E[θ1]

1
αE[θ1]+(1−α)E[θ2]

+ 1
αE[θ2]+(1−α)E[θ1]

]

which can be verified is an increasing function of α.
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Online Appendix

BUNDLING ON COST

In the main text, we assume that students bundle peers based on ability (and
indirectly based on cost when there are multiple neighborhoods). Here we
explore the converse where students bundle peers based on cost directly.
Overall, this increases the various inefficiencies (as students bundle on a di-
mension that is irrelevant for admissions), up to the point that as τ −→ 0 we
do not converge to the rational expectation equilibrium, unlike the case with
bundling on ability.

PROPOSITION 10. Suppose that students bundle peers only based on cost c. Then,
as τ −→ 0, the local sampling equilibrium does not converge to the rational expec-
tation equilibrium.

Proof. Let A(τ) ⊂ [c, c] × [θ, θ] be the set of admitted students in any lo-
cal sampling equilibrium. For this to converge to a REE, we must have
limτ→0A(τ) = [c, c] × [θ∗, θ] and p(c) = 0 or 1 for any c. But notice that
limτ→0A(τ) = [c, c]× [θ∗, θ] implies limτ→0 p(c) = 1− θ∗ which is not equal to
0 or 1, a contradiction.

WHEN ABILITIES AND COSTS ARE CORRELATED: A POTENTIAL EXTRA

SOURCE OF BELIEF TRAPS

In the previous analysis, we assumed that ability and opportunity costs are
independently distributed. In some contexts, it could be that cost and ability
are not independently distributed. When multiple neighborhoods compete
for the same seats at elite colleges, this can lead to equilibria with belief traps
in which one neighborhood takes many more seats than the other—even if
both neighborhoods are ex-ante identical. Clearly, given the symmetry of the
problem, any neighborhood can take the role of being favored in equilibrium,
thereby illustrating the possibility of multiple equilibria with possibly very
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strong asymmetries. The following Proposition illustrates this in an extreme
form.23

PROPOSITION 11. Suppose that in both neighborhoods there is a mass α of students
with (θ, c) = (0, 0) and a mass 1−α of students with (θ, c) > (0, 0) (with arbitrary
distribution) and assume 1 > q > 0.24 For α small enough, there is an equilibrium
in which all seats at H are taken by students from neighborhood i.

Proof. Suppose that all seats are taken by students from neighborhood i

(qi = q). First note that some seats must be allocated to high ability students
(otherwise they have a profitable deviation as p = 1 if only students with
(θ, c) = (0, 0) apply). Therefore, the admission cutoff satisfies θ∗ > 0. More-
over, for α small the admission probability converges to q

ζ
where ζ is the

fraction of high ability students who apply to H, with θ q
ζ
> c(1 − q

ζ
). Hence

all seats are occupied by students from neighborhood i for this ζ . Suppose
that all low-ability students from neighborhood j apply to H but are being
rejected because θj = 0 < θ∗. Then we have pj = 0, and no high-ability stu-
dent in neighborhood j applies to H . There are no profitable deviations and
beliefs are consistent, hence this is a local sampling equilibrium.

In the equilibrium of Proposition 11, only very low ability students in
neighborhood j apply to elite college, and they all get rejected. They apply
to elite colleges because their costs of rejection are negligible (even null in
the formal statement). But, by applying and being rejected such students
create a strong negative externality on high ability students in neighborhood
j, as the latter get convinced they are better off not applying (even for mod-
erate rejection costs). On the other hand, when 1 > q > 0 and α is small
enough, one can guarantee that at the same time there is a mass no less than
q of students from neighborhood i with θ > 0 who apply to H , thereby en-

23The theme of exploring the possibility of multiple equilibria in otherwise symmetric
contexts is recurrent in the literature (see, in particular as a canonical illustration, Bénabou
(1993) in the context of competing jurisdictions with composition externalities).

24This does not assume a vanishing number of seats, but it is possible to construct a se-
quence of economies parameterized by (q, α) such that q tends to 0 and one neighborhood
gets all the q seats in a local sampling equilibrium, thereby establishing the multiplicity even
as q tends to 0.
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suring that all seats are taken by students in i.25 While extreme, we believe
that Proposition 11 is suggestive that multiple equilibria can easily arise in
our setting (in particular when low rejection cost students tend to have low
ability), which in turn may suggest that some asymmetries in outcome may
sometimes be the result of historical factors rather than fundamental asym-
metries.26 Note that there is no explicit externality of low ability students
on high ability students, since they do not impact the admission cutoff, but
only an equilibrium-induced externality on expectation formation. This con-
trasts with models of segregation that consider explicit externalities, such as
Benabou (1993).

25The limit α → 0 corresponds to the model studied above and when q < 1 and there is
only one neighborhood, the equilibrium is such that the demand for the elite college in that
neighborhood exceeds the capacity, thereby providing the required property.

26To make this insight fits with our previous results in which the mass of seats was as-
sumed to be small, one could consider a sequence of such economies indexed by the mass
qn of students, let qn tends to 0 as n tends to infinity, and for each n, let αn be small enough
so that Proposition 11 applies.
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