Expectation Formation, Local Sampling and Belief Traps: A new Perspective on Education Choices*

Simon GLEYZE†
Philippe JEHIEL‡

Abstract

We propose a model of expectation formation in which students estimate their admission chances by sampling within their neighborhood a pool of given size of applicants with ability characteristics as close as possible to their own. Two types of inefficiencies arise in a one-neighborhood setting: high-achieving disadvantaged students self-select out of elite colleges, and average students from advantaged families apply to elite colleges and get rejected. We then explore a multi-neighborhood setting in which students from all neighborhoods compete for the same seats, thereby highlighting externalities related to the comparative neighborhood compositions. Several policy instruments are discussed.

*We thank Roland Bénabou, Francis Bloch, Gabriel Carroll, Gabrielle Fack, Renato Gomez, Julien Grenet, Marc Gurgand, Yinghua He, Ronny Razin, Al Roth, Olivier Tercieux as well as seminar participants at PSE for useful comments. Jehiel thanks the European Research Council for funding (grant n° 742816).
†Paris School of Economics and University Paris 1 Panthéon-Sorbonne. Email: gleyze.simon@gmail.com
‡Paris School of Economics and University College London. Email: jehiel@enpc.fr
1 Introduction

According to the rational expectations paradigm that is commonly used by economists, students when applying to elite colleges should form correct beliefs about their admission chances, in particular assessing correctly how the admission chances vary with observable characteristics such as the results obtained in ability tests. By contrast, sociologists argue that students are embedded in their social environment and obtain information by observing the decisions made by others, leading to mistakes and biases.\(^1\)

In this paper, we propose a framework for understanding the two-way interactions between expectation formation and the social environment in the particular context of a career choice problem in which students have to decide whether or not to apply to elite colleges. Our approach uses the methodology of economics adopting an equilibrium formulation, but it takes inspiration from sociology when modeling the specific way students form their expectations based on their accessible environment.

Specifically, we assume that students differ in two dimensions: their ability (accessible through standardized test, say), and their cost of being rejected from elite colleges (that can alternatively be thought of as an opportunity cost induced by rejection).\(^2\) Students choose one out of two occupations: unqualified jobs on the labor market (or non-selective vocational training), and elite colleges. Elite colleges have limited seats and select only the best students up to their capacity. Importantly, we assume that students do not form rational expectations regarding their admission chances. We consider instead that they form their expectations by estimating the admission probability using a sample of past experiences from their peers in their neighborhood. This estimation procedure is constrained in three ways: First, the sample is endogenous and consists only of students in the neighborhood who applied

\(^1\) We note that there is ample evidence that agents hold incorrect beliefs that are correlated across agents in the social network. For example, on the social network dimension, Altmejd et al. (2020) show that older sibling’s enrollment in college increases a younger sibling’s probability of enrolling in college at all.

\(^2\) We can equally consider application costs and we discuss later on why we believe in a number of contexts these costs can be significant. These include cases in which there is some preparation time required before applying (and the alternative in case of rejection after the training is less good because the skills are not transferable).
in the past to elite colleges. This can be motivated on the ground that it is very hard in practice to have access to counterfactual information (here, the admission outcomes of students who did not apply). Second, the sample must have a size no smaller than some threshold τ viewed as necessary to make the statistics derived from the sample sufficiently reliable. This can be viewed as a reduced-form approach formalizing the bias-variance trade-off faced by students in their estimation procedure. We note it is similar to the K-nearest neighbor algorithm that is very commonly used in machine learning and statistics. Third, students ask in priority peers with similar ability. This can be viewed as reflecting that students have the correct understanding that admission chances are related to ability.

We introduce the “local sampling equilibrium” viewed as a steady state of a dynamic process in which students best respond to their subjective beliefs as derived from the aggregate empirical frequencies of admissions observed in the samples drawn in past cohorts, and subjective beliefs are consistent with the sequential sampling estimation procedure. It is parameterized by τ, the mass q of seats as well as the distributions of ability and costs in the various neighborhoods.

We first consider a one-neighborhood economy, highlighting the inefficiencies that arise as compared with the rational expectations equilibrium benchmark. We next explore a multi-neighborhood economy competing for the same seats in elite colleges, and importantly we impose that sampling is made within the neighborhood.

In our model with a continuum of students and no aggregate uncertainty, under rational expectations, students perfectly sort in each occupation based on their ability, and the equilibrium is efficient. Things are different in the sampling equilibrium. Two types of inefficiencies arise in the one-neighborhood case. First, some disadvantaged (i.e., with high rejection costs) students with ability above the admission threshold self-select out of elite colleges. Second, some advantaged students with ability below the required ability threshold apply to elite colleges but are rejected. This equilibrium mismatch is due to the fact that students with ability below the required threshold ability who apply and get rejected induce a strategic externality on high-achieving students by distorting their perceived admission chances downward, and con-
versely students with ability above the required ability threshold who apply and get accepted induce a strategic externality on low-achieving students by distorting their beliefs upward. These strategic externalities arise because of the combination of rationing at elite colleges and the non-rational character of expectations, which leads both high and low ability students to rely on average-ability peers with different admission results to compute their admission chances. By contrast, there is no rationing on the labor market, hence there are no payoff-relevant distortions for students in the assessment of this alternative. See Figure 1 for a graphical representation of the rational expectations equilibrium and the local sampling equilibrium. We observe that the local sampling equilibrium moves gradually toward the rational expectations equilibrium, as one reduces the size τ of the samples. At the other extreme, when τ is large, all students have the same expectation about the admission chances irrespective of their type. The sampling procedure can be

Figure 1: The x-axis represents students’ cost, the y-axis represents ability, and the z-axis is the population density. There are two occupations: H are elite colleges that have limited capacity, and L are jobs with no qualifications. (Left) Allocation of students to occupations in a rational expectations equilibrium. (Right) Allocation of students to occupations in a local sampling equilibrium. The shaded areas represent students who are mismatched: the top-right square corresponds to high-achieving disadvantaged students who self-select in non-selective colleges; the bottom-left triangle corresponds to average-achieving advantaged students who apply to elite colleges but are rejected.
seen as inducing in students’ minds a kind of regression to the mean when assessing the link between ability and the admission chance, where the mean admission rate is endogenously determined by the application strategy of students.

We provide a complete characterization of the welfare and the average ability of admitted students in a local sampling equilibrium when abilities and costs are independently distributed and the number of seats is small, which fits in well the application to elite colleges (see Blair and Smetters (2021)). We observe among other findings that a higher variance in the ability distribution induces a higher welfare loss.

Our second main investigation concerns the study of competition across several neighborhoods where students across all neighborhoods compete for the same seats, but, as already mentioned, sampling takes place locally, separately in each neighborhood. Our main question of interest concerns how asymmetries across neighborhoods in the relative size and/or in the ability/cost distributions affect the welfare in the various neighborhoods as well as the average quality of admitted students. Such an extension is important to understand how the aggregate characteristics of a neighborhood shape the education decisions made locally, which has been shown empirically to play an important role (Case and Katz, 1991; Kling et al., 2007; Chetty et al., 2016; Chetty and Hendren, 2018a,b).³

Specifically, we consider a two-neighborhood environment, and we provide a complete characterization of the sampling equilibrium when the number of seats is small and abilities, and costs are independently distributed in each neighborhood.⁴ When the two neighborhoods share the same ability distribution, we note that the neighborhood with larger cost (i.e., the neighborhood with the cost distribution having lower density around 0) gets fewer seats per head than the neighborhood with smaller costs. We also establish

³Kling et al. (2007) found heterogeneous effects, with education outcomes improving for females, but degrading for males. Understanding these discrepancies across populations is an interesting avenue for further empirical and theoretical research.

⁴In the online appendix, we briefly investigate a case in which abilities and costs are not independently distributed, and we observe that such a correlation may open the door to the possibility of multiple equilibria, even assuming symmetry across neighborhoods. Such a multiplicity may explain the emergence of inequality across neighborhoods, even when these have identical ex ante characteristics.
that if one neighborhood is much bigger than the other one, the bigger neighborhood gets almost all seats per head irrespective of the compositions of the neighborhoods, thereby formalizing how minorities may be hurt in a sampling equilibrium.

We next study the effect on redistribution, welfare as well as the average quality of admitted students of standard policy instruments such as quotas or the mixing of neighborhoods. We establish that when neighborhoods differ only in the distribution of costs, these policies have no effect on total welfare, despite allowing for redistribution between neighborhoods. We next characterize when quotas are welfare-enhancing when the distributions of abilities differ across neighborhoods. In particular, we establish that reserving a number of seats in proportion to the size of the neighborhood is welfare-enhancing if the neighborhood with larger cost is the one with smaller ability variance — assuming an equal mean ability across neighborhoods. We also establish that quotas have a negative impact on the average ability of admitted students. Finally, we characterize the welfare impact of mixing, noting that in some cases mixing may be welfare-enhancing.

Related Literature At a methodological level, our model of belief formation can be viewed as offering a balance between strategic sophistication as usually considered in economics—which is at least partly empirically supported by some studies (Agarwal and Somaini, 2018)—and the embeddedness of students’ beliefs as usually considered in sociology. This is to be contrasted with the “undersocialized” view of an atomic agent that forms correct beliefs independently from her environment as well as the “oversocialized” accounts of expectation formation in which students mechanically inherit the beliefs of their parents or have social capital fully account for educational choices (the sociology literature has departed from this Bourdieusian view in the last 20 years, see for instance Aschaffenburg and Maas (1997)).

There is a growing empirical literature on expectation formation in education, broadly divided between beliefs on the returns to schooling and subjective admission chances.

5The distinction between undersocialized and oversocialized explanations is due to Granovetter (1985).
Very few papers investigate subjective admission chances, which is the focus of our paper. Most notably, Hastings and Weinstein (2008) show that providing information about school quality and odds of admission to low-income families with high-achieving students increases application to good schools. It is unclear, however, if the effect is driven by growing awareness about these schools or changing expectations. Kapor et al. (2020) directly elicit admission probabilities of students facing a centralized school choice mechanism that rewards strategic behavior. They find that households play strategically, but do so with miscalibrated beliefs. Belief errors, however, do not seem to correlate with observable characteristics such as race or economic status. Finally, Altmejd et al. (2020) show that older sibling’s enrollment in a better college increases a younger sibling’s probability of enrolling in college at all, especially for families with low predicted probabilities of enrollment.

The empirical literature on the perceived returns to schooling that is less directly related to our model has obtained mixed results. In Wisconsin, Dominitz and Manski (1994) find that the perceived returns from a Bachelor’s degree compared to a high school diploma are positive. In Chile, Hastings et al. (2015) show that low-achieving disadvantaged students who apply to low-earning college degree programs overestimate earnings for past graduates by over 100%, while beliefs for high-achieving students are correctly centered. Conversely in the Dominican Republic, Jensen (2010) find that the perceived returns to secondary school are extremely low, despite high measured returns.

The first theoretical model of non-rational expectation formation on the returns to schooling is due to Manski (1993). He postulates an additive log-income equation, and he assumes that students infer the returns to schooling by taking the conditional expectation of log-income. If students omit to condition on ability—e.g., because they do not observe the ability of their peers—he shows that more low-ability and less high-ability students enroll in college.\footnote{Streufert (2000) considers a related model in which students infer the returns to schooling from a distribution of income that is truncated. More precisely, successful children who are more likely to leave their (disadvantaged) neighborhoods are under-sampled by new children of such neighborhoods, thereby leading to a potential downward bias in the estimated returns to schooling among disadvantaged children. That paper shares with our}
Our model is different in that in our environment there is a strategic interaction across students due to the scarcity of seats in elite colleges, and students’ expectations concern their admission chances which are affected by the application strategy of other students. However, our analysis of the one-neighborhood case shares some similarity with Manski (1993), most notably when τ is large. Indeed, in this case, students consider the aggregate admission rate among all applications as their expectation, and this can be interpreted as students not observing the ability characteristics of students in the sample consisting of the entire neighborhood, similarly as in Manski (1993). Extending this to the heuristic with lower values of the window parameter τ (which is similar to the K-nearest neighbor heuristic) has no counterpart in Manski (1993), and it allows us to develop a framework where one can go smoothly from the rational expectations paradigm ($\tau = 0$) to the case in which students do not condition their admission chances on ability (τ large) as in Manski’s model. Clearly, the multi-neighborhood case considered in the later part of the paper and that contains our main insights in terms of policy implications, has no counterpart in Manski (1993).\footnote{Our model, like Manski (1993), can be viewed as developing an equilibrium approach to selection neglect. Other equilibrium approaches of selection neglect in various environments include Esponda (2008); Jehiel (2018); Frick et al. (2022).}

Our paper can be viewed as contributing to the recent literature on behavioral economics in education market design as recently surveyed in Rees-Jones and Shorrer (2023), even if that literature has mostly been concerned so far with explaining why students do not always report their true preferences in mechanisms (such as the Gale-Shapley student-preferred deferred acceptance mechanism) in which it is a (weakly) dominant strategy to report truthfully. By contrast, in our model there is no dominant strategy due to the presence of rejection costs and the non-rational aspect concerns the modelling of the expectations about the admission chances, as discussed above, a form of non-rational expectations not discussed in Rees-Jones and Shorrer (2023).

\footnote{Our model, like Manski (1993), can be viewed as developing an equilibrium approach to selection neglect. Other equilibrium approaches of selection neglect in various environments include Esponda (2008); Jehiel (2018); Frick et al. (2022).}
There is a vast literature on social learning illustrating that past cohorts’ behavior influences the expectations of current cohorts (Banerjee, 1992; Bikhchandani et al., 1992; Ellison and Fudenberg, 1995). These papers, however, typically assume that agents have enough prior information to infer the outcome of counterfactual actions using Bayes’ rule, which significantly differs from our non-rational expectation approach.

Finally, several papers in behavioral game theory have introduced various departures from the rational expectation hypothesis. These include among others the cursed equilibrium Eyster and Rabin (2005), the analogy-based expectation equilibrium (Jehiel, 2005), the Berk-Nash equilibrium Esponda and Pouzo (2016) or the Bayesian Network Equilibrium (Spiegler, 2016). The spirit of our approach is maybe closest to Jehiel (2005) who introduces a model of coarse expectations in which players bundle situations to form expectations about other players’ behaviors. In equilibrium, players best-respond to their analogy-based expectations, and expectations correctly represent the average behavior in every class. Our paper is based on a different learning rule where students average the outcome of an endogenously chosen group of players and do not assess others’ behaviors directly but only indirectly through the admission chances, whereas in Jehiel (2005) players average the behaviors of an exogenously given bundle of situations using past observations from an exogenously given group of players (see however Jehiel and Mohlin (2022) for a model that endogenizes the analogy classes of Jehiel (2005) based on a similar bias-variance trade-off as the one used to motivate our sampling heuristic, see also Mohlin (2014) on the bias-variance trade-off).

2 Setup

We introduce a stylized model of career choice with strategic students and rationing at elite colleges. In this Section, we consider a single neighborhood. Extension to more neighborhoods will be considered in the next Section. In this part, we normalize the mass of students to be 1 and we let \(q \) be the mass of seats at elite colleges. Students are indexed by their ability \(\theta \in [\theta_l, \theta_u] \subseteq \mathbb{R} \), and by their cost \(c \in [\tilde{c}, \bar{c}] \subseteq \mathbb{R}_+ \). There is a probability distribution \(F \) on
\(N \equiv [\theta, \bar{\theta}] \times [c, \bar{c}] \) with continuous density \(f \) that has full support.

Students choose among two occupations: going directly on the labor market (or a non-selective vocational training) \(L \), or applying to selective colleges \(H \). The utility of attending an elite college is \(U^H(\theta) = \theta \), whereas we assume that the utility of going directly on the labor market is \(U^L(\theta) = 0 \) for all \(\theta \).

Students can apply to only one occupation: the action space is then \(A = \{L, H\} \). There is no rationing for going on the labor market. Elite colleges, however, have a limited number of seats and they select students with the highest ability (among the pool of applicants) up to their capacity \(q \ll 1 \).\(^8\)

The payoffs are as follows:

- If student \((\theta, c)\) goes on the labor market \(L \) her utility is \(0 \).
- If student \((\theta, c)\) applies to \(H \) and obtains a seat, her utility is \(\theta \).
- If student \((\theta, c)\) applies to \(H \) but does not get a seat, she goes on the labor market and her utility is \(-c \).

Even though we have formulated the model in terms of rejection costs only, the same model can easily accommodate other forms of costs, i.e. application costs and/or tuition fees in case of admission by appropriately re-defining the variables. Specifically, refer to \(c_a \) as the application cost, \(c_f \) as a tuition fee to be paid in case of acceptance and \(c_r \) as a rejection cost to be paid only in case of rejection as formulated above. By identifying \(\theta \) in the main model with \(\theta - c_a - c_f \) and \(c \) with \(c_a + c_r \), it readily verified that the more general model can be reduced to the simplified formulation adopted above.

Since \(c \) in our model can be the viewed as reflecting either rejection costs or application costs, it is of interest to motivate why these costs may be (subjectively or objectively) significant in practice. Strictly speaking, the application costs in US universities are relatively small (most newspapers report an average fee of \$50\) and waivers are widely available. Yet, for some less advantaged households, it may not be known how to obtain the waivers and these costs, even if small, may be enough to deter a number of applications.

\(^8\)Our results are unchanged if colleges only receive a noisy signal about students’ ability, as long as students know the signal used for selection purposes (for example, think of the signal as the student’s performance in past exams).
whose success is (subjectively) considered to be unlikely.\footnote{With this interpretation in mind, a higher cost in our model should clearly be associated with being less advantaged.} Opportunity costs are objectively more significant in the US context, with universities weighing students’ academic record, extracurricular activities, athletic activities, etc. all of which take years of preparation and significant effort.

In France, application costs to elite institutions are similarly small, and automatically waived for disadvantaged students. By contrast, opportunity costs are quite high as students need to enroll in Classes Préparatoires during two years. Failing admission to STEM oriented schools (such as Polytechnique or Ecole Normale Superieure) would imply a lost opportunity to prepare for business schools (such as missing the opportunity to get into HEC business school), which would translate in high rejection costs in our model.\footnote{To some extent, the same applies to the Prep school in the UK.}

In Japan, some national universities such as Tokyo University explicitly prevent students from applying to competing universities of nearby ranking. After a national placement test (known as senta shiken), students need to prepare for university-specific entry exams (known as niji shiken), translating again in our model in a significant opportunity cost.

Getting back to our model, we will assume for simplicity that $\theta \geq 0$ so that if a student were sure of being accepted he would always apply irrespective of θ. We will assume for most of our analytical results and for tractability reasons that θ and c are independently distributed (even if we start the presentation of the model and present some preliminary results without this extra assumption).

Formally, a strategy profile $\sigma : N \rightarrow \Delta A$ is a (measurable) function mapping the set of types into application probabilities. We let $\sigma(\theta, c) \in [0, 1]$ denote the probability that student (θ, c) applies to H.

A key object that drives the choice of student (θ, c) is the subjective probability this student assigns to obtaining a seat at an elite college conditional on applying to H. In both the rational case and our approach, this subjective probability turns out to depend only on θ and we denote it by $p(\theta)$ accor-
ingly. Based on $p(\theta)$, student (θ, c) applies to H whenever
\[p(\theta)\theta - (1 - p(\theta))c \geq 0 \]

This leads to the following definition of an optimal strategy profile.\(^{11}\)

Definition 1. σ is optimal given subjective beliefs $p(\cdot)$ if
\[
\sigma(\theta, c) = \begin{cases}
1 & \text{when } c \leq \frac{p(\theta)}{1 - p(\theta)} \theta \\
0 & \text{when } c > \frac{p(\theta)}{1 - p(\theta)} \theta
\end{cases}
\]

For any strategy profile, let $\theta(\sigma)$ denote the cutoff at H such that any student with ability $\theta > \theta(\sigma)$ who applies to H is admitted. It is defined as follows: $\theta(\sigma) = \bar{\theta}$ when
\[
\int_{\tilde{\theta}}^{\bar{\theta}} \int_{\xi}^{\bar{\xi}} \sigma(\theta, c) f(\theta, c) \, dc \, d\theta < q
\]
Otherwise, $\theta(\sigma)$ is uniquely defined as the largest θ^* such that
\[
\int_{\theta^*}^{\bar{\theta}} \int_{\xi}^{\bar{\xi}} \sigma(\theta, c) f(\theta, c) \, dc \, d\theta = q
\]

Subjective beliefs are rational when they are consistent with the admission cutoff, given the strategy profile.

Definition 2. $p^R(\cdot)$ is rationally consistent with σ if
\[
p^R(\theta) = \begin{cases}
1 & \text{when } \theta \geq \theta(\sigma) \\
0 & \text{when } \theta < \theta(\sigma)
\end{cases}
\]

Therefore, the rational expectations equilibrium is defined as follows.

Definition 3 (Rational Expectations Equilibrium). σ^R is a rational expectations equilibrium if there exist subjective beliefs p^R such that σ^R is optimal given p^R and p^R is rationally consistent with σ^R.

\(^{11}\)For completeness, we assume that the student applies to H when indifferent, but how indifferences are resolved plays no role in the analysis.
Let us now characterize the unique rational expectations equilibrium—thus proving existence. Given the strategy profile \(\sigma \) and the consistency of beliefs, it is optimal to apply to \(H \) for all students with ability \(\theta > \theta^* \) where \(\theta^* = \theta(\sigma) \) as defined above. It follows that in a rational expectations equilibrium, the admission cutoff \(\theta^* \) solves

\[
\int_{\theta^*}^{\theta^*} \int_{c}^{c} f(c, \theta) \, dc \, d\theta = q \iff \theta^* = H^{-1}(1 - q)
\]

where \(H \) denoted the cdf of the marginal distribution of \(\theta \). In other words, the equilibrium allocation of students to occupations can be described by the cutoff strategy consisting in applying to \(H \) whenever \(\theta \) is higher than \(H^{-1}(1 - q) \). This yields the following Proposition whose proof as well as all other proofs appear in Appendix:

Proposition 1 (Equilibrium Characterization). In the unique rational expectations equilibrium, students \(N^H = \{(\theta, c) : \theta > H^{-1}(1 - q)\} \) obtain a seat at elite colleges, and \(N^L = N \setminus N^H \) go on the labor market.

The rational expectations equilibrium induces perfect assortative matching as students sort across occupations based on their ability. Namely, high-achieving students (those with ability \(\theta \) above \(\theta^* \)) go to elite colleges, and low-ability students (those with ability \(\theta \) below \(\theta^* \)) go on the labor market. No student applying to \(H \) gets rejected. See Figure 1 (Left) above for a graphical illustration of the equilibrium.

Define welfare as

\[
W(\sigma) = \int_{\theta^*}^{\theta^*} \int_{c}^{c} c^H(\theta, p(\theta)) \, dc \, d\theta - \int_{\theta^*}^{\theta^*} \int_{c}^{c} c^H(\theta, p(\theta)) \, dc \, d\theta
\]

where \(c^H(\theta, p(\theta)) \) is the cost below which student \((\theta, c) \) applies to \(H \) conditional on admission chances \(p(\theta) \). The first term describes the welfare of admitted students. The second term reflects the welfare of rejected applicants while the welfare of non-applicants is 0.
Define next the average quality of the admitted students as

\[M(q) = \frac{\int_{\theta^*}^{\theta} \int_{c^*}^{c^*} e^{H(\theta, p(\theta))} \theta f(\theta, c) \, dc \, d\theta}{\int_{\theta^*}^{\theta} \int_{c^*}^{c^*} e^{H(\theta, p(\theta))} f(\theta, c) \, dc \, d\theta} \]

In the rational expectation equilibrium, \(c^H(\theta, p(\theta)) = z \) for all \(\theta \geq H^{-1}(1 - q) \) and \(c^H(\theta, p(\theta)) = c \) for all \(\theta < H^{-1}(1 - q) \); no applicant gets rejected and the welfare optimal allocation of students is achieved.

3 Expectation Formation and Belief Traps

In this section we introduce a simple model of expectation formation based on extrapolations and sampling, and we show, among other things, how it leads to persistent belief distortions and suboptimal application decisions.

Students have no prior over the distribution of admissions conditional on applications. Instead, students non-parametrically estimate their chance of being accepted by averaging the acceptance outcome of a sufficient mass \(\tau \) of their peers who applied to elite colleges and who are closest to them in terms of ability. We think of the heuristic used by students as the continuous analog of the K-nearest neighbors algorithm that is routinely used in statistics as a way to handle the bias-variance trade-off. We also believe it represents a plausible heuristic for choices made by human beings in line with considerations developed in Gigerenzer and Brighton (2009).

Formally, let \(B(N) \) denote the set of measurable subsets of \(N \).

Definition 4. The sample for action \(H \) of student \((\theta, c)\) conditional on a strategy profile \(\sigma \) (from the previous generation) is

\[S(\theta, c \mid \sigma) = \arg \inf_{B \in B(N)} \left\{ \int_B \mid \theta - \bar{\theta} \mid \, dF(\bar{\theta}, \bar{c}) : \int_B \sigma(\bar{\theta}, \bar{c}) \, dF(\bar{\theta}, \bar{c}) \geq \min(\tau, \tau(\sigma)) \right\} \]

where \(\tau(\sigma) = \int_N \sigma(\bar{\theta}, \bar{c}) \, dF(\bar{\theta}, \bar{c}) \) is the total mass of students applying to \(H \).

In words, \(S \) is the set with mass \(\tau \) of students applying to \(H \) and having ability closest to \(\theta \). There is a convex penalty of including students with dissimilar ability, hence the sample \(S(\theta, c \mid \sigma) \) is rectangular and it can be
described by a simple index:

\[b(\theta, \sigma) = \inf \left\{ b > 0 : \int_{\min(\tilde{\theta} - b, \theta - b)}^{\max(\tilde{\theta} + b, \theta + b)} \sigma(\tilde{\theta}, \tilde{c}) \, dF(\tilde{\theta}, \tilde{c}) \geq \tau \right\}. \]

This means that the sample for action \(H \) of student \((\theta, c)\) is obtained by taking all applicants with ability \(\theta' \in [\theta - b(\theta, \sigma), \theta + b(\theta, \sigma)] \) regardless of their cost. See Figure 2 below for a graphical illustration.

We can now define subjective admission chances. As in the previous section, we denote by \(\theta(\sigma) \) the admission cutoff at elite colleges given the strategy profile \(\sigma \). The subjective admission chances at elite colleges \(H \) are obtained by averaging the experiences of the students in the sample.

Definition 5. Subjective admission chances at elite colleges \(p \) are \(\tau \)-consistent with \(\sigma \) if\(^{12} \)

\[p(\theta) = \frac{1}{\min(\tau, \tau(\sigma))} \int_{S(\theta, c|\sigma)} \sigma(\tilde{\theta}, \tilde{c}) 1\{\tilde{\theta} > \theta(\sigma)\} \, dF(\tilde{\theta}, \tilde{c}). \]

We now introduce our solution concept, the local sampling equilibrium, which requires optimality of actions and consistency of beliefs.

Definition 6 (Local Sampling Equilibrium). \(\sigma \) is a local sampling equilibrium if there exists \(p \) such that \(\sigma \) is optimal given \(p \) and \(p \) is \(\tau \)-consistent with \(\sigma \).

We interpret this solution concept as the steady state of an intergenerational model of learning in which students of the current generation ask peers from the previous generation about the outcome of their application. Therefore, this sample is completely endogenous as it depends on the strategy profile of the previous generation. Importantly, students know nothing ex-ante about the admission process: it could be either because schools do not disclose their admission criteria, or because students lack the ability to understand the admission process, or because they do not trust publicly disclosed information. Therefore, students entirely rely on the information provided by their social network. Of course, this is a stylized assumption and in

\(^{12}\) If a mass of students less than \(\tau \) chooses \(H \), then we divide by \(\int_B a^k(\tilde{\theta}, \tilde{c}) \, dF(\tilde{\theta}, \tilde{c}) \) instead of \(\tau \).
practice we expect students to use a mix of information sources to form their expectations.

We made two assumptions on the learning process. First, students care about the precision of their estimate hence they must acquire a sufficient amount of data for each action. Formally, this means that students ask a mass $\tau \in (0, 1]$ of students from the previous generation, where τ is interpreted as a confidence parameter. This parameter captures a bias-variance trade-off: if the sample it too small then subjective admission chances are unbiased because they are computed using students with similar ability, but the estimator is noisy.\(^{13}\) Conversely, if the sample is too large then subjective admission chances are precisely estimated but they are more likely to be biased.

Second, students contact in priority peers with similar ability. This can be justified on the ground that if students know that the admission probability is somewhat correlated with their ability, then they might reduce bias by asking peers with similar ability.\(^{14}\) From another perspective, one can view our sampling technology as the one inducing the smallest distortions away from rationality, so that any inefficiency identified within our setup is likely to persist with alternative sampling specifications. In the online Appendix, we briefly discuss the case when bundling is made on similarity in c, and we illustrate how extra inefficiencies would arise in this case.

Note that students include in their sample only peers who actually applied to H in the previous period. Therefore, students make no inference using counterfactual outcomes—i.e., they are not asking their peers “What would have been your admission chances at x conditional on applying there?”. Who is included in the sample is endogenous and typically differ for each student, even though sample size is identically equal to τ for each student. Concretely, the perimeter of the sample for H of low-ability disadvantaged students is very large because no close ties ever apply to H. Therefore, they will need

\(^{13}\)This is a reduced-form interpretation because there is no actual noise in the estimate as students sample from a continuum of peers.

\(^{14}\)Alternatively, one can view this assumption as reflecting the hypothesis that prior to applying to colleges, students have been grouped according to their ability, thereby leading to ties more naturally linked to ability.
to ask high-achieving peers who have very different characteristics which induce a large bias in the subjective admission chances. In general, a larger perimeter implies a larger bias because the sample includes students with very different characteristics, whereas a smaller perimeter implies a smaller bias.

Existence. We apply a fixed point argument on the mapping from subjective beliefs $p : \Theta \rightarrow [0, 1]$, to best-responses σ as derived from Definition 1, compounded with the mapping from strategies σ to subjective beliefs as derived from Definition 5. The fixed point exists if each sub-map is continuous. It is easy to see that the best response σ has a threshold structure that varies continuously with p. Moreover, the sample bounds $b(\theta, \sigma)$ are continuous in the strategy profile σ, and so are subjective beliefs p. This shows the existence of a pure strategy local sampling equilibrium (see the Appendix for details). In general, we are not able to prove the uniqueness of a sampling equilibrium (even if this will be shown to be the case when q is small enough and θ and c are independently distributed).

Equilibrium Characterization. In the characterization below we make the simplifying assumption that cost and ability are independently distributed, i.e., $f(\theta, c) = h(\theta)g(c)$ and we denote by H and G the cumulative distributions of f and g, respectively. Fixing ability and the subjective admission chances, students who apply to H have a cost $c < c^H(\theta, p(\theta))$ where

$$c^H(\theta, p(\theta)) = \frac{p(\theta)}{1 - p(\theta)} \theta.$$

The total mass of applicants to H is then:

$$\int_{\theta} \int_{c} f(\theta, c) \, dc \, d\theta.$$

In a local sampling equilibrium, the ability of the last student admitted to H, denoted θ^*, is such that the mass of applicants at H is equal to the capacity
Let us now derive the equation that guarantees \(\tau \)-consistency of subjective admission chances. The subjective admission chances of student \((\theta, c)\) are \(\tau \)-consistent if they solve the following equation:

\[
p(\theta) = \frac{1}{\min(\tau, \tau(\sigma))} \int_{\min(\sigma, \theta+b(\theta, \sigma))}^{\min(\sigma, \theta+b(\theta, \sigma))} \int_{\max(\theta-b(\theta, \sigma), \theta-\theta(\sigma)-b(\theta, \sigma))}^{\max(\theta-b(\theta, \sigma), \theta-\theta(\sigma)-b(\theta, \sigma))} \frac{p(\theta)}{1-p(\theta)} \theta \ d\theta = q
\]

where \(b(\theta, \sigma) \) is derived as explained above. With our independence assumption, this can be rewritten as:

\[
p(\theta) = \frac{1}{\min(\tau, \tau(\sigma))} \int_{\min(\sigma, \theta+b(\theta, \sigma))}^{\min(\sigma, \theta+b(\theta, \sigma))} \int_{\max(\theta-b(\theta, \sigma), \theta-\theta(\sigma)-b(\theta, \sigma))}^{\max(\theta-b(\theta, \sigma), \theta-\theta(\sigma)-b(\theta, \sigma))} G\left(\frac{p(\theta)}{1-p(\theta)} \right) \mathbf{1}\{ \hat{\theta} > \theta^* \} \ dH(\hat{\theta})
\]
where
\[
\tau(\sigma) = \int_{\min\{\theta, \theta + b(\theta, \sigma)\}}^{\max\{\theta, \theta - b(\theta, \sigma)\}} G\left(\frac{p(\tilde{\theta})}{1 - p(\tilde{\theta})}\right) dH(\tilde{\theta})
\]

In equilibrium, θ^* must solve (1) given $p(\theta)$, and $p(\theta)$ must solve (2) for all students (θ, c) given θ^*.

We can now compare equation (1) with the equation that defines the last student admitted to H in a rational expectations equilibrium:
\[
\int_{\theta^*}^{\bar{\theta}} h(\theta) d\theta = q.
\] (3)

If there are students with sufficiently high costs—e.g. if g has full support on \mathbb{R}_+—any small belief distortion in equation (2) will induce self-selection among disadvantaged students: $c > c^H(\theta, p(\theta))$. Then, the term under the integral sign in (1) is smaller than in (3) because $G(c^H(\theta, p(\theta))) < 1$ as $c^H(\theta, p(\theta)) < c \leq \tau$. Therefore, the ability of the last admitted student at H in a local sampling equilibrium θ^* must be smaller than in a rational expectations equilibrium to fill all the seats in equation (1).

We just proved that two types of inefficiencies arise in a local sampling equilibrium: high-achieving disadvantaged students self-select out of elite colleges even though their actual admission probability is one, and low-achieving advantaged students spend inefficient resources in applications at elite colleges even though their actual admission chances are zero. See Figure 1 in the introduction for a graphical representation of the two inefficiencies.

Proposition 2 (Equilibrium Characterization). Suppose that g has full support on \mathbb{R}_+ and assume ability and cost are independent. For all $q < 1$ there exists $\theta^* \in (0, 1)$ and $(\sigma(\theta), p(\theta))$ that solve (1) and (2) such that in this local sampling equilibrium students $N_H = \{(\theta, c) : \theta > \theta^*, c \leq c^H(\theta, p(\theta))\}$ obtain a seat at elite colleges and $N_L = N \setminus N_H$ go on the labor market. In a sampling equilibrium characterized by the admission threshold θ^*, there are two types of inefficiencies:

1. Missed opportunities: all students (θ, c) with ability $\theta > \theta^*$ and cost $c > c^H(\theta, p(\theta))$ self-select out of elite colleges.
2. **Inefficient applications:** all students \((\theta, c)\) with ability \(\theta < \theta^*\) and cost \(c < c^H(\theta, p(\theta))\) apply to \(H\) but are rejected and suffer a cost \(-c\).

Observe that compared to the rational expectations equilibrium both the supply side and the demand side suffer from inefficiencies. On the supply side, belief distortion arises endogenously and leads to payoff-relevant mistakes for high-achieving students and low-achieving advantaged students. On the demand side, the quality of the pool of admitted students at elite colleges is lower than with rational expectations due to equilibrium mismatch.

We also note that in a sampling equilibrium, high ability students are overly pessimistic about their chances of success, and low ability students are overly optimistic. Further empirical studies should explore the validity of these predictions.

In our model, we assumed that the mass of students was 1. When the mass of students is \(m\), the same analysis as above applies replacing the mass of seats \(q\) by \(q/m\) and the window threshold \(\tau\) by \(\tau/m\). Keeping \(q/m\) and \(\tau\) constant while varying \(m\) would thus lead in our model to consider the comparative statics as \(\tau\) varies. Clearly, when \(m\) grows very large, it corresponds in our model (with normalized population size) to the case in which \(\tau\) tends to 0 and then students form their expectations using an infinitesimal sample of individuals. As it turns out, in our model this leads to rational expectations because students do not bias their estimate with dissimilar ability students and admission rate depends only on ability. Indeed, taking the limit \(\tau \to 0\) of the implicit equation (2) we can see that if \(\theta < \theta^*\) then there is \(\tau^*\) small enough such that \(\theta + b(\theta, \sigma) < \theta^*\) and \(\theta - b(\theta, \sigma) < \theta^*\). Therefore, the integral in (2) is zero, and we have \(p(\theta, c) = 0\). Similarly, one can verify that for all \(\theta > \theta^*\), \(p(\theta, c) = 1\). Therefore, only the best students (with \(\theta > \theta^*\)) apply to elite colleges and the last student admitted in a local sampling equilibrium coincides with that of the rational expectations equilibrium.

Moving away from the limit \(m = \infty\), students would not form expectations using one data point, formalized in our model by assuming that \(\tau\) is strictly positive, away from 0. Obviously, belief distortions decrease with \(m\) (or increase with the confidence level \(\tau\) in our normalized model) because students include peers with more different characteristics in their sample.
Figure 3: (Left) Subjective admission chances as a function of student ability. Bias in subjective beliefs increases with the confidence parameter τ. (Right) Density of applicants to H as a function of student ability. As τ increases, the admission cutoff $\tilde{\theta}^*$ decreases, the number of self-selecting students (on the right of the cutoff) increases and the number of inefficient applicants (on the left of the cutoff) increases as well.

Hence bias in the estimate stems from a selection bias that increases with τ. When τ becomes so large that students include the entire population in their sample, the subjective beliefs of the entire population converge to the same aggregate admission rate. This will arise when we consider the limit of a small q as then the number of students applying will be small leading students to consider the entire population of applicants (the mass of it will fall short of τ, irrespective of τ when q is small enough).

The comparative statics with respect to τ in our model with normalized population size is illustrated for the case in which θ and c are uniformly distributed on $[0,1]$ in Figure 3 (Left). In this case, our simulations reveal that there is a unique local sampling equilibrium for all τ. Figure 3 (Right) illustrates the two types of inefficiencies that arise in a local sampling equilibrium. We see that as the confidence parameter τ increases, the admission cutoff $\tilde{\theta}^*_\tau$ decreases. Subjective beliefs, however, move smoothly around this threshold hence the mass of student who apply to H with an ability that is below the cutoff $\tilde{\theta}^*_\tau$ is positive (inefficient applications), and the mass of stu-
Proposition 3. As τ converges to 0, the local sampling equilibrium converges to the rational expectations equilibrium. Assuming there is a unique local sampling equilibrium for all τ, a higher confidence parameter τ leads to more self-selection from high-achieving disadvantaged students and to more inefficient applications from low-achieving advantaged students.

Comments.

1. When τ is so large (i.e. larger than 1) that students estimate their admission chances to be the aggregate admission rate in the entire neighborhood irrespective of their ability, an alternative interpretation of the sampling equilibrium is that students do not observe the ability of their peers leading them to consider the aggregate admission rate in the entire population to form their estimate. This is the scenario considered by Manski (1993) in a model focused on returns to schooling. Our heuristic procedure for more general τ — which is in the spirit of the K nearest neighbor algorithm — allows us to go smoothly from such a limit scenario to the rational expectations scenario by varying τ from 1 (or more) to 0.

2. The inefficiencies identified in a sampling equilibrium would not be the same if students had access to the counterfactual information of the admission outcome of those students who do not apply (still assuming that students consider a mass τ of students as close as possible to their own ability to form their expectations). Indeed, the fact that students only consider the pool of applicants implies that the bias is bigger when fewer students with nearby ability types apply. As a result, the bias is smaller for very large θ students than for very low θ students. This implies that the missed opportunities (those $\theta > \theta^*$ who do not apply) concern more the students with ability not too far away from θ^* as compared with the inefficient applications (those $\theta < \theta^*$ who apply and get rejected) which concern also low θ students. This can be seen in
Figure 3 where the slope of the subjective admission chance is steeper for θ above θ^* than it is for θ below θ^*.

3. The conclusion that as τ converges to 0, the rational expectations equilibrium obtains would not hold if students were to sample in priority peers with similar cost c as opposed to peers with similar ability θ (this can be inferred from the observation that in such a case, subjective beliefs would depend on c when in reality they depend on θ, see the online Appendix for details).

3.1 Small Number of Seats

In all the formal results to be developed next, we assume that the number q of seats is small, which fits in well with the the consideration of elite colleges (Blair and Smetters, 2021). The assumption that q is small is not only plausible for this application, but it also allows us to provide closed form approximations to the sampling equilibrium when θ and c are assumed to be independently distributed with a smooth joint density $f(\theta, c) = h(\theta)g(c)$ having full support on $[0, 1] \times [0, 1]$.\(^{15}\)

We first note that in the limit as q tends to 0, the mass μ of students applying to elite colleges must also converge to 0. This is true in the rational expectation case but also when τ is large so that it leads students to consider the aggregate acceptance rate, and it can be shown to apply to any intermediate value of τ.\(^{16}\) Given this observation, it follows that for a fixed τ, when q is small enough, students make their choice whether or not to apply to H based on the aggregate acceptance rate p, and (θ, c) applies to H iff $c < \frac{p}{1-p} \theta$.\(^{17}\) The

\(^{15}\)A closed form solution to the sampling equilibrium would be hard to obtain outside this limit.

\(^{16}\)This can be established as follows. Suppose by contradiction that the mass $\mu(q)$ of applicants is no smaller than $\mu^* > 0$ for all q. Then it is readily verified that for all θ, $p(\theta)$ should tend to 0 as q tends to 0 (since $p(\theta) < \frac{q}{\min(\mu^*, \tau)}$ and $\frac{q}{\min(\mu^*, \tau)} \to 0$ as $q \to 0$).

Since a student with ability θ would only apply if $c < \frac{p(\theta)}{1-p(\theta)} \theta$ and $G(\frac{p}{1-p} \theta)$ tends to 0 as p tends to 0, we would have that $\mu(q) = \int_0^1 G \left(\frac{p(\theta)}{1-p(\theta)} \theta \right) h(\theta) \, d\theta$ tends to 0 as q tends to 0, leading to a contradiction.

\(^{17}\)Given that p is small, the analysis presented here would be unchanged in the case in which c would be an application cost instead of a rejection cost (this follows because p and $\frac{p}{1-p}$ are the same at the first order).
fixed point determination of \(p \) in turn implies that

\[
p = q / \int_0^1 h(\theta) G \left(\frac{p}{1-p} \theta \right) d\theta.
\]

In the next Proposition, we establish that the sampling equilibrium is unique when \(q \) is small enough and we provide approximations to \(\theta^*(q) \), \(p(q) \) as well as the welfare \(W(q) \) and the average ability of admitted students \(M(q) \) in terms of \(q \) for arbitrary densities \(h \) and \(g \).

Proposition 4. When \(q \) is small, there is a unique sampling equilibrium. Moreover

\[
\begin{align*}
p(q) &= \left(\frac{q}{g(0)E(\theta)} \right)^{1/2} + o(q^{1/2}) \\
\theta^*(q) &= 1 - \frac{1}{h(1)} \left(\frac{E(\theta)q}{g(0)} \right)^{1/2} + o(q^{1/2}) \\
W(q) &= \left(1 - \frac{E(\theta^2)}{2E(\theta)} \right) q + o(q) \\
M(q) &= 1 - \frac{1}{2h(1)} \left(\frac{E(\theta)q}{g(0)} \right)^{1/2} + o(q^{1/2})
\end{align*}
\]
Note that in the first-best (or rational expectations) case, we have

\[
\begin{align*}
p^{FB} &= 1 \\
\theta^{FB}(q) &= 1 - \frac{q}{h(1)} + o(q) \\
W^{FB}(q) &= q + o(q) \\
M^{FB}(q) &= 1 - \frac{q}{2h(1)} + o(q)
\end{align*}
\]

Compared to the first best, we note that in the sampling equilibrium the admission cutoff, the welfare and average quality are smaller. The welfare loss is proportional to \(\frac{E(\theta^2)}{2E(\theta)}\), meaning that it is larger when the distribution of ability is skewed towards high ability students. This is due to the fact that equilibrium mismatch is more costly (from a welfare perspective) when there are more high ability students. We observe that the welfare is always increasing in the number of seats. By contrast, the average ability is always decreasing in the number of seats, as expected. In a sampling equilibrium, the average quality decreases faster than in a rational expectation equilibrium, since we deviate from 1 by \(\sqrt{q}\) which is greater than \(q\) for small values of \(q\). The drop in average quality is also proportional to \(\sqrt{E(\theta)}\) in a sampling equilibrium, whereas it is independent from the type distribution in a rational expectation equilibrium. For comparison, we plot the welfare and the average quality as a function of seats \(q\) in a sampling equilibrium and a rational expectation equilibrium for a uniform distribution.

4 **Competing Neighborhoods**

We consider now the case of multiple neighborhoods competing for the same positions. The neighborhood plays a role only in shaping the samples from which students form their subjective assessment, as we assume the sampling is made locally (only within the neighborhood to which the student belongs). The fact that students from the various neighborhoods compete for the same seats creates a linkage between the various neighborhoods as the threshold ability \(\theta^*\) above which students get admitted has to be the same across neighborhoods. This linkage in turn induces externalities across neighborhoods.
the effects of which are the main subject of interest of this Section.

To formalize the questions of interest, consider a two-neighborhood setup. Neighborhood \(n \in \{1, 2\} \) consists of a mass \(m_n \) of students with \((\theta_n, c_n)\). We let \(f_n(\theta_n, c_n) \) denote the mass-normalized distribution of \((\theta_n, c_n)\). That is, \((\theta_n, c_n)\) is distributed according to \(m_n f_n(\theta_n, c_n) \). And we let \(\tau_n \) denote the sampling window in neighborhood \(n \).

Consider first neighborhood \(n \) in isolation, assume there is a mass \(q_n \) of seats available for students in this neighborhood and that students follow strategy \(\sigma_n \) (\(q_n \) will be endogenized in equilibrium). We let \(\theta(\sigma_n, q_n) \) be the corresponding threshold admission ability in this neighborhood. It is computed as shown in Section 3 using there the mass-normalized mass of seats \(q_n / m_n \) and the mass-normalized sampling window \(\tau_n / m_n \). An equilibrium is formally defined as follows.

Definition 7. A local sampling equilibrium with competing neighborhoods \(n \in \{1, 2\} \) (with characteristics \(f_n \) and \(\tau_n \)) and total mass \(q \) of seats is a strategy profile \((\sigma_1, \sigma_2)\) such that there exist \(q_1, q_2 \) satisfying

1. \(\sigma_n \) is a local sampling equilibrium in the neighborhood \(n \) with a mass \(q_n \) of seats;
2. \(q_1 + q_2 = q \) and,
3. \(\theta(\sigma_1, q_1) = \theta(\sigma_2, q_2) \).

We consider the case in which \(\theta \) and \(c \) are independently distributed in each neighborhood, i.e. \(f_n(\theta, c) = h_n(\theta) g_n(c) \) for \(n \in \{1, 2\} \). In the next proposition, we let \(q \) be small for a fixed ratio \(m_1 / m_2 \). In this case, students in neighborhood \(n \) consider the aggregate admission rate in neighborhood \(n \) to decide whether to apply to elite colleges. Formally, the aggregate admission rate in neighborhood \(n \) is given by \(p_n = \frac{q_n}{\mu_n} \) where \(\mu_n \) is the mass of applicants in neighborhood \(n \) and \(q_n \) is the mass of seats obtained in neighborhood \(n \). As in Section 2, a student in neighborhood \(n \) with characteristics \((\theta_n, c_n)\) applies to elite colleges whenever \(c_n < \frac{p_n}{1 - p_n} \theta_n \).
Proposition 5. As \(q \) gets small, the sampling equilibrium with competing neighborhoods is unique and characterized by

\[
q_i = \frac{m_i h_i(1) g_i(0) / E(\theta_i)}{m_1 h_1(1) g_1(0) / E(\theta_1) + m_2 h_2(1) g_2(0) / E(\theta_2)} q + o(q)
\]

\[
p_1 / p_2 = \frac{E(\theta_2) h_1(1)}{E(\theta_1) h_2(1)} + o(1)
\]

Proposition 5 allows us to see how the seats are distributed across neighborhoods as a function of the primitives \(m_i, g_i, h_i \). We can establish the following comparative statics:

- **When** \(h_1 = h_2 \) (same distribution of \(\theta_i \)), then \(p_1 = p_2 \) and \(q_1 / m_1 g_1(0) = q_2 / m_2 g_2(0) \). Thus, if \(g_1(0) > g_2(0) \), neighborhood 1 gets in relative share more seats than neighborhood 2. The neighborhood with a smaller opportunity cost (defined here as \(\arg \max g_i(0) = 1 \)) applies more to elite colleges and obtains relatively more seats.

- **When** \(h_1(1) = h_2(1) \) and \(g_1(0) = g_2(0) \), if \(E(\theta_1) > E(\theta_2) \), then \(p_1 < p_2 \) and \(q_1 / m_1 < q_2 / m_2 \). Namely, the neighborhood with a higher average quality is more pessimistic about admission chances and obtains fewer seats at elite colleges. This counter-intuitive result is explained by the fact that only the highest quality students from neighborhood 2 are admitted to elite colleges, raising the subjective admission chances in this neighborhood. The equilibrium effect is strong enough to have more students admitted from the neighborhood with lower average quality.

- **When** \(E(\theta_1) = E(\theta_2) \) and \(g_1(0) = g_2(0) \), if \(h_1(1) < h_2(1) \), then \(p_1 < p_2 \) and \(q_1 / m_1 < q_2 / m_2 \). The interpretation is similar to the previous case.

In the next proposition, we consider a different exercise in which neighborhood 1 is assumed to be very big in size \(m_1 \).

Proposition 6. We consider the limit \(q \to \infty, m_1 / m_2 \to 0 \) and \(m_1 \to \infty \) keeping fixed \(\tau_1 = \tau_2 = \tau \) as well as \(m_2 \) and \(h_i(\theta_i), g_i(c_i) \). In this limit, neighborhood 1 gets almost all seats per capita as compared with neighborhood 2. Moreover since welfare is increasing in \(q \) (locally around 0) as established in the one neighborhood case, neighborhood 1 is favored in terms of welfare per capita.
The intuition for this result is as follows. Neighborhood 1 is assumed here to be very big so that the sampling heuristic leads students in neighborhood 1 to form rational expectations in the limit. By contrast, neighborhood 2 is of more limited size leading students in this neighborhood to rely on the aggregate admission rate in that neighborhood to make their decisions whether to apply to elite colleges. The analysis in the previous section and the requirement that the admission threshold should be the same in both neighborhoods leads then to the result that the big neighborhood obtains most seats in relative share. This result can receive an interesting interpretation given that the neighborhood in our analysis is only used to determine the pool from which students make their sample. It shows that everything else being equal minority groups may be significantly hurt relative to majority groups simply due to the more biased estimate of minority students that results from minority students only sampling the minority group and thereby not seeing enough applicants with nearby characteristics in their observed pool.

Comment. In Proposition 6 we have assumed that the two neighborhoods used the same sample window τ, which has led us to consider the extreme case in which neighborhood 1 would have an infinitely bigger size than neighborhood 2. An alternative scenario leading to a similar insight is one in which the two neighborhoods are of comparable (say, equal) size, and one neighborhood through access to better aggregate statistics (maybe because exposed to more knowledgeable peers) has rational expectations while the other relies on the sampling heuristic. Within our model, this can be captured by requiring that $\tau_1 = 0$ and $\tau_2 = \tau > 0$ (while assuming the total number of seats is small as in Proposition 5). Following the same logic as in Proposition 6 one obtains that neighborhood 1 obtains almost all seats in the resulting equilibrium.

4.1 Policy Instruments

We discuss the effect of two possible policy interventions. The first one consists in imposing quotas, pre-defining the number of seats each neigh-
borhood. The second one consists in changing the compositions of the two neighborhoods by imposing some degree of mixing while leaving the equilibrium force determines the number of seats assigned to each neighborhood. When considering these interventions, we will discuss the effect in terms of welfare, in terms of expected quality of admitted students as well as a comparison of how the two neighborhoods benefit from the intervention.

Quotas. We investigate the effect on welfare of two types of quotas (assuming the mass q of seats is small and the two neighborhoods are of comparable size, i.e. Proposition 5 applies in the laissez-faire case). First, we consider allocating to each neighborhood a number of seats that is proportional to its size, i.e. $\frac{n_1}{m_1} = \frac{n_2}{m_2}$. Second, we consider reallocating seats to the neighborhood with the highest opportunity costs (defined here as the neighborhood with smaller cost density around 0).

Proposition 7. We assume that q is small enough and we consider the following policies:

1. Giving a number of seats to each neighborhood in proportion to its size is welfare improving compared to laissez faire if

$$\arg\min_i h_i(1)^2 g_i(0) = \arg\min_i \frac{E(\theta_i^2)}{E(\theta_i)}.$$

2. Giving more seats to the neighborhood with higher opportunity cost (interpreted as neighborhood $\arg\min_i g_i(0)$) is welfare improving compared to laissez faire if

$$\arg\min_i g_i(0) = \arg\min_i \frac{E(\theta_i^2)}{E(\theta_i)}.$$

Whether quotas are welfare improving or not depends only on the distribution of ability, not the distribution of costs. Moreover, if two neighborhoods have the same mean ability but one neighborhood has lower variance, reserving seats for this neighborhood is welfare improving.

19Total welfare is defined as the sum of welfare in the two neighborhoods.
In the next Proposition, we assume that the two neighborhoods have the same size and we establish that when the mass of seats \(q \) is small enough, assigning to each neighborhood the same mass of seats \(q/2 \) always deteriorates the average quality of admitted students as compared with the laissez faire.\(^{20}\)

Proposition 8. We assume that \(q \) is small enough and that the two neighborhoods are of equal size \(m_1 = m_2 = 1 \). Reserving the same mass of seats \(q/2 \) to each neighborhood reduces the average quality of admitted students.

The conventional wisdom is that quotas may deteriorate the quality of admitted students because without quotas, seats are allocated efficiently. This intuition holds true in the rational expectations paradigm in which the first-best allocation obtains. Somehow unexpectedly, the same conclusion that quotas have always a negative impact on the average quality of admitted students holds true also in our sampling equilibrium environment, despite the fact that seats are not allocated efficiently.

Of course, another effect of quotas is that the neighborhood receiving fewer per capita seats in laissez faire benefits in terms of relative welfare from a policy that assigns seats in proportion to the size of the neighborhood. Altogether, this observation together with Propositions 7 and 8 can be used to assess the pros and cons of quotas in a sampling equilibrium environment.

Mixed Neighborhoods. We investigate whether moving students from the high cost neighborhood to the low cost neighborhood (and vice versa) increases welfare. Unlike quotas which do not change students’ social network, this intervention exactly aims at reducing inequalities of social capital. We consider random reallocation, i.e. from two initial neighborhoods with distributions \(F_i \) and \(F_j \) we draw new neighborhoods from the following com-

\(^{20}\)Formally, the overall average quality of admitted students is defined as \(M = \frac{q_1 M_1 + q_2 M_2}{q_1 + q_2} \) where \(M_i \) is the average quality of admitted students in neighborhood \(i \) and as before \(q_i \) is the mass of seats in neighborhood \(i \).
pound distributions:

\[
\tilde{F}_i = \alpha F_i + (1 - \alpha) F_j \\
\tilde{F}_j = \alpha F_j + (1 - \alpha) F_i
\]

The parameter \(\alpha \) scales the equalization across neighborhoods: for \(\alpha = 1 \) there is no reallocation of students, and for \(\alpha = \frac{1}{2} \) the new neighborhoods have equal cost distributions. In order to preserve the independence while mixing, it should be that the heterogeneity is either only on \(g_i \) or only on \(h_i \).

Proposition 9.

1. If \(h_1 = h_2 \), then mixing has no effect on aggregate welfare for small enough \(q \).

2. If \(m_1 = m_2, g_1 = g_2 \), a complete mixing (i.e., \(\alpha = \frac{1}{2} \)) is welfare enhancing for small enough \(q \) whenever

\[
1 - \frac{E(\theta_1) + E(\theta_2)}{E(\theta_1) + E(\theta_2)}
\]

is no smaller than

\[
\frac{h_1(1)^2/E(\theta_1)}{h_1(1)^2/E(\theta_1) + h_2(1)^2/E(\theta_2)} \left(1 - \frac{E(\theta_1^2) - E(\theta_1^2)}{2E(\theta_1)} \right)
\]

\[
+ \frac{h_2(1)^2/E(\theta_2)}{h_1(1)^2/E(\theta_1) + h_2(1)^2/E(\theta_2)} \left(1 - \frac{E(\theta_2^2) - E(\theta_2^2)}{2E(\theta_2)} \right)
\]

3. If \(m_1 = m_2, g_1 = g_2, E[\theta_1] = E[\theta_2] \), and \(h_1(1) = h_2(1) \) then mixing has no effect on aggregate welfare.

4. If \(m_1 = m_2, g_1 = g_2, E[\theta_1] \neq E[\theta_2], E[\theta_1^2] = E[\theta_2^2] \), and \(h_1(1) = h_2(1) \) then aggregate welfare is monotonically increasing in mixing \(\alpha \).

Note that we maintain fixed either \(h \) or \(g \) across neighborhoods to preserve the independence between ability and cost in the compound distribution. We observe that mixing may sometimes be good for total welfare when the two neighborhoods have different distributions of ability. The result that when neighbors differ in average ability, then mixing has a positive effect on welfare may be viewed in the perspective of the Moving to Opportunity experiment showing that moving disadvantaged students to more advantaged neighborhoods improve college attendance and efficiency (Chetty et al., 2016; Chetty and Hendren, 2018a,b).

\[\text{Note that we maintain fixed either } h \text{ or } g \text{ across neighborhoods to preserve the independence between ability and cost in the compound distribution. We observe that mixing may sometimes be good for total welfare when the two neighborhoods have different distributions of ability. The result that when neighbors differ in average ability, then mixing has a positive effect on welfare may be viewed in the perspective of the Moving to Opportunity experiment showing that moving disadvantaged students to more advantaged neighborhoods improve college attendance and efficiency (Chetty et al., 2016; Chetty and Hendren, 2018a,b).}^{21}\]
5 Conclusion

We have introduced a model of expectation formation in an educational choice problem. Unlike the rational expectations framework, students were assumed to have no prior information and no prior belief as to how elite colleges admit students. We have assumed instead that students non-parametrically estimate the distribution of outcomes conditional on actions by averaging past experiences from a sufficient mass τ of applicants with nearby ability characteristics. Formally, we have introduced a new solution concept—the local sampling equilibrium—in which students best respond to their subjective expectations, and expectations are consistent with the average observation made in the sample viewed as sufficiently reliable and representative. We believe this provides a coherent framework for thinking of the strategic interactions between expectation formation and the social environment.

We have derived three main results. First, expectation formation leads to belief traps whereby relatively high ability disadvantaged students self-select out of elite colleges, and less able advantaged students take their seats at elite colleges. This is due to the fact that average students create a strategic externality on high-achieving students by distorting their perceived admission chances toward the mean. This leads to multiple inefficiencies: on the supply side, high-achieving disadvantaged students go on the labor market instead of attending elite colleges, whereas low-achieving advantaged students spend resources applying to elite colleges even though their actual admission chances are zero. On the demand side, the pool of admitted students is of lower quality compared to the rational expectations benchmark.

Second, we have extended our study of local sampling equilibrium to the case of competing neighborhoods, and we have shown among other things that minority groups may end up getting a disproportionately small number of seats in elite colleges and how neighborhoods with lower rejection costs may end up getting a disproportionately high number of seats in elite colleges. This type of cross-neighborhood externality arises because rationing at elite colleges acts as a propagation mechanism of local demand shocks. Indeed, a reduction of cost in one neighborhood induces a higher admission some and can go either way in general.
cutoff, leading to a lower admission rates in other neighborhoods hence more self-selection. This may suggest that growth inequality across locations disproportionately benefits advantaged/majority neighborhoods at the expense of poor/minority neighborhoods.

Finally, we have studied the pros and cons of using quotas and/or of mixing neighborhoods in terms of total welfare and the quality of admitted students. In particular, we have shown that quotas (imposing that the number of seats in a neighborhood be proportional to its size) may sometimes be welfare-enhancing in contrast to the predictions obtained under rational expectations while the quality of admitted students was shown to be reduced with quotas similarly as in the rational expectations case. While more work would be needed to quantify these effects and study their robustness, we believe that our model of expectation formation can serve as a building block in empirical studies on education choices. 22

22While our analysis has assumed that costs and ability are independently distributed, we suggest in the online Appendix that allowing for correlations may sometimes lead to multiple equilibria, suggesting an additional channel of belief traps. More work is needed though to analyze the general effect of correlation on the analysis.
Proofs

Existence of Local Sampling Equilibria. Consider the following scheme:

\[p \mapsto \sigma^{BR}(p, \cdot) \mapsto b(\sigma^{BR}, \cdot) \mapsto p(b) \]

By Tychonoff’s theorem, the scheme is compact-valued \(p(b) \in [0,1]^\Theta \). Hence to obtain a fixed point, we just need to prove that the scheme is continuous. Fix a subjective belief map \(p : \Theta \to [0,1] \). The action space is binary and the subjective admission chances \(p \) enter payoffs linearly, hence \(\sigma^{BR} \) is the following measurable threshold strategy:

\[
\sigma^{BR}(p, \cdot) = \begin{cases}
1 & \text{if } p(\cdot) \geq \gamma(\cdot) \\
0 & \text{if } p(\cdot) < \gamma(\cdot)
\end{cases}
\]

where \(\gamma(\theta, c) = \frac{c}{\theta + c} \). Take any converging sequence \(p_n \to p \). We need to show that \(p \mapsto \sigma^{BR}(p, \cdot) \) is continuous in the \(L^1 \)-weak topology, namely

\[
\int \sigma^{BR}(p_n, (\theta, c)) \, dF \to \int \sigma^{BR}(p, (\theta, c)) \, dF.
\]

We have

\[
\int \sigma^{BR}(p_n, (\theta, c)) \, dF = \int \mathbf{1} \{ p_n(\theta) \geq \gamma(\theta, c) \} \, dF.
\]

Therefore, continuity follows from Lebesgue’s dominated convergence theorem. We now show the continuity of \(\sigma^{BR} \mapsto b(\sigma^{BR}, \cdot) \). By Berge’s maximum theorem, \(\sigma^{BR} \mapsto b(\sigma^{BR}, \cdot) \) is upper-hemicontinuous. The loss function \(|\theta - \tilde{\theta}| \) is strictly quasi-convex, hence \(\sigma^{BR} \mapsto b(\sigma^{BR}, \cdot) \) is continuous. Finally, the continuity of \(b \mapsto p(b) \) follows directly from the integrability of \(p \) together with the continuity of the functions \(\max\{\cdot, \cdot\} \) and \(\min\{\cdot, \cdot\} \). Therefore, by the Schauder fixed point theorem the set of local sampling equilibria is nonempty.

Proof of Proposition 1. Fix the admission cutoff at \(\theta^* = H^{-1}(1 - q) \). If
\(\sigma^R(\theta, c) = 1\) for all \(\theta > H^{-1}(1 - q)\) and 0 otherwise, then the beliefs

\[
p^R(\theta) = \begin{cases}
1 & \text{when } \theta > H^{-1}(1 - q) \\
0 & \text{when } \theta < H^{-1}(1 - q)
\end{cases}
\]

are rationally consistent with \(\sigma^R\) by definition of \(\theta^*\). Given these subjective beliefs, \(\sigma^R(\theta, c) = 1\) for all \(\theta > H^{-1}(1 - q)\) and 0 otherwise is optimal. Therefore, \((\sigma^R, p^R)\) is a rational expectations equilibrium.

We now prove uniqueness. Suppose that \(\sigma(\theta, c) < 1\) for some (positive mass of) \(\theta > \theta^*\) and \(\sigma(\theta, c) > 0\) for some (positive mass of) \(\theta < \theta^*\). By belief consistency, students with ability \(\theta > \theta^*\) know that \(p(\theta) = 1\) (i.e. they can obtain a seat at \(H\) for sure) hence they have a profitable deviation.

Proof of Proposition 2. First we show that all students \((\theta, c)\) with ability \(\theta > \theta^* = H^{-1}(1 - q)\) and cost \(c > c^H(\theta^*, p(\theta^*))\) self-select out of elite colleges. Student \((\theta, c)\) applies to \(H\) only if \(p(\theta^*) \geq \frac{c}{\theta^* + c}\). As long as \(q < 1\) and \(\tau > 0\), we must have \(p(\theta^*) < 1\) because the last admitted student \((\theta^*, c)\) includes rejected students in her sample. Therefore, as \(\lim_{c \to \infty} \frac{c}{\theta^* + c} = 1\) there must exist a positive \(g\)-measure of costs such that \(p(\theta^*) < \frac{c}{\theta^* + c}\) because \(g\) has full support on \(\mathbb{R}_+\). This proves that self-selection arises in equilibrium.

Second, we show that students with ability \(\theta < \tilde{\theta}^*\) and cost \(c < c^H(\tilde{\theta}^*, p(\tilde{\theta}^*))\) apply to \(H\) but are rejected. Student \((\theta, c)\) with \(\theta = \tilde{\theta}^* - \varepsilon\) for \(\varepsilon > 0\) arbitrarily small applies to \(H\) only if \(p(\theta^*) \geq \frac{c}{\theta^* + c}\). As long as \(q < 1\) and \(\tau > 0\), \(p(\theta^*) > 0\) because this student includes in her sample admitted peers for \(\varepsilon\) small enough. Therefore, as \(\lim_{c \to 0} \frac{c}{\theta^* + c} = 0\) there must exist a positive \(g\)-measure of costs such that \(p(\tilde{\theta}^*) > \frac{c}{\theta^* + c}\) because \(g\) has full support on \(\mathbb{R}_+\). This proves that inefficient applications arise in equilibrium. \(\square\)

Proof of Proposition 3. We can rewrite the implicit equation for subjective beliefs as follows:

\[
p - \frac{1}{\tau} \int_{\tilde{\theta}}^\theta 1_{\{\theta - b(\theta, \sigma) < \tilde{\theta} < b(\theta, \sigma)\} \cap \{\tilde{\theta} > \tilde{\theta}^*\}} G\left(\frac{p(\tilde{\theta})}{1 - p(\tilde{\theta})} \right) dH(\tilde{\theta}) = 0 \quad (4)
\]

We first consider the case in which \(\tau \to 1\). By definition of \(b(\theta, \sigma)\) we have
\[
\lim_{\tau \to 1} \{ \theta - b(\theta, \sigma) < \tilde{\theta} < \theta + b(\theta, \sigma) \} \supseteq \{ \tilde{\theta} > \tilde{\theta}^* \}. \]
Therefore,
\[
\lim_{\tau \to 1} \left[p(\theta) - \frac{1}{\tau} \int_\theta^{\tilde{\theta}} 1_{\{\theta - b(\theta, \sigma) < \tilde{\theta} < \theta + b(\theta, \sigma)\}} \left(\frac{p(\tilde{\theta})}{1 - p(\tilde{\theta})} \right) dH(\tilde{\theta}) \right] = 0
\]

\[
\iff p = \int_\theta^{\tilde{\theta}} G \left(\frac{p(\tilde{\theta})}{1 - p(\tilde{\theta})} \right) dH(\tilde{\theta})
\]

where the second line uses the fact that, as \(\tau \to 1 \), the subjective probability becomes independent of \(\theta \).

We now consider the case \(\tau \to 0 \). There are two cases to consider.

Case 1: There exists \(\tau^* \) small enough such that \(\theta + b(\theta, \sigma) < \tilde{\theta}^* \). Then we have \(\lim_{\tau \to 1} \{ \theta - b(\theta, \sigma) < \tilde{\theta} < \theta + b(\theta, \sigma) \} \cap \{ \tilde{\theta} > \tilde{\theta}^* \} = \emptyset \). Hence taking the integral in equation (4) is zero, and we directly have that \(p(\theta) = 0 \).

Case 2: There exists \(\tau^* \) small enough such that \(\theta - b(\theta, \sigma) > \tilde{\theta}^* \). Then we have \(\lim_{\tau \to 1} \{ \theta - b(\theta, \sigma) < \tilde{\theta} < \theta + b(\theta, \sigma) \} \subseteq \{ \tilde{\theta} > \tilde{\theta}^* \} \). Therefore,
\[
\lim_{\tau \to 0} \left[p(\theta) - \frac{1}{\tau} \int_\theta^{\tilde{\theta}} 1_{\{\theta - b(\theta, \sigma) < \tilde{\theta} < \theta + b(\theta, \sigma)\}} G \left(\frac{p(\tilde{\theta})}{1 - p(\tilde{\theta})} \right) dH(\tilde{\theta}) \right] = 0
\]

Take \(p(\theta) = 1 \) and using the fact that \(\lim_{x \to \infty} G(x) = 1 \) we can rewrite the above equation as follows:
\[
\lim_{\tau \to 0} \left[1 - \frac{1}{\tau} \int_{\theta - b(\theta, \sigma)}^{\theta + b(\theta, \sigma)} h(\tilde{\theta}) d\tilde{\theta} \right] = 0
\]

By L’Hospital’s rule and Leibniz integral rule,
\[
\lim_{\tau \to 0} \frac{\int_{\theta - b(\theta, \sigma)}^{\theta + b(\theta, \sigma)} h(\tilde{\theta}) d\tilde{\theta}}{\tau} = \lim_{\tau \to 0} \left[h(\theta + b(\theta, \sigma)) + h(\theta - b(\theta, \sigma)) \right] \frac{\partial b(\theta, \sigma)}{\partial \tau} \tag{5}
\]

By definition, \(b(\theta, \sigma) \) is the smallest \(b > 0 \) that solves:
\[
\int_{\theta - b}^{\theta + b} h(\theta) d\theta > \tau \iff \frac{H(\theta + b) - H(\theta - b) - \tau}{\Phi(b, \tau)} > 0
\]
We apply the implicit function theorem to obtain the derivative of $b(\theta, \tau)$:

$$\frac{\partial \Phi}{\partial b} \frac{\partial b}{\partial \tau} + \frac{\partial \Phi}{\partial \tau} = 0 \iff \frac{\partial b}{\partial \tau} = \frac{1}{h(\theta + b) + h(\theta - b)}$$

Substituting this expression in equation (5) concludes the proof.

Proof of Proposition 4

Step 1. ($p \to 0$ as $q \to 0$): By contradiction, suppose that there exists b with $p > b > 0$ for all q, then all (θ, c) such that $c < \frac{b}{1-p} \theta$ apply to H. The mass of applicants $m(q)$ is no smaller than $m^* = \Pr(c < \frac{b}{1-p} \theta)$ (and $m^* > 0$ where use is made of the full support assumption). But then $p(q) = \frac{q}{m(q)} \to 0$ and we get a contradiction.

Step 2. (Approximation of p in terms of θ^*): We have

$$p = \frac{\int_0^1 h(\theta) G(\frac{p - \theta}{1-p}) d\theta}{\int_0^1 h(\theta) G(\frac{p - \theta}{1-p}) d\theta}
\approx \frac{\int_0^1 h(\theta) \frac{p}{1-p} \theta g(0) d\theta}{\int_0^1 h(\theta) \frac{p}{1-p} \theta g(0) d\theta}
= \frac{\int_0^1 h(\theta) \theta d\theta}{\int_0^1 h(\theta) \theta d\theta}
= \frac{\int_0^1 h(\theta) \theta d\theta}{E(\theta)}
$$

using a 1st order Taylor approximation of G around 0. This approximation also implies that $\theta^* \to 1$ as $q \to 0$ to ensure that $p \to 0$ (from Step 1). This in turn implies that (using $h(\theta) \approx h(1)$ when θ is in $(\theta^*, 1)$, with $h(1) > 0$ because of full support):

$$p \approx \frac{h(1) \left(1 - (\theta^*)^2\right)}{E(\theta) \frac{2}{2}}.$$

Step 3. (Approximation of θ^* in terms of q):
\[
q = \int_{\theta^*}^{1} h(\theta) G\left(\frac{p}{1-p}\theta\right) d\theta
\approx \int_{\theta^*}^{1} h(\theta) p g(0) \theta d\theta
\approx p g(0) h(1) \frac{1 - (\theta^*)^2}{2}
\]

where the first approximation uses \(\frac{p}{1-p} \approx p \) and \(G(p\theta) \approx p\theta g(0)\), and the second approximation uses \(h(\theta) \approx h(1)\) for \(\theta \in (\theta^*, 1)\).

Writing \(\theta^*\) in terms of \(q\), we get
\[
\theta^* = 1 - \frac{1}{h(1)} \left(\frac{E(\theta)}{g(0)} \right)^{1/2} q^{1/2} + o(q^{1/2}).
\]

Step 4. (Approximation of \(p\) in \(q\)): From steps 3 and 4 we get
\[
p = \left(\frac{E(\theta)}{g(0)} \right)^{1/2} q^{1/2} + o(q^{1/2}).
\]

Step 5. (Approximation of \(W(q)\)): We have
\[
W(q) = \int_{\theta^*}^{1} \theta h(\theta) G\left(\frac{p}{1-p}\theta\right) d\theta - \int_{0}^{\theta^*} h(\theta) \left[\int_{0}^{\frac{t^*}{1-p}} c g(c) dc \right] d\theta
\approx g(0) p h(1)(1 - \theta^*) - \int_{0}^{\theta^*} g(0) \frac{p^2 \theta^2}{2} h(\theta) d\theta
\approx g(0) p h(1)(1 - \theta^*) - \frac{g(0) E(\theta^2)}{2} p^2
\approx q - \frac{E(\theta^2)}{2E(\theta)} q
= \left(1 - \frac{E(\theta^2)}{2E(\theta)} \right) q + o(q)
\]
using the above approximations.
Step 6. (Approximation of \(M(q)\)): We have

\[
M(q) = \frac{\int_{\theta^*}^{1} \theta h(\theta) G(\frac{\theta}{1-q\theta}) d\theta}{\int_{\theta^*}^{1} h(\theta) G(\frac{\theta}{1-q\theta}) d\theta}
\]

\[
\approx \frac{(1 - \theta^3)/3}{(1 - \theta^2)/2}
\]

\[
= 1 - \frac{1}{2h(1)} \left(\frac{E(\theta)}{g(0)} \right)^{1/2} q^{1/2} + o(q^{1/2})
\]

using the above approximations. \(\square\)

Proof of Proposition 5. At equilibrium, the admission cutoff must be equal between neighborhood 1 and 2. Using the formulas derived in Proposition 4, we have

\[
1 - \frac{1}{h_1(1)} \left(\frac{E[\theta_1]}{g_1(0)} \right)^{1/2} = 1 - \frac{1}{h_2(1)} \left(\frac{E[\theta_2]}{g_2(0)} \right)^{1/2}
\]

\[
\iff q_1 = \frac{g_1(0)}{g_2(0)} \left(\frac{h_1(1)}{h_2(1)} \right)^{2/1/E[\theta_1]} \frac{1/E[\theta_2]}{1/E[\theta_2]}
\]

Using the fact that \(q_2 = q - q_1\), and rearranging the above formula yields the desired result. We obtain \(p_1/p_2\) using the closed form from Proposition 4. \(\square\)

Proof of Proposition 6. From Proposition 4 we know that \(q_1\) is the product of two terms:

\[
\lim_{m_1 \to \infty} \frac{m_1 h_1(1)^2 g_1(0)/E(\theta_1)}{m_1 h_1(1)^2 g_1(0)/E(\theta_1) + m_2 h_2(1)^2 g_2(0)/E(\theta_2)} = 1 \quad \lim_{q \to \infty} q = \infty
\]

Therefore, the limit of the product yields \(q_1 \to \infty\). Conversely, we have \(q_2 \to 0\) using the fact that \(\frac{1}{m_1 + m_2} q \to 0\) implies \(\frac{a m_2}{b m_1 + c m_2} q \to 0\) for any positive constant \(a, b, c\) and \(m_2\). \(\square\)

Proof of Proposition 7. From the one neighborhood case, we know that aggregate welfare is (at the first order):

\[
W = \left(1 - \frac{E[\theta_1^2]}{2E[\theta_1]}\right) q_1 + \left(1 - \frac{E[\theta_2^2]}{2E[\theta_2]}\right) q_2
\]
Therefore, aggregate welfare can be increased only by giving more seats to neighborhood \(\arg \min_i \frac{E[\theta_i]}{E[\theta_i]} \). Now if we give seats proportionally to the size of the neighborhood \(q_i = \frac{q_i}{m_i} \), this will benefit the neighborhood that currently has the smallest number of seats, i.e. \(\arg \min_i \frac{h_i(0)^2 g_i(0)}{E[\theta_i]} \). Alternatively, giving more seats to the most disadvantaged neighborhood will benefit neighborhood \(\arg \min_i g_i(0) \). □

Proof of Proposition 8. Letting \(A_i = h_i(0)^2 g_i(0) / E(\theta_i) \), the value of \(M \) after the intervention is

\[
M^{AA} = 1 - \frac{1}{2} \left[\left(\frac{q}{2A_1} \right)^{1/2} + \left(\frac{q}{2A_2} \right)^{1/2} \right] + o(q^{1/2})
\]

The laissez-faire value of \(M \) is

\[
M^{LF} = 1 - \left(\frac{q}{A_1 + A_2} \right)^{1/2} + o(q^{1/2})
\]

That \(M^{LF} > M^{AA} \) follows from Jensen’s inequality noting that \(x \to x^{-1/2} \) is convex. □

Proof of Proposition 9.

1. Aggregate welfare is the same as in the one neighborhood case and only depend on \(h_1, h_2 \).

2. Aggregate welfare when \(\alpha = \frac{1}{2} \) writes

\[
\frac{1}{2} \left(1 - \frac{1}{2} \frac{E[\theta_1^2]}{E[\theta_1] + E[\theta_2]} + \frac{1}{2} \frac{E[\theta_2^2]}{E[\theta_1] + E[\theta_2]} \right) q + \frac{1}{2} \left(1 - \frac{1}{2} \frac{E[\theta_2^2]}{E[\theta_1] + E[\theta_2]} + \frac{1}{2} \frac{E[\theta_1^2]}{E[\theta_1] + E[\theta_2]} \right) q \\
= 1 - \frac{\frac{E[\theta_1^2]}{2(E[\theta_1] + E[\theta_2])} + \frac{E[\theta_2^2]}{2(E[\theta_1] + E[\theta_2])}}{2(E[\theta_1] + E[\theta_2])}
\]

which should be no less than aggregate welfare when \(\alpha = 0 \).
3. In this case we have $q_1 = q_2 = q/2$. Hence aggregate welfare writes

$$
\left(1 - \frac{\alpha E[\theta^2_1]}{2E[\theta]} + \frac{(1 - \alpha)E[\theta^2_2]}{2E[\theta]} \right) \frac{q}{2} + \left(1 - \frac{\alpha E[\theta^2_2]}{2E[\theta]} + \frac{(1 - \alpha)E[\theta^2_1]}{2E[\theta]} \right) \frac{q}{2}
$$

which is independent of α.

4. In this case, aggregate welfare writes

$$
q \left[\left(1 - \frac{E[\theta^2]}{2(\alpha E[\theta_1] + (1 - \alpha)E[\theta_2])} \right) \frac{1}{\alpha E[\theta_1] + (1 - \alpha)E[\theta_2]} + \left(1 - \frac{E[\theta^2]}{2(\alpha E[\theta_2] + (1 - \alpha)E[\theta_1])} \right) \frac{1}{\alpha E[\theta_2] + (1 - \alpha)E[\theta_1]} \right]
$$

which can be verified is an increasing function of α.

\[\square\]

References

Online Appendix

Bundling on Cost

In the main text, we assume that students bundle peers based on ability (and indirectly based on cost when there are multiple neighborhoods). Here we explore the converse where students bundle peers based on cost directly. Overall, this increases the various inefficiencies (as students bundle on a dimension that is irrelevant for admissions), up to the point that as $\tau \rightarrow 0$ we do not converge to the rational expectation equilibrium, unlike the case with bundling on ability.

Proposition 10. Suppose that students bundle peers only based on cost c. Then, as $\tau \rightarrow 0$, the local sampling equilibrium does not converge to the rational expectation equilibrium.

Proof. Let $A(\tau) \subset [\underline{c}, \bar{c}] \times [\underline{\theta}, \overline{\theta}]$ be the set of admitted students in any local sampling equilibrium. For this to converge to a REE, we must have $\lim_{\tau \to 0} A(\tau) = [\underline{c}, \bar{c}] \times [\theta^*, \overline{\theta}]$ and $p(c) = 0$ or 1 for any c. But notice that $\lim_{\tau \to 0} A(\tau) = [\underline{c}, \bar{c}] \times [\theta^*, \overline{\theta}]$ implies $\lim_{\tau \to 0} p(c) = 1 - \theta^*$ which is not equal to 0 or 1, a contradiction. \qed

When Abilities and Costs are Correlated: A Potential Extra Source of Belief Traps

In the previous analysis, we assumed that ability and opportunity costs are independently distributed. In some contexts, it could be that cost and ability are not independently distributed. When multiple neighborhoods compete for the same seats at elite colleges, this can lead to equilibria with belief traps in which one neighborhood takes many more seats than the other—even if both neighborhoods are ex-ante identical. Clearly, given the symmetry of the problem, any neighborhood can take the role of being favored in equilibrium, thereby illustrating the possibility of multiple equilibria with possibly very
strong asymmetries. The following Proposition illustrates this in an extreme form.\footnote{The theme of exploring the possibility of multiple equilibria in otherwise symmetric contexts is recurrent in the literature (see, in particular as a canonical illustration, Bénabou (1993) in the context of competing jurisdictions with composition externalities).}

Proposition 11. Suppose that in both neighborhoods there is a mass α of students with $(\theta, c) = (0, 0)$ and a mass $1 - \alpha$ of students with $(\theta, c) > (0, 0)$ (with arbitrary distribution) and assume $1 > q > 0$.\footnote{This does not assume a vanishing number of seats, but it is possible to construct a sequence of economies parameterized by (q, α) such that q tends to 0 and one neighborhood gets all the q seats in a local sampling equilibrium, thereby establishing the multiplicity even as q tends to 0.} For α small enough, there is an equilibrium in which all seats at H are taken by students from neighborhood i.

Proof. Suppose that all seats are taken by students from neighborhood i ($q_i = q$). First note that some seats must be allocated to high ability students (otherwise they have a profitable deviation as $p = 1$ if only students with $(\theta, c) = (0, 0)$ apply). Therefore, the admission cutoff satisfies $\theta^* > 0$. Moreover, for α small the admission probability converges to $\frac{q}{\zeta}$ where ζ is the fraction of high ability students who apply to H, with $\theta^* \zeta > c(1 - \frac{q}{\zeta})$. Hence all seats are occupied by students from neighborhood i for this ζ. Suppose that all low-ability students from neighborhood j apply to H but are being rejected because $\theta_j = 0 < \theta^*$. Then we have $p_j = 0$, and no high-ability student in neighborhood j applies to H. There are no profitable deviations and beliefs are consistent, hence this is a local sampling equilibrium. \qed

In the equilibrium of Proposition 11, only very low ability students in neighborhood j apply to elite college, and they all get rejected. They apply to elite colleges because their costs of rejection are negligible (even null in the formal statement). But, by applying and being rejected such students create a strong negative externality on high ability students in neighborhood j, as the latter get convinced they are better off not applying (even for moderate rejection costs). On the other hand, when $1 > q > 0$ and α is small enough, one can guarantee that at the same time there is a mass no less than q of students from neighborhood i with $\theta > 0$ who apply to H, thereby en-
suring that all seats are taken by students in i. While extreme, we believe that Proposition 11 is suggestive that multiple equilibria can easily arise in our setting (in particular when low rejection cost students tend to have low ability), which in turn may suggest that some asymmetries in outcome may sometimes be the result of historical factors rather than fundamental asymmetries. Note that there is no explicit externality of low ability students on high ability students, since they do not impact the admission cutoff, but only an equilibrium-induced externality on expectation formation. This contrasts with models of segregation that consider explicit externalities, such as Benabou (1993).

\[\text{The limit } \alpha \to 0 \text{ corresponds to the model studied above and when } q < 1 \text{ and there is only one neighborhood, the equilibrium is such that the demand for the elite college in that neighborhood exceeds the capacity, thereby providing the required property.} \]

\[\text{To make this insight fits with our previous results in which the mass of seats was assumed to be small, one could consider a sequence of such economies indexed by the mass } q_n \text{ of students, let } q_n \text{ tends to 0 as } n \text{ tends to infinity, and for each } n, \text{ let } \alpha_n \text{ be small enough so that Proposition 11 applies.} \]