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Abstract

We develop a framework for categorization in games, applicable both to multi-

stage games of complete information and static games of incomplete information.

Players use categories to form coarse beliefs about their opponents’ behavior. Players

best-respond given these beliefs, as in analogy-based expectations equilibria. Cate-

gories are related to previously used strategies via the requirements that categories

contain a sufficient amount of observations and exhibit sufficient within-category

similarity, in line with the bias-variance trade-off. When applied to classic games

including the ultimatum games, the chainstore game and adverse selection games

our framework yields more intuitive predictions than those arising with standard

solution concepts.

Keywords: Bounded rationality; Categorization; Bias-variance trade-off; Ad-

verse selection; Chainstore paradox; Ultimatum bargaining.

JEL codes: C70, C73, D82, D83, D91.

∗This paper has benefited from comments by Tore Ellingsen, Drew Fudenberg, Topi Miettinen, Alexan-
dros Rigos, and Larry Samuelson. We also thank audiences at Lund University (Arne Ryde Workshop on
Attention in Decision Making) and Bar-Ilan University (Learning Evolution Games 2019) for comments.
Maria Juhlin provided excellent research assistance at an early stage of the project. Philippe Jehiel thanks
the European Research Council (grant no. 742816) for funding. Erik Mohlin is grateful for financial sup-
port from the Swedish Research Council (grant no. 2015-01751 and 2019-02612) and the Knut and Alice
Wallenberg Foundation (Wallenberg Academy Fellowship 2016-0156).

†Paris School of Economics and University College London. Address: PSE, 48 boulevard Jourdan,
75014 Paris, France. E-mail: jehiel@enpc.fr.

‡Lund University and the Institute for Futures Studies (Stockholm). Address: Lund University De-
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1 Introduction

Human decision-makers need to make simplifications in order to navigate social reality. We

need to divide the complex web of interactions into manageable pieces to evaluate different

courses of action. We need to extrapolate from past interactions to be able to predict what

others will do. Categories serve these functions (Anderson, 1991; Laurence and Margolis,

1999; Gärdenfors, 2000; Murphy, 2002; Xu, 2007). A categorization bundles distinct objects

or situations into groups or categories, whose members are viewed as sufficiently similar

to warrant a similar treatment. As a result, categorical reasoning facilitates prediction:

when a situation is classified as belonging to a category then by virtue of its similarity

with other members of the category we expect similar behavior.

From the perspective of statistics and machine learning, categorizations should satisfy

some properties to address the bias-variance trade-off (e.g. Geman et al., 1992). On the

one hand, if categories are too coarse, bundling together situations that are too dissimilar,

the resulting estimates are likely to be too biased. On the other hand, if categories are too

narrow, bundling together too few data points, the resulting estimates will be unreliable,

as they are plagued by high variance. Gigerenzer and Brighton (2009) discuss how simple

heuristics typically used by humans can be viewed as devices inducing some bias in order

to reduce variance. Mohlin (2014) derives properties of categorizations that solve the

bias-variance trade-off optimally for the purpose of making predictions.1

In economics, a growing literature has introduced categorical thinking into game theory

(Samuelson, 2001; Jehiel, 2005; Jehiel and Samet, 2007; Jehiel and Koessler, 2008; Azrieli,

2009; Mengel, 2012; Arad and Rubinstein, 2019). 2 A significant part of this literature has

worked with exogenously given categories. While in some interactions it may be reasonable

to assume that the categorizations are given exogenously, either by the framing of the game,

or by players’ culture or previous personal experience, in other interactions, it seems more

appropriate to view the categories as being formed within the learning environment.3

Our starting point is the analogy-based expectation equilibrium (Jehiel, 2005; Jehiel

and Koessler, 2008) in which categories (analogy classes) are used to form predictions about

opponents’ play. We endogenize the analogy partitions relying on principles inspired by the

bias-variance trade-off. Specifically, we envision different cohorts of players. Within each

cohort players are randomly matched to play a given game, and, depending on player roles,

1In hierarchical categorizations the location of the basic level (Rosch et al., 1976), which is neither the
most fine-grained nor the most abstract level, may be influenced by bias-variance considerations. Similarly
it may be responsible for why experts have more fine-grained categorizations than laymen (Tanaka and
Taylor, 1991).

2See also Dow (1991), Rubinstein (1998), and Fryer and Jackson (2008).
3Some of the cited papers endogenize the categories assuming there is a fixed cost to adding a category

and considering the best possible categorization in terms of the induced payoff consequence minus the cost
associated with the categorization. Such approaches require a high degree of rationality (arguably at least
as high as in standard economic models) while our interest lies in situations in which the rationality of
subjects is more limited.
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they are called to move in different situations (nodes or states depending on the application)

in the game. After the play of a given game, new players receive some feedback about it,

consisting in the disclosure of behaviors in a subset of situations. For example, in extensive

form games, the feedback will typically consist of the on-path behaviors, and in Bayesian

games we will consider cases in which behaviors are disclosed if some event (such as trade)

occurs. We assume that in each situation, a player may pick a non-intended action with

some exogenous probability ε, as in the trembling-hand formulation (Selten, 1975). This

generates some observations for all situations.

When a new cohort arrives, the corresponding players categorize the situations in which

their opponents have to make a move, using the available data from the games played by

the previous cohort. Players are endowed with exogenous similarity functions, representing

their perception of how similar various situations are to each other. They form endogenous

categories by bundling together situations perceived to be as similar as possible, while

respecting the desiderata that each category should contain enough data points, in line

with the bias-variance trade-off. We formalize this by imposing that each analogy class

should have a mass of observations no less than a threshold κ, unless doing so creates too

high within-category dissimilarity. A player’s prediction about the play of the opponent in

a given situation is assumed to correspond to the empirical distribution of the behaviors

observed in the previous cohort in the category to which the situation has been assigned.

When a player does not tremble, she best-responds to such predictions. In order to the

describe the steady-states of the induced dynamic system we define a notion of (ε, κ)-

categorization equilibrium.

While our approach allows for any specification of κ and ε, we focus on the case in

which κ and ε are small and vanish at such a rate that ε is asymptotically not too large

relative to κ, implying that on-path situations can be distinguished perfectly but off-path

situations have to be bundled (according to their similarity). When considering such limits

and in some applications, we need to describe the learning dynamic more explicitly since

the limit does not have a steady state representation. Throughout, both the feedback

structure and the similarity functions are primitives of our model.

Our first main contribution is to provide a general framework that endogenizes the

analogy partitions based on the similarity functions used by the players as well as the

relative rate of the trembling behavior and the threshold mass used to implement the

bias-variance trade-off. Our second main contribution is to provide a series of applications

where in each case we motivate our choice of similarity functions based on our intuitive

understanding of the interaction.

Our main applications are as follows. We first consider ultimatum games in which the

responder has a fixed outside option. We illustrate that offers leaving positive surplus to

the responder can be sustained as categorization equilibria using as similarity functions

ones based on the Euclidean distance between offers. We next consider chainstore games
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(Selten, 1978), and assume (for both the monopolist and the challengers) that histories

in which there was some entry that was not immediately followed by a fight are treated

as very dissimilar from other histories (in which either the challengers never entered or

when there was entry it was always followed by a fight). We establish the existence of

a categorization equilibrium with no entry except in the last few periods. Finally, we

discuss adverse selection games of the Akerlof type, modeled as a Bayesian game between

an informed seller and an uninformed buyer who values the good more than the seller

(as in Esponda, 2008). Assuming that qualities (seller types) are considered more similar

when they are close to each other, we show that the learning dynamics leads to cycles with

intended bid prices always lying above the Nash equilibrium price.

Our paper can be related to several strands of the literature. First, since we assume that

the threshold κ and the trembling probability ε are such that on-path nodes are treated

as singleton analogy classes in extensive form games, our categorization equilibria in such

games can be viewed as offering a selection device for self-confirming equilibria (Fudenberg

and Levine (1993, 1998). Fudenberg and Levine (2006) propose a different selection referred

to as subgame-confirmed equilibria in which strategy profiles are Nash equilibria on-path

and self-confirming equilibria one step away from the path. They have provided a learning

foundation for it in a class of extensive form games (in which players move once) when

players are patient and experiment optimally.4 Our approach differs from Fudenberg and

Levine (2006) in several respects. Most importantly, in our case, when beliefs are incorrect,

they are related to the true behaviors via a categorization which is itself structured by the

similarity functions, the trembling probability, and the minimum size requirement imposed

on categories.

Second, a number of approaches have been proposed to avoid the unintuitive predictions

obtained in finite horizon interactions, including Kreps et al. (1982)’s crazy type approach

and Neyman (1985)’s finite automaton approach (c.f. Rubinstein, 1998). We note that

these approaches avoid the classical predictions in all versions of the finite horizon paradox

(this is true also of Jehiel (2005)’s ABEE-approach). This is not the case in our setting as

we discuss in the Section devoted to the chainstore game.

Third, a number of approaches have revisited the classic adverse selection games intro-

duced by Akerlof (1970) and studied whether relaxations of the buyer’s rationality could

generate more trading activity. These include Eyster and Rabin (2005)’s cursed equilib-

rium, Jehiel and Koessler (2008)’s analogy-based expectation equilibrium, and Esponda

(2008)’s behavioral equilibrium.5 Our modeling of such interactions is inspired by Esponda

(2008), in particular with respect to the feedback function. But, our derivation of categorization-

based expectations based on that feedback is different, leading to more trade than in the

rational case (in contrast to Esponda’s finding), as well as cycling (which has no counter-

4See also Kalai and Neme (1992) who have proposed another notion of equilibrium for extensive form
games in which strategy profiles are Nash equilibria up to p steps away from the path.

5See Miettinen (2009) on the relationship between these various approaches.
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part in the other approaches).6,7

Fourth, our paper can be related to a growing literature on misspecifications in games,

which, in addition to the already mentioned cursed equilibrium (Eyster and Rabin, 2005)

and analogy-based expectation equilibrium (Jehiel, 2005), include the Berk-Nash equilib-

rium (Esponda and Pouzo, 2016) and the Bayesian Network Equilibrium (Spiegler, 2016).

Some papers have suggested endogenizing the misspecifications based on evolutionary ar-

guments (in particular He and Libgober, 2020; Fudenberg and Lanzani, 2023; Heller and

Winter, 2020), but to the best of our knowledge, none of these papers have developed an

approach based on the bias-variance trade-off to endogenize misspecifications.8

2 Framework

We present our approach within a unified setup covering both multi-stage games of com-

plete information and (static) Bayesian games. Specifically, we consider games with two

players i ∈ I = {1, 2} such that player i ∈ I faces various possible situations referred to

as xi ∈ Xi, and in situation xi player i has to choose an action ai ∈ Ai (xi). Extension

to more players is straightforward. In an extensive-form game with complete information,

Xi will represent the nodes at which player i must move. In a Bayesian game, Xi will

represent the set of types of player i. In the former case, the profile of actions chosen by

the two players at the various nodes determines which nodes are visited. In the latter case,

nature chooses the profile of types according to some probability assumed to be known

by both players. For simplicity and mostly to avoid notational complexity dealing with

densities instead of probabilities, we consider the finite case in which the set of situations

and the sets of actions are all finite. In some of the applications developed next, we will

consider straightforward extensions of the definitions to the case of a continuum of actions

and situations.

A strategy for player i is defined by σi = (σi(xi))xi∈Xi
where σi(xi) ∈ ∆Ai (xi) describes

the probability distribution over possible actions chosen by player i at xi. A realized play

of the game is described by the set of situations that occurred and the actions taken in

6We note that our predictions for this type of interactions are broadly in line with the experimental
findings reported in Fudenberg and Peysakhovich (2016). They observe more trade than predicted by the
Nash equilibrium and they suggest comparative statics with respect to the difference of valuation between
the seller and the buyer that agree with our predictions.

7A few recent papers identify cycles of beliefs in the context of misspecified models. In Esponda et al.
(2021) and Bohren and Hauser (2021) (see also Nyarko, 1991), the evidence accumulated while taking a
particular action may push beliefs in a direction that makes another action seem optimal, and once this
new action is taken the data that are being generated induce a belief that makes the previous action seem
optimal again. In Fudenberg et al. (2017) cycles may arise from the fact that the learner never ceases
to perceive an information value of experimenting with another action. None of these papers feature
endogenous categorizations.

8In a contemporaneous paper, Jehiel and Weber (2023) endogenize the analogy partitions based on
clustering techniques that are standard in machine learning. This is a different approach from the one
pursued here.
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those situations, as dictated by σ = (σ1, σ2) and the strategy of nature. A realized play is

denoted

(â, x̂) =
{
(âi, x̂i)i∈I : x̂i occurred and i chose âi at x̂i

}
.

Regarding the feedback, we assume that after the play of a game only a subset of (â, x̂)

is disclosed to outsiders (which will be used by new players to form expectations). We

refer to such a disclosure as the feedback given the play and denote it by ϕ (â, x̂).

In dynamic games, we assume that only the actions on the path of play are observed (as

is commonly assumed, see Fudenberg and Levine, 1998). In Bayesian games, we will use

this formulation to accommodate applications like trades in which the actions (bargaining

offers) and types (determining the quality of the good) would be disclosed only when the

transaction takes place (as in our adverse selection game).

2.1 Analogy-Based Expectations

Player i categorizes Xj (the set of player j’s situations) into analogy classes C1
i , ..., CK

i that

constitute a partition Ci =
{
C1
i , ..., CK

i

}
of Xj. An analogy class Ck

i ∈ Ci of player i satisfies
the requirement that if xj and x′

j belong to the same analogy class Ck
i , then the action

spaces of player j at xj and x′
j are the same. We let βi(Ck

i ) denote the analogy-based

expectation of player i about the play of player j in Ck
i . It is a probability distribution

over the action space of player j in Ck
i meant to capture how player i views player j’s

representative behavior in Ck
i .

9 For every xj ∈ Xj, we let Ci(xj) be the unique analogy

class Ck
i to which xj belongs. We refer to βi =

(
βi(Ck

i )
)K
k=1

as the analogy-based expectation

of player i.

Given βi, player i expects player j to behave according to the strategy defined by

σβi

j =
(
σβi

j (xj)
)
xj∈Xj

, with σβi

j (xj) = βi(Ci(xj)). That is, player i expects player j in

situation xj to behave according to the representative behavior in the analogy class Ci(xj)

to which xj belongs as defined by βi(Ci(xj)).
10

Most of the time player i plays a best-response to σβi

j (given his utility and information)

and the rest of the time player i trembles and chooses any available action.11 We require

that the trembles occur independently at the various xi. In other words, our treatment

is similar to the extensive-form version of the trembling-hand equilibrium (Selten, 1975).

Formally,

9In the case of n players Ci partitions ×j ̸=iXj , with the requirement that if xj and x′
l (possibly belonging

to different players) belong to the same analogy class Ci
k ∈ Ci, then the action spaces of player j at xj and

player l at x′
l are the same. Furthermore, βi(C

i
k) denotes the analogy-based expectation of player i about

the play of all players acting at the situations belonging to Ci
k.

10The rationale for this is that this is the simplest representation of player j’s strategy consistent with
βi (for elaboration see Jehiel, 2022).

11Such trembling can be viewed as reflecting exogenous experimentation at the learning stage (similar
to Fudenberg and Kreps, 1993).
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Definition 1 σi is an εi-perturbed best-response to βi if σi is a best-response to σβi

j subject

to the constraint that at every xi, σi(xi) assigns a probability no less than εi to every action

at xi and the probability distributions σi(xi) are independent across the various xi.

Remark 1 (a) In the definition of εi-perturbed best-response, we implicitly assume that

the probability of tremble is the same for all actions at xi, and the same at all xi. We could

obviously extend this to allow for more general trembling strategies, but this would bring

no additional insight. (b) The best-response is implicitly defined at the ex ante stage, but

given that we consider games with perfect recall and all situations are reached with positive

probability (due to trembling), the same choice of strategy would arise had we required an

interim or sequential notion of best-response.

In general, we allow for the possibility that players i and j have different probabilities of

trembles, and we denote the profile of tremble probabilities by ε = (εi, εj). This is to allow

us to accommodate applications in which we believe one player is less likely to tremble than

the other player (perhaps because the former but not the latter has a dominant strategy).

The situations that are reached with positive probability in the absence of trembles (ε = 0)

will be referred to as on-path situations. The remaining situations, which are reached with

positive probability only when there are trembles (εi, εj > 0) are off-path situations. This

distinction will play a role when we endogenize the analogy partitions.

In steady state, the analogy-based expectations are required to be related to the strategy

profile and the feedback structure through a consistency requirement. Formally, a strategy

profile σ together with a feedback structure ϕ and trembling behavior (as parameterized by

ε), induces a probability µσ(aj,xj) that action aj in situation xj is disclosed.
12 We assume

that ϕ is such that for every ε-perturbed strategy profile σ, and for every analogy class Ck
i

, some behavior in Ck
i is disclosed with strictly positive probability. That is,13

µσ(Ck
i ) =

∑
x′
j∈Ck

i ,a
′
j∈Aj(x′

j)

µσ(a′j,x
′
j)

is strictly positive for every Ck
i .

Definition 2 The analogy-based expectation βi is consistent with the ε-perturbed strategy

profile σ and the feedback ϕ if for every Ck
i , and every action aj in the action space of

player j at Ck
i ,

βi(Ck
i )[aj] =

1

µσ(Ck
i )

∑
xj∈Ck

i

µσ(aj,xj), (1)

where βi(Ck
i )[aj] refers to the probability assigned to action aj by βi(Ck

i ).

12We do not include a reference to ϕ in µσ since ϕ will be taken as fixed and exogenous throughout. We
also do not include reference to ε as it will be clear from the context.

13Observe that µσ(Ck
i ) is not a probability as it could be greater than 1 in some cases. This reflects that

in extensive-form games, a single play of the game typically allows one to reach more than one situation.
Also note that µ is normalized so that there is a mass 1 of games being played.
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Combining Definition 1 and Definition 2 we propose a generalized version of analogy-

based expectation equilibrium:14

Definition 3 Given a profile of analogy partitions C = (C1, C2), and a feedback structure

ϕ, an ε-perturbed analogy-based expectation equilibrium is a strategy profile σ = (σ1, σ2)

such that there exists a profile of analogy-based expectations β = (β1, β2) satisfying for

i = 1, 2:

(a) σi is an εi-perturbed best-response to βi,

(b) βi is consistent with (σ, ϕ) as defined in (1).

We have in mind that the knowledge of βi is derived by player i through learning

(and not by introspection). To the extent that player i bases his choice of strategy solely

on βi, it makes sense to assume that player i is unaware of the payoff, information and

categorization structure of player j. Player i need not be aware of ϕ, the feedback structure

either.

2.2 Endogenous Categorizations

Players put together situations according to their perceived similarity under the constraint

that categories should contain a sufficient amount of data if possible.

Formally, each player i is endowed with a subjective homogeneity function ζi : 2
Xj →

[0, 1] defined over subsets of Xj where for every Ck
i ⊆ Xj, ζi(Ck

i ) ∈ [0, 1] is a measure of

how similar to one another the situations in the set Ck
i are perceived by player i to be. We

assume that a singleton set has maximum homogeneity, i.e. ζi ({xj}) = 1 for all xj ∈ Xj,

though we also allow for homogeneity functions such that ζi(X) = 1 for some non-singleton

X. We allow for homogeneity functions such that for some non-singleton subset X ⊆ Xj

it holds that ζi(X) = 0, in which case the set X is considered maximally heterogeneous

(because the situations in X are considered very dissimilar).15
,16

We relate the analogy partitions of the players to the strategy profile for any given

threshold parameter κ through the following definition:

14When the feedback ϕ is complete (i.e. when it contains information about the entire profile (a, x) for
all choices of action profiles) or when it contains information only about the equilibrium path in extensive
form games of complete information, the above definition is equivalent to the one provided in Jehiel (2005)
for extensive form games or Jehiel and Koessler (2008) for Bayesian games. For more general specifications
of the feedback structure ϕ , our definition can be viewed as a natural generalization of the analogy-based
expectation equilibrium as previously defined.

15If two situations xi, x
′
i ∈ Xi have different actions sets, i.e. Ai (xi) ̸= Ai (x

′
i), we assume that any

subset that contains both situations has maximal dissimilarity, which implies that an adjusted analogy
partition will never bundle nodes with different action sets, as required in our construction.

16It would be natural to impose further extra properties, such that if X ⊆ X ′ then ζi (X) > ζi (X
′), but

this will not matter for our analysis in this paper.
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Definition 4 Given σ and a threshold κ > 0, we say that C = (Ci, Cj) is κ-adjusted to σ

if for each player i, her analogy partition Ci =
{
C1
i , ..., CK

i

}
satisfies the following criteria

1. For each x ∈ Xj with µσ({x}) ≥ κ, there exists k such that Ck
i = {x}.

2. If X ⊆ Xj and ζi(X) = 0, there exists no k such that Ck
i = X.

3. Let X sing
j denote the set of situations put into singleton analogy classes in Ci. If Ck

i is

such that µσ(Ck
i ) < κ, then for any X ⊆ Xj \(Ck

i ∪X sing
j ), it holds that ζi(Ck

i ∪X) = 0.

4. For any collection of non-singleton analogy classes
{
Ck1
i , ..., CkM

i

}
in Ci, there is

no collection
{
X1, ..., XN

}
of pairwise disjoint sets, such that ∪N

j=1X
j = ∪M

j=1C
kj
i ,

µσ(Xj) ≥ κ for all j, and minN
j=1 ζi(X

j) > minM
j=1 ζi(C

kj
i ).

The threshold parameter κ captures the amount of data that is considered necessary

by the players to find the estimate in a category sufficiently reliable in line with the bias-

variance trade-off. We could have considered a different threshold parameter κi for each

player i, but our applications will not make use of such an asymmetry.

Roughly, the first condition says that if a situation is encountered enough times (as

parameterized by κ), it is treated as a singleton analogy class (as there is no need to

bundle it with other situations to meet the minimum mass criterion). In applications, we

will have in mind that on-path situations satisfy this minimum mass requirement. The

second condition requires that when a subset of situations is considered to induce maximal

heterogeneity, the corresponding situations cannot be bundled together into one analogy

class, which seems like a natural condition to impose.17 The third condition says that

the only reason for an analogy class not to meet the minimum mass condition is that

adding other situations to the analogy class would induce maximum heterogeneity. The

fourth condition requires a kind of local optimality requirement considering as criterion

the infimum of homogeneities over the various analogy classes.18

The reduced-form properties in Definition 4 can be related to optimality properties

obtained in simple prediction problems (as considered in Mohlin, 2014). In a prediction

problem, one has to predict a random variable Y ∈ R associated with an observation

X = x ∈ X ⊆ Rn. Pairs (X, Y ) are independent draws from a continuous and bounded

joint probability density function f , such that Y = m (x) + ε (x) where m (x) denotes the

17Instead of employing the notion of sets with maximal heterogeneity we could speak of sets whose
homogeneity is below some threshold. For example part 2 of Definition 4 could be rephrased as follows: ’If
X ⊆ Xj and ζi(X) ≤ δ, there exists no k such that Ck

i = X.’ The threshold δ would be a primitive of the
model in the same vein as κ. Sets with homogeneity below the threshold would serve the same function
as sets with maximal heterogeneity in our current set-up.

18With no impact on the analysis, one could have generalized condition 4 to require that it is not

the case that when ∪N
j=1X

j = ∪M
j=1C

kj

i , we have that µσ(Xj) ≥ κ for all j, and W (ζi(X
1), ...ζi(X

n)) >

W (ζi(Ck
i ), ζi(Ck′

i )) for some given increasing and concave functionW . We have chosen the infimum criterion
mostly to avoid adding an extra less central notation.
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conditional mean of Y at x and ε (x) denotes an error term with variance σ2
x assumed

to be independently drawn across observations. The agent partitions X into categories

and upon observing x predicts that Y is equal to the empirical average associated with

objects in the category x belongs to given the finite observed sample. A categorization

is said to be optimal if it minimizes the expected squared prediction error. It turns out

that (asymptotically as the sample size grows large) an optimal categorization features

categories that are larger for parts of X where the variance σ2
x is high, the density f is low,

and the conditional mean is rough (in the sense that the local variations of m are big).19

Since f is continuous, Euclidean distance acts as a proxy for differences in conditional mean.

When the conditional mean moves more relative to Euclidean distance (i.e. the derivative

of m is larger) there is a greater need to reduce Euclidean distance within categories, i.e.

to increase within-category homogeneity.

Relating this to our current framework, we believe that an agent’s intuitive judgment of

similarity among decision situations are responsive to cues that tend to proxy for differences

in behavior, in the typical environment of the agent. Consequently, the agent prefers anal-

ogy classes that are homogeneous with respect to these intuitive similarity judgments. The

comparative static results for the optimal categorizations in Mohlin (2014) have analogs

in the conditions of Definition 4. The first condition incorporates the effect of the den-

sity. The second condition relates to the effect of the roughness of the conditional mean.

The third condition relates to the interaction of density (in the form of the minimum

mass condition) and the roughness of the conditional mean (in the form of the maximum

heterogeneity condition).

There are however notable differences between our setting and the one studied in the

prediction problem of Mohlin (2014). In our approach, the homogeneity function used by

an agent is subjective and viewed as a primitive. This is to be contrasted with Mohlin’s

setup in which f and thus the notion of homogeneity (as induced by the Euclidean distance

and the roughness of the conditional mean) are objective. Moreover, we do not consider

samples of finite size in our approach, which allows us to eliminate estimation errors in each

category (as reflected in the definition of consistent analogy-based expectations). This is

to simplify matters and to focus on the non-random dimension of the bias induced by the

categorical expectation formation. It also implies that our Definition 4 cannot incorporate

a role for the variance of the data-generating process (unlike in Mohlin, 2014).20 Given the

subjective character of the prediction problem to be solved by players, we believe that our

reduced-form approach as captured in Definition 4 is preferable to an exact optimization

criterion, especially taking into account the potential difficulty players may face when

solving such optimization problems.

19One may ask why agents use categorizations rather than other statistical methods, such as kernel-
regression, to form predictions. We refer to section 5.1 of Mohlin (2014) for a discussion of this matter.

20Extending the model to allow for estimation errors as well as for the possibility that players subjectively
consider the presence of aggregate shocks that apply to all data of a given situation is left for future research.
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As an alternative to Definition 4, player i may consider solving an optimization problem

consisting in the choice of an analogy partition Ci =
{
Ck
i

}K
k=1

that is a solution to

max
Ci∈P(Xj)

Wi(κ̃i

(
ζi
(
C1
i

)
, µσ(C1

i )
)
, ..., κ̃i

(
ζi
(
CK
i

)
, µσ(CK

i )
)
, (2)

for some functions Wi and κ̃i assumed to be weakly increasing in their arguments where

P (Xj) denotes the set of partitions of Xj. We note that such an approach to the link

between the analogy partition of player i and the strategy profile σ would be less parsimo-

nious than our proposed one without adding much insight to our subsequent applications.

Moreover, such an optimization problem would generally be hard to solve for player i,

hence our modeling choice of only imposing the desiderata shown in Definition 4.21

2.3 Categorization Equilibrium

For fixed ε = (ε1, ε2) and κ, we define:

Definition 5 A profile (σ, C) is an (ε, κ)-categorization equilibrium if

(a) σ is an ε-perturbed analogy-based expectation equilibrium given C and

(b) C is κ-adjusted to σ.

An (ε, κ)- categorization equilibrium can be understood as a steady state as follows.

Assume the system has stabilized to (σ, C). When looking at the data generated by pre-

vious matches, players would be led to choose analogy partitions C that are κ-adjusted

to the strategy profile σ used in those matches. When trying next to form analogy-based

expectations using such analogy partitions, they would be led to have beliefs as defined

in (1) given that the play is governed by σ. They would then play as assumed in σ given

that σ is an ε-perturbed analogy-based expectations equilibrium (ABEE) for C, thereby

yielding the desired steady state property.22

Like in trembling-hand equilibrium (Selten, 1975), we focus on environments in which

trembles are rare (ε → 0). We also focus on environments in which data for situations that

are observed without trembles are abundant, thereby leading us to assume that κ is small

21More formally, consider a more structured version of this problem, such as one requiring that situations
are categorized so as to produce the largest overall homogeneity – for example, measured as the sum or the
infimum of homogeneities ζi

(
Ck
i

)
over the different analogy classes Ck

i – subject to the constraint that each
analogy class should have total mass no smaller than some threshold κ ∈ R+. It is readily verified that
this more structured problem would be harder to solve than the knapsack problem studied in computer
science. But, the knapsack problem is known to be NP-hard, thereby formalizing the difficulty of solving
our problem in general.

22We implicitly describe here the case in which all players assigned to the same role would end up with
the same analogy partitions (requiring all subjects to sue the same categorization algorithm). Extensions
to non-unitary versions (c.f. Fudenberg and Levine, 1993) are possible but bring no additional insights to
the applications.
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(κ → 0). Given that trembles are rare, it seems natural to allow for environments in which

the data for off-path situations are scarce enough to require some coarse categorization.

We distinguish then between cases in which κ and ε have the same order of magnitude

leading to a notion of ρ-coarse categorization equilibrium and cases in which ε is much

smaller than κ, leading to the notion of coarse categorization equilibrium. Formally,

Definition 6 A profile (σ, C) is a categorization equilibrium if there are sequences (εm)m
and (κm)m converging to zero and a sequence (σm)m converging to σ, such that (σm, C)

is an (εm, κm)-categorization equilibrium for all m. If limm→∞ κm/εmi = ρi, then (σ, C)
is referred to as a (ρ1, ρ2)-coarse categorization equilibrium. If limm→∞ κm/εmi = ∞ for

i = 1, 2, then (σ, C) is referred to as a coarse categorization equilibrium.

Through part 1 of Definition 4, we have that expectations about opponent’s behavior

in situations that are observed without tremble are correct in a categorization equilib-

rium, which is analogous to the requirement in self-confirming equilibrium (Fudenberg and

Levine, 1993) developed for extensive-form games (see Section 6.1 for elaboration). In a

(ρ1, ρ2)-coarse categorization equilibrium, several off-path situations must be bundled to-

gether in coarse categories when ρ1 and ρ2 are big enough. In the subsequent analysis, we

either consider coarse categorization equilibria or (ρ1, ρ2)-coarse categorization equilibrium

with either ρ1 or ρ2 not too small so as to obtain new predictions as compared to the

standard ones.

2.4 Dynamics

In some cases there will be no (ρ1, ρ2)-coarse categorization equilibrium. Hence we need to

describe an explicit learning dynamic for such cases. In an attempt to illustrate the possibil-

ity of cycling that could emerge then, we will consider the following dynamics chosen for its

simplicity. In period t agents form a profile of analogy partitions C (t) = (Ci (t) , Cj (t)) that
is κ-adjusted to behavior in the preceding period, denoted σt−1. Expectations for period t

are based on σt−1 filtered through C (t). That is, the expectation in period t about a situ-

ation assigned to Ci (t) is identified with the aggregate distribution observed in Ci (t) given
the behaviors σt−1 observed in period t−1. These expectations induce behavior σt in period

t (assuming that players best respond to their expectations when they do not tremble).

At t+ 1, agents form a new profile of analogy partitions C (t+ 1) = (Ci (t+ 1) , Cj (t+ 1))

which is κ-adjusted to σt. Expectations for period t + 1 are based on σt filtered through

C (t+ 1), and so on. The dynamics is parameterized by the initial choice of analogy par-

titions C (1), as well as the the tie-breaking rule in case of multiple best responses. When

such a dynamic learning model has a steady state it corresponds to a categorization equi-

librium. However, we will consider the dynamics to cover cases in which there is no steady

state and cycles emerge instead. Our main illustration of this will be the adverse selection

game developed in Section 5.
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3 Ultimatum/Bargaining Game

Consider an Ultimatum game where a proposer (first-mover) offers a share to a responder

(second-mover) which he can either accept or reject. That is, the strategy of the proposer is

a splitting share sP ∈ [0, 1], and a strategy for the responder is an acceptance decision rule

that maps the various offers onto an acceptance/rejection decision sR : [0, 1] → {R,A}.
The proposer’s payoff is equal to 1 − sP if the offer is accepted and zero otherwise. The

responder’s payoff is sP if the offer is accepted and v ≥ 0 otherwise. Here v may represent

the responder’s value of an outside option. The proposer has to predict the acceptance

probability of the responder for the various proposer’s offers that can be identified with

the situations in the above abstract formulation. In doing so she may bundle several offers.

When assessing how the responder’s acceptance probability depends on the offer sP , it

seems plausible that the the proposer would believe that the closer two offers are, the closer

are their associated acceptance probabilities. This leads us to assume that the notion of

similarity used by the proposer is based on the Euclidean distance in the space of offers

[0, 1]. More specifically, for any subsetX of [0, 1], we assume that the homogeneity function

used by the proposer is

ζP (X) = 1− 1

2
(supX − infX) .

It follows that the homogeneity of a singleton analogy class is 1 and the homogeneity of

the entire set [0, 1] of all offers is 1/2.

Our ultimatum application has a continuum of actions for the proposer, but our general

construction is easily adapted to this case. The proposer will use a pure strategy in

our proposed categorization equilibrium. By part 1 of Definition 4, the corresponding

(equilibrium) offer forms a singleton (on-path) analogy class in the proposer’s analogy

partition. By part 4 of Definition 4, if an off-path analogy class is not an interval then

the union of this analogy class and the on-path singleton analogy class is an interval. Let

Koff be the number of off-path analogy classes. In line with our general construction, we

assume that trembles are uniform on [0, 1]. By part 3 of Definition 4 each category must

have a mass of at least κ (since under our assumptions no subset X of [0, 1] can have

zero homogeneity). It follows that we need ε/Koff > κ. Additionally, to satisfy part 4 of

Definition 4, we need the condition κ > ε/
(
Koff + 1

)
and that supX − infX should also

be the same for all off-path analogy classes.

In the next Proposition, we characterize the ρ-coarse categorization equilibria when
1
2
< ρ < 1

3
ensuring that there are two off-path categories as just informally suggested.23

We also characterize the coarse equilibrium (that can be viewed as a ρ-coarse categorization

with ρ < 1
2
). Essential proofs not appearing in the main text are placed in the Appendix

(with less essential aspects being relegated to the Online Supplement).

23ρ refers here only to the proposer, since for the responder the problem is a simple decision problem
(with the no need to form expectation about the play of the opponent).
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Proposition 1 There is a unique coarse categorization equilibrium. It is such that the

offer is s∗P = v, and there is a single off-path analogy class . Assuming that 1
2
< ρ < 1

3
,

ρ-coarse categorization equilibria have two off-path analogy classes. (a) If v ≥ 0.5 then in

any ρ-coarse categorization equilibrium s∗P = v. (b) If v ∈ (0.25, 0.5) then in any ρ-coarse

categorization equilibrium s∗P ∈ [v, 0.5]. (c) If v ≤ 0.25 then in any ρ-coarse categorization

equilibrium s∗P ∈ [v, 2v].

A subgame perfect Nash equilibrium would require that the proposer offers s∗P = v.

In a categorization equilibrium with κm/εm → 0 there would be arbitrarily many off-

path analogy classes and so we would recover the subgame perfect Nash equilibrium, with

s∗P = v. Interestingly, this is also the prediction in a coarse categorization equilibrium (or

more generally in a ρ-coarse categorization equilibrium with ρ < 1/2). In this case there

is a single off-path analogy class. However, when ρ > 1
2
, ρ-coarse categorization equilibria

allow for predictions away from the standard one. When 1
2
< ρ < 1

3
, there are ρ-coarse

categorization equilibria in which (for some values of v) more equal splits may arise.24

As an alternative to the above homogeneity function, one could assume that ζP (X) = 0

when X is not an interval, and that ζP (X) = 1 − 1
2
(supX − infX) otherwise. Such a

modified notion of similarity and homogeneity may reflect a deeper understanding of the

proposer that if two offers belong to the same analogy class, it would have to be that any

intermediate offer also belongs to it. In this alternative, analogy classes would have to be

intervals (as otherwise it would violate part 2 of Definition 4). Moreover, proposals away

from the standard one could arise even in coarse categorization equilibria. Specifically, any

offer s∗P ∈ [v,
√
v] could be sustained in a coarse categorization equilibrium in contrast to

the finding of Proposition 1.25

4 Chainstore Game

In this Section, we apply our approach to the classic chainstore game, and illustrate how

the monopolist may deter entry in most periods in a categorization equilibrium.

4.1 Set-Up

4.1.1 Game

In the finitely repeated chainstore game an incumbent monopolist faces a sequence of T

challengers. Each challenger chooses to Enter (E) or to stay Out (O). If the challenger

24A similar qualitative insight would arise if there were N (instead of 2) off-path analogy classes, but as
N grows large, the effect would eventually vanish yielding the standard SPNE prediction.

25When s∗P > v, the perceived acceptance probability of offers sP ∈ [0, s∗P ) is
s∗P−v
s∗P

(remember that

trembling is uniform). Given the perception of the proposer, the best option in the range [0, s∗P ) is sP = 0

perceived to yield
s∗P−v
s∗P

. When s∗P <
√
v,

s∗P−v
s∗P

< 1 − s∗P which is the correct perception of the payoff

obtained by the proposer when proposing sP = s∗P .−
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enters then the monopolist chooses whether to Accommodate (A) or Fight (F ). The stage

game payoffs of the monopolist and a challenger are denoted uM and uC , respectively,

with uC (E,A) > uC (O) > uC (E,F ) and uM (O) > uM (E,A) > uM (E,F ). In words,

the challenger prefers entering and facing an accommodating incumbent over not entering,

and prefers not entering over entering and facing a fighting incumbent. The monopolist

prefers the challenger to stay out over accommodating an entering challenger, and prefers

the latter over fighting an entering challenger. Each challenger maximizes her payoff (in

the stage at which she is present) and the monopolist maximizes the sum of stage game

payoffs.

In the unique SPNE of this game, challengers choose E in every period and this is

always followed by A, something that can be verified using backward induction. This

prediction has been considered unintuitive, as the monopolist would seem to be able to

deter early entry decisions by playing F in case of entry. While this kind of behavior

cannot arise in a SPNE, we will establish that it can arise in a categorization equilibrium.

To make the chainstore game fit into our general two-player framework, we assume the

challengers at the various time periods t form a single player, the challenger.26 We also

assume that the trembling probability is the same for the monopolist and the challenger.

4.1.2 Similarity and Homogeneity

A key modeling choice concerns the similarity between histories and the homogeneity of

sets of histories. In the context of the chainstore game, we believe it plausible that players

would consider that there is an important qualitative difference between histories in which

there was a previous entry that was not immediately followed by a fight decision and other

histories (either with no previous entry at all or with entries immediately followed by a

fight decision). Accordingly, we will assume that subsets of histories that include both

kinds of histories have minimal homogeneity. In effect, it will force us to have analogy

classes that do not mix these two subsets of histories (according to part 2 of Definition 4).

Other features can be incorporated into the homogeneity function, such as requiring that

histories in nearby stages are more similar, but this will be play no role in our analysis of

coarse categorization equilibria.

Formally, we first consider the nodes at which the challenger must make a decision and

refer to the set of these nodes as QC . We consider two subsets of QC :

QTough
C = {q ∈ QC : No E or all E immediately followed by F in history of q} ;

QSoft
C = {q ∈ QC : Some E immediately followed by A in history of q} .

We require that for any qTough ∈ QTough
C and qSoft ∈ QSoft

C , if qTough and qSoft belong to

X, then ξM(X) = 0. Any subset X containing only elements in QTough
C or only elements

26This has no effect on the analysis of SPNE.
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in QSoft
C is supposed to satisfy ξM(X) > 0.

Regarding the nodes at which the monopolist must make a decision, we denote the set

of those corresponding to period t by Qt
M and we distinguish in Qt

M two subsets:

Qt,Tough
M =

{
q ∈ Qt

M : No E or all E immediately followed by F in history of q
}
;

Qt,Soft
M =

{
q ∈ Qt

M : Some E immediately followed by A in history of q
}
.

We require that if Y contains two nodes q and q′ that either, (a) correspond to two different

time periods, or (b) do not both belong to Qt,Tough
M , or (c) do not both belong to Qt,Soft

M for

some t, then ξC(Y ) = 0. Any Y not containing two such elements is supposed to satisfy

ξC(Y ) > 0.

Observe that on the challenger’s side, we do not allow histories at different calendar

times to be bundled together, which may fit better with situations in which there is a

different challenger at each time t, focusing on histories corresponding to that calendar

time. We will later discuss what happens when histories with different calendar times are

allowed to be bundled together also on the challenger’s side.

4.2 Categorization Equilibrium

We will focus on coarse categorization equilibria and discuss later how ρ-coarse catego-

rization equilibria look like for ρ large but not infinite (as implicitly required in coarse

categorization equilibria).

4.2.1 Strategy profile

We define the threshold

k∗ = min {k ∈ N such that uM(E,F ) + kuM(O) ≥ (k + 1)uM(E,A)} . (3)

Suppose that we are in the generic case where the inequality holds strictly for k = k∗. In

this case we consider the following strategy profile σT :
27

• Challenger t ≤ T − k∗ strategy. If E was always matched with F in the past, or if

there was no E in the past, play O. Otherwise play E.

• Challenger t > T − k∗ strategy. Play E.

• Monopolist strategy. At t > T − k∗, play A. At t ≤ T − k∗; play F if E was always

matched with F in the past, or if there was no E in the past; otherwise play A.

27When the condition in 3 holds with equality for k = k∗ we need to redefine the strategy profile so that
entry and accommodation begins already in period T − k∗.
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On the path of play induced by this strategy profile, the challenger enters only in the

last k∗ periods, and the monopolist accommodates those entries (while she would fight the

challenger if entering in earlier periods).

4.2.2 Categorization profile

In a coarse categorization equilibrium, and given the strategy profile proposed above, the

analogy partition profile C is characterized as follows.

• Each on-path node is in a separate analogy class.

• The monopolist categorizes off-path challenger nodes based on whether there was

previously an act of E that was not met by F . The first analogy class bundles all

off-path nodes with a history in which E was always met by F , and the second

analogy class bundles all the remaining off-path nodes. Formally, let Qoff
C be the set

of monopolist decision nodes that are located off the equilibrium path,

C1
M =

{
q ∈ Qoff

C ∩QTough
C

}
;

C2
M =

{
q ∈ Qoff

C ∩QSoft
C

}
.

• Challengers categorize off-path monopolist nodes based on the stage of the game

only.28 Formally, let Qoff
M be the set of off-path monopolist decision nodes. For each

t let

C1
Ct =

{
q ∈ Qoff

M ∩QTough
M : q is in round t

}
;

C2
Ct =

{
q ∈ Qoff

M ∩QSoft
M : q is in round t

}
.

The above strategy profile and analogy partition profile together form a coarse catego-

rization equilibrium when T is large enough.

Proposition 2 There exists a T ∗ such that if T > T ∗, then (σT , C) is a coarse catego-

rization equilibrium of the chainstore game with T periods, implying that in the absence

of trembles the challenger enters only in the last k∗ periods, and the monopolist fights the

challenger in all but the last k∗ periods.

To emphasize the logic of the proposed equilibrium, observe that the only mistaken

expectations are those of the monopolist regarding off-path nodes in QTough
C . In particular,

if E occurs in period t = T −k∗ (i.e. the last period in which the challenger is supposed to

28We note that there are other categorizations that could be combined with σT to form a CE. For
example we could let challengers bundle all monopolist nodes from the same period in a separate category
for each time period. They would still have correct expectations.
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stay out) then the monopolist mistakenly expects that by playing F , the challengers will

be induced to stay out (with a probability roughly equal to T−k∗−1
T−k∗

) from then on, whereas

in reality, no matter what the monopolist does there will be entry in all remaining periods.

This mistake is caused by the fact that there isn’t enough mass of data on behavior at the

subsequent challenger nodes (due to our assumption that limm→∞ κm
T /ε

m
T = ∞) so that

they have to be bundled with many other nodes in QTough
C at which indeed fighting after

entry leads the challenger not to enter in the next period.

In a coarse categorization equilibrium, ε is supposed to be arbitrarily small compared

to κ leading to bundle all off-path nodes in QTough
C together. We note that the same

strategy profile as the one considered in Proposition 2 could be used to support a ρ-coarse

categorization equilibrium with ρ > N , as long as N and T are large enough.29 This means

that our construction only requires that κ be sufficiently (but not necessarily infinitely)

large relative to ε.30

4.3 Discussion

4.3.1 Other coarse categorization equilibria

Are there other coarse categorization equilibria? It is clear that one cannot support coarse

categorization equilibria with fewer periods of entry when the challenger is behaving op-

timally, as the challenger would always enter in the last k∗ periods anticipating that the

monopolist would find it optimal to play A (as implied by the definition of k∗). But,

one can easily support equilibria with more periods of entry. In fact, take any k∗∗ > k∗.

It is readily verified that replacing k∗ by k∗∗ in the above strategy profile would be a

categorization equilibrium for T large enough.

4.3.2 What if the challenger does not distinguish histories according to time?

Above we assumed a homogeneity function that implies that histories are distinguished

according to time. What happens if we assume a homogeneity function which relaxes this

while still keeping the idea that histories in which a previous entry was not immediately

matched by a fight behavior are very dissimilar from others? This would fit with appli-

cations in which it is the same challenger who acts in the different time periods and the

calendar time would not subjectively be considered by the challenger to affect dramatically

the monopolist’s behavior. In the Online Appendix S.2, we explore this alternative in de-

tail. We demonstrate the existence of a coarse categorization equilibrium of the chainstore

29Here ρ refers to the Monopolist as the challenger behaves rationally in the proposed equilibrium.
30Indeed, in such a case, nodes in QTough

C would have to be bundled in packages of at least N nodes,
thereby leading to the belief that by playing F the challenger would stay out with probability no smaller
than N−1

N . When N is large enough, this woudl give the same incentive to play the equilibrium as in the
coarse categorization equilibrium considered in Proposition 2.
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game where in the absence of mistakes there is no entry at all, and in case there is entry

by mistake the monopolist fights the challenger in all but the last k∗ periods.

4.3.3 Other finite horizon games

In the centipede game, a coarse categorization equilibrium would lead to immediate Take,

as in the Subgame Perfect Nash Equilibrium. This is a corollary of a result we establish

in section 6.1 that a coarse categorization is a self-confirming equilibrium (in the sense of

Fudenberg and Levine, 1993).

In public good games, in each period agents privately decide on how much to contribute

to the public good. The social benefit efficiency demands that everyone contributes in all

periods, but the marginal cost of contribution is assumed to lie in between the private and

social benefit so that in the unique subgame perfect equilibrium no one contributes in any

period. In some variants, agents at the end of a period can also decide whether or not to

punish other agents (after they have observed the profile of contributions in the current

period). The subgame perfect Nash equilibrium still predicts no contribution, as well as

no punishment in any period. This is in sharp contrast with behaviors experimentally

observed in such games: Fehr and Gächter (2000) have documented significant levels of

contribution, especially when agents have the possibility of punishing their peers, noting

that contributions do not decrease over time in the presence of the punishment option.

In the Online Appendix S.2, we apply our framework to such games, assuming that

histories in which agents have failed to contribute (in case there is no punishment stage),

and histories in which agents failed to contribute and were not punished, or contribu-

tors were punished (in case there is a punishment stage) are very dissimilar from other

histories where there was always contribution (in case there is no punishment stage), or

non-contributors were always punished and contributors never punished (in case there is

a punishment stage). This is analogous to our homogeneity assumption in the chainstore

game. It leads to the conclusion that categorization equilibria with significant levels of

contribution can be supported when agents have the opportunity to punish but not other-

wise.

5 On Cycling in Adverse Selection Games

5.1 Set-Up

5.1.1 Market

Consider a market for trade of indivisible objects with random quality ω distributed on

Ω = [0, 1] according to a continuous and differentiable density function g, with cumulative

G. Sellers know the quality ω of their good. But buyers do not observe qualities; they only

know the distribution of ω. The valuation of a given seller coincides with the quality ω of
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his good. The corresponding valuation of a buyer is v = ω + b, where b ∈ (0, 1) represents

gains from trade. We posit a one-to-one trading mechanisms between pairs consisting of

one seller and one buyer drawn at random from their respective pools. In each pair, the

seller and the buyer act simultaneously. The seller quotes an ask price a (ω) that depends

on the quality ω. The buyer quotes a bid price p ∈ [0, 1]. The market mechanism is such

that if p < a there is no trade, and if p ≥ a trade occurs at price p. Hence, if there is trade

the buyer obtains utility u (p) = v− p, and the seller obtains utility p. If there is no trade,

the seller gets ω and the buyer gets 0. This can be viewed as a Bayesian game between

one seller informed of the state ω and one buyer not observing ω with action profiles and

payoffs as just shown. This is the game considered in Esponda (2008).

In this modeling of the trading mechanism, setting the ask price equal to the quality

a(ω) = ω is a weakly dominant strategy for the seller (just as bidding one’s own valuation is

a weakly dominant strategy in the second-price auction), and from now on we will assume

that the seller employs this strategy.

To make the analysis simple, we assume that b < (g (1))−1 and that G has the monotone

reversed hazard rate property. That is, for all p,

∂

∂p

(
g (p)

G (p)

)
< 0.

Moreover, we assume the following smoothness condition: |g′ (p)| < g (p) for all p.31

In a Nash equilibrium, the buyer quotes a bid price p so as to maximize:

πNE (p) =

∫ p

ω=0

(ω + b− p) g (ω) dω = G (p) (E [ω|ω ≤ p] + b− p) .

It is readily verified (see Online Appendix) under our assumptions that there exists a

unique Nash equilibrium in which the bid price pNE of the buyer is uniquely defined by
g(pNE)
G(pNE)

= 1
b
.32

5.1.2 The Categorization Setup

To apply the general framework introduced above we identify Ω with X , and we adopt

straightforward extensions of our definitions to deal with the case of a continuum of states

and a continuum of actions.

Feedback. Since the coarse categorization will only concern the buyer, it is enough to

specify which profiles (ω, a) of quality ω and ask prices a are disclosed to new buyers. As

seems natural in this application and in line with Esponda (2008), we posit that (ω, a)

31While not essential for our main conclusion regarding the presence of price cycles, these extra assump-
tions will simplify the analysis and ensure that there is a unique interior Nash equilibrium.

32In the case of a uniform quality distribution g this is πNE (p) = p
(
b− p

2

)
, so pNE = b.
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appears in the feedback only when there is trade, i.e. when a < p. This defines the

ϕ-function for the application.

Trembles. We will assume that only the buyer trembles. This is motivated on the

ground that the seller, but not the buyer, has a weakly dominant strategy, thus making

the discovery of the best strategy simpler for the seller. Specifically, with probability 1− ε

the buyer picks a best response to her expectations and with probability ε she trembles.

When trembling, we assume that the buyer choose bids according to a pdf f and cdf F

with full support on [0, 1].33 The seller always chooses his weakly dominant strategy.

Similarity and Homogeneity. Given that payoffs depend continuously on ω, it is nat-

ural to assume that when categorizing Ω, the buyer employs a homogeneity function that

is decreasing in the Euclidean distances between the various elements in the considered

set. For concreteness we let ξ(C) be equal to the the difference between the supremum

and infimum ω among the elements of C. Note that minimal homogeneity is obtained for

C = [0, 1] and maximal homogeneity is achieved for intervals that vanish to points. This

notion of homogeneity will (in line with part 4 of Definition 4) give rise to interval analogy

partitions in which the set Ω is partitioned into various consecutive intervals.

Threshold Mass. In line with our general assumptions, we have in mind that for on-

path qualities ω, i.e., ω such that (ω, a) is disclosed when the buyer does not tremble, there

are enough data about the seller’s ask price so that ω can be categorized finely. Since we

are considering a setup with a continuum of ω, a strict application of part 1 of Definition

4 would not allow to categorize on-path qualities ω as singleton analogy classes, regardless

of how small κ is. We nevertheless make this assumption so as to simplify the exposition,

and we note that the assumption could be justified by our view of the continuum as an

approximation of the discrete case. (See Jehiel and Mohlin (2021) for a fuller discussion.)

We consider the dynamic formulation sketched in Subsection 2.4. Denote by p∗ the bid

price chosen by non-trembling buyers in generation t− 1. In generation t, all ω ≤ p∗, will

be treated as singleton analogy classes so that buyers will understand that the ask price is

a = ω for ω < p∗. However, for ω > p∗, buyers will be using a coarse analogy partition of

(p∗, 1] consisting of K ≥ 1 analogy classes C1, C2, ..., CK defined by Ck = (ck−1, ck] where

p∗ = c0 < c1 < c2 < ... < cK−1 < cK = 1.

We will require that any Ck corresponds to a mass no less than κ. As in our general

framework, we will be interested in the shape of categorizations and bidding strategies in

the limiting case of κ → 0 and ε → 0.

33In line with our trembling formulation described in Section 2, we could impose that f ≡ 1 but our
results apply to any f , hence our formulation.
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5.1.3 Preliminary Analysis

Mass of Observations. The density of transactions conditional on trembling is g̃ (ω) :=

g (ω) (1− F (ω)), and the density of transacted qualities in the dataset is thus given by

µσ,ε
p∗ (ω) =

{
(1− ε) g (ω) + εg̃ (ω) if ω ≤ p∗;

εg̃ (ω) if p∗ < ω.

In what follows we suppress the subscript reference to p∗, relying on the context to indicate

the relevant p∗.

Adjustment of Categorizations to Observations. As already mentioned, we view

our continuum model as a tractable approximation of a discrete model with finitely many

prices and types. In a discrete model, as κ → 0 and ε → 0 each type ω ≤ p∗ is put in a

singleton analogy class. This motivates our focus on the limiting case of an arbitrarily fine-

grained categorization below p∗ in the continuum model. For types above p∗ the number of

categories depend on κ and ε in a more complex way. Each analogy class above p∗ should

satisfy κ ≤
∫ ck
ck−1

µσ,ε
p∗ (ω) (s) ds. Consequently, the number of categories above p∗ (for any

p∗ < 1) is

K = max

{
1,

⌊
1

κ

∫ 1

p∗
µ (s) ds

⌋}
= max

{
1,
⌊(

G̃ (1)− G̃ (p∗)
) ε

κ

⌋}
≤ max

{
1,

ε

κ

}
.

If κ/ε → ρ for some constant ρ > 0, then in the limit an adjusted categorization will have

K analogy classes where K is bounded from above by max
{
1, 1

ρ

}
, which is finite, but

possibly larger than one. If we impose κ/ε → 0, as in the definition of coarse categorization

equilibrium, then there is a single analogy class above p∗.

Analogy-Based Expectations. Buyers predict the distribution of ask price a of a type

ω seller, knowing that trade occurs if a ≤ p. For a quality ω ≤ p∗ the buyers understand

that a (ω) = ω. Consequently, for a quality ω ≤ p∗ the buyer understands that the

probability of trade is zero conditional on ω ≤ p and one conditional on p > ω, i.e

̂Pr (a ≤ p|ω) = Pr (a < p|ω) = Pr (ω < p|ω) = I{ω≤p}. (4)

For a quality ω > p∗ the buyer forms a prediction of the ask price distribution associated

with qualities in analogy class Ck using the data generated under trembling. Using the fact

that a (ω) = ω we can write the probability density function (pdf) of ask prices conditional

on a quality in Ck as

g̃
(
a|ω ∈ Ck

)
=

g̃ (a)∫
ω∈Ck g̃ (ω) dω

=
g̃ (a)

G̃ (ck)− G̃ (ck−1)
.
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Figure 1: Expected utility for different values of p∗.

Thus, the buyer believes that the pdf of ask prices due to sellers with quality in Ck is

hCk (a) =

{
g̃(a)

G̃(ck)−G̃(ck−1)
if a ∈ Ck;

0 otherwise.

This implies that, for a quality ω > p∗ with ω ∈ Ck, the buyer perceives the probability of

trade at price p to be

̂Pr (a ≤ p|ω ∈ Ck) =

∫ p

a=0

hCk (a) da =


1 if ck < p;

G̃(p)−G̃(ck−1)

G̃(ck)−G̃(ck−1)
if ck−1 < p ≤ ck;

0 if p < ck−1.

(5)

Using the perceived probability of trade as a function of price p, and letting k(p) be such

that p ∈ (ck(p)−1, ck(p)] for p > p∗, the following lemma derives the perceived expected

payoff as a function of p.

Lemma 1 Let v (Cj) := E [ω|ω ∈ Cj] + b. The perceived expected payoff is

πCE (p|p∗) =



G (p) (E [ω|ω ≤ p] + b− p) if p ≤ p∗

G (p∗) (E [ω|ω ≤ p∗] + b− p)

+
∑

k(p)−1

k=1 (G (ck)−G (ck−1))
(
v
(
Ck
)
− p
)

+
(
G̃ (p)− G̃

(
ck(p)−1

)) G(ck(p))−G(ck(p)−1)
G̃(ck(p))−G̃(ck(p)−1)

(
v
(
Ck(p)

)
− p
) if p > p∗.

As an illustration consider the case of a uniform quality distribution g, i.e., G (p) = p

for all p ∈ [0, 1], a uniform mistake distribution fp∗ above p∗, i.e., Fp∗ (p) = p/ (1− p∗) for

all p ∈ [p∗, 1]. We assume κ high enough to induce a single analogy class above p∗. Figure

1 illustrates the payoff function for b = 0.3 and two different values of p∗.
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Dynamics. Letting p∗t denote the price quoted by buyers of generation t when not trem-

bling, our dynamic system is completely characterized by the initial value of this price p0

and the recursive condition

p∗t+1 = arg max
p∈[0,1]

πCE(p | p∗t ).

5.2 Results

5.2.1 Learning and Cycling

In the following, we consider the case in which κ/ε → ρ for some constant ρ possibly equal

to 0. Our main result is that the sequence of p∗t in the dynamics just described has no rest

point and must cycle over finitely many values p(1), ..., p(m), one of them being the Nash

Equilibrium price pNE as previously characterized, and the others being above pNE. In

order to establish this, we first derive three properties related to how p∗t+1 varies with p∗t

depending on whether p∗t is below, above, or equal to pNE. These properties are referred

to as lemmata and are proven in the Appendix.

Lemma 2 If p∗t = pNE then p∗t+1 > pNE.

Lemma 3 If p∗t > pNE, then either p∗t+1 = pNE or p∗t+1 > p∗t .

Lemma 4 If p∗t < pNE, then p∗t+1 > p∗t .

Roughly, these three properties can be understood as follows. As already mentioned,

categorical reasoning induces uninformed buyers to correctly infer that the quality corre-

sponding to an ask price a below p∗ is a. On the other hand, the coarse bundling for ask

prices above p∗ leads uninformed buyers to incorrectly infer that ask prices slightly above

p∗ are associated with an average quality that lies strictly above p∗. Thus, a buyer would

choose a bid price strictly above p∗ whenever p∗ ≤ pNE as she would incorrectly perceive

a jump in quality when increasing slightly the bid price above p∗ (and any bid price below

p∗ would rightly be perceived to be suboptimal). This is in essence the content of lemmata

4 and 2. By contrast, when p∗ > pNE, the best bid price below p∗ is rightly perceived to

be pNE and the same logic leads the uninformed buyer to either choose pNE or a bid price

strictly above p∗ with the aim of taking advantage of the jump in the perceived quality

when the ask price lies above p∗.

The above properties immediately imply that the price dynamics has no rest point,

i.e., there is no p∗t such that p∗t+1 = argmaxp∈[0,1] π
CE (p|p∗t ) = p∗t . To see this, assume

by contradiction that p∗ is a rest point. By Lemma 4, it cannot be that p∗ < pNE since

p∗t = p∗ < pNE would imply that p∗t+1 > p∗t = p∗. By Lemma 2, it cannot be that p∗ = pNE

since p∗t = p∗ would imply that p∗t+1 > pNE. Finally, by Lemma 3, it cannot be that

p∗ > pNE since p∗t = p∗ would imply either that p∗t+1 > p∗t or that p∗t+1 = pNE and thus
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p∗t+1 ̸= p∗t (given that p∗t = p∗ ̸= pNE). Even though there is no rest point, we can establish

that there is a price cycle (making use of Lemmas 2-4), that consists of the Nash price and

one or more prices above the Nash price.

Proposition 3 There exists an increasing sequence (p(1), ..., p(τ)) with τ ≥ 2 and p(1) =

pNE such that if p∗t = p(i) for i ∈ {1, ..., τ − 1} then p∗t+1 = p(i+1), and if p∗t = p(τ) then

p∗t+1 = p(1). Moreover, the dynamic converges to the set
{
(p(1), ..., p(τ))

}
from any initial

price p0 ∈ [0, 1].

In the above analysis, we have considered pure strategies on the buyer side. Could it

be that by allowing mixing on the buyer side, we restore the existence of steady states?

We suspect that if we stick to our assumption that (at least) every ω weakly below the

support of the bid price strategy of the buyers would be treated as a singleton analogy

class, then there is no such steady state. Suppose that the lower bound p of the support

of buyer’ strategy is strictly lower than pNE. By the logic of lemma 4 the best response

would be strictly above p, so that p could not be part of the support in the steady state.

Suppose instead that p > pNE. (a) If the support is coarsely categorized in a neighborhood

of p then the best response is either strictly above p, or equal to pNE. (b) If the support

is finely categorized in a neighborhood of p each ω ≤ p + δ (for some δ > 0) is perfectly

distinguished, then the best response is either strictly above p + δ, or equal to pNE. In

either case (a) or (b) p cannot be the lower bound of a steady state support. Altogether,

this is suggestive that it would not be possible to support a steady state even allowing for

mixing on the bidding price.

6 Discussion

6.1 Relation to Other Solution Concepts

Focusing on extensive form games of complete information (i.e. allowing for simultaneous

moves but no asymmetric information), and assuming that feedback consists in disclosing

the played path, our notion of categorization equilibrium relates to self-confirming equilib-

rium (Fudenberg and Levine, 1993) and subgame perfect Nash equilibrium as follows:

Proposition 4 Consider an extensive-form game of complete information and assume

that the feedback consists of observing the path of play.

(a) For any homogeneity function, if (σ, C) is a categorization equilibrium then σ is a

(unitary) self-confirming equilibrium (Fudenberg and Levine, 1993, 1998).

(b) For any homogeneity function, if σ is a subgame perfect Nash equilibrium (SPNE)

then there is a C such that (σ, C) is a categorization equilibrium.
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(c) If σ is a subgame perfect Nash equilibrium (SPNE) then there may be no C such that

(σ, C) is a coarse categorization equilibrium.

Proof. (a) Since κm → 0 and εm → 0 players must have correct expectations about

behaviors on the path, given criterion 1 in definition 4. The result follows.

(b) Let L be the length of the longest path of play. This is the highest number of

mistakes needed to reach any terminal node under any strategy profile. By choosing

sequences (εm)m and (κm)m such that limm→∞ κm/ (εm)L < 1 we ensure that there is some

M such that for any m > M any (ε, κ)-categorization equilibrium will put all off-path

nodes in singleton analogy classes. This implies that all players have correct expectations

at all nodes. And since (for any finite m) all nodes are reached with positive probability

all players will play ε-best responses at all nodes, converging to exact best responses as

m → ∞.

(c) Consider the following version of the centipede game where players 1 and 2 take

turn choosing between Pass and Take. The unique SPNE is TP for Player 1 and PT for

21
P

T

(2,0)

P
1

T

(0,0)

T

P
2

T

(1,1)(4,0)

(0,0)
P

Player 2 (indicated by the fat arrows). Both of Player 2’s nodes are off-path and reached by

a single mistake (by Player 1 at the first node). If limm→∞ κm/εm = ∞ then Player 1 will

bundle these two nodes together (assuming Player 1 does not perceive them as maximally

dissimilar) and form the expectation that Player 2 passes with probability 1/2. Given this

belief, Player 1 perceives the expected utility of passing at both of her nodes to be 2.5

making it seem optimal to deviate from the strategy SPNE.

Part (a) of Proposition 4 establishes that categorization equilibrium refines (unitary)

self-confirming equilibrium, and hence coarse categorization equilibrium refines self-confirming

equilibrium. This happens because categorization equilibrium (compared to self-confirming

equilibrium) puts more structure on the admissible off-path beliefs, while perfectly distin-

guishing on-path nodes, thereby inducing correct on-path beliefs.

Part (b) says that subgame perfect Nash equilibrium (SPNE) is a refinement of catego-

rization equilibrium. The reason is that with complete freedom on how to choose sequences

(εm)m and (κm)m, we can always ensure that all nodes are put in singleton analogy classes

(this requires that ε is high enough relative to κ), thereby inducing best-responses in all

subgames.34 However part (c) tells us that this is not true for coarse categorization equi-

librium: there are SPNE that cannot be supported as a coarse categorization equilibrium.

34The fact that the homogeneity function does not matter in part (a) is simply a consequence of the
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The reason is that in a coarse categorization equilibrium one is not free choose sequences

(εm)m and (κm)m such that there are enough mistakes to put all nodes in singleton analogy

classes. In general we note that if κm/ (εm)l < 1 < κm/ (εm)l+1 then any node that is at

most l steps off the equilibrium path will be placed in a category of its own under any (εm,

κm)-categorization equilibrium, whereas nodes that are further away from the equilibrium

path may be bundled more coarsely.

Remark 2 (1) Part (a) of Proposition 4 states that there are SPNE strategy profiles that

are not supported by any coarse categorization equilibrium. The example invoked to prove

this actually shows something slightly stronger, that there may be no coarse categorization

equilibrium that supports a strategy profile that is outcome equivalent to the SPNE.

(2) When considering other classes of games such as Bayesian games and other feedback

structures ϕ such as the one considered in Section 5, one may wonder how categorization

equilibria relate to self-confirming equilibria defined in the sense of Battigalli (1987) or

Dekel et al. (2004). We note that if players are aware of the tremble structure as well as

ϕ, categorization equilibria need not be self-confirming equilibria given ϕ, even assuming

that κ is set so that on the path situations are treated as singleton analogy classes.35

(3) In the Online Appendix we provide two examples in which (σ,C) is a categorization

equilibrium but σ is not a Nash equilibrium. Constructing such examples either require

that the feedback differs from the path of play (in which case a normal form game with just

two players can be used to illustrate the claim) or (if the feedback is the path of play) that

one considers games with at least three players and some asymmetric information. In the

latter case we adapt an example from Fudenberg and Levine (1993) used to illustrate that

a self-confirming equilibrium may differ from a Nash equilibrium.

6.2 On the existence of steady state

When does a coarse (or ρ-coarse) categorization equilibrium exist? Suppose that in our ap-

proach to endogenizing the categorizations, we had required that the categorization chosen

by player i should be a solution to the maximization problem (2) for some functions Wi and

κ̃i. A generalized notion of steady state could then be defined to include distributions over

analogy partitions all solving the above maximization problem as well as strategies and

analogy-based expectations that would be indexed by the analogy partition in the support

of such distributions that would satisfy the consistency and best-response properties as

defined in Section 2. We conjecture that in finite environments (i.e., environments with

on-path nodes being distinguished perfectly, so that homogeneity is maximal in each singleton on-path
analogy class. In part (b) the irrelelvance of the homogeneity function stems from choosing sequences
(εm)m and (κm)m such that all off-path nodes are put in singleton analogy classes.

35This is so because, the conjecture σβi

j may be at odds with the observations when the trembling
structure as well as ϕ is known (for example, this is the case in the trade application developed below
when the trembles are not concentrated on bid prices above the maximum value of the seller).
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finitely many situations and actions), such a notion of steady state (allowing for a mixed

extension both to strategies as in Nash and to analogy partitions as in some recent work

by Jehiel and Weber (2023) would always exist.

Our approach uses Definition 4 instead of the optimization problem (2). However, we

conjecture that for fixed (ε, κ), such a notion of steady state might still exist in finite

environments, even if requiring in general a mixed extension, as just noted.36 Considering

the limit of such steady states as (ε, κ) go to 0 and κ does not get small relative to ε as we

do in the coarse categorization equilibrium of Definition 6 would complicate matters, and

as our analysis of the adverse selection market suggests, it is not clear we could support a

steady state in this limit. A more complete investigation of this requires further work.

6.3 On the similarity/homogeneity function

In this paper, the similarity between situations as well as the homogeneity function that

derives from it were left exogenous. While we believe the choice of similarity and homo-

geneity functions we have made in each application is intuitively appealing, it may be

desirable in future work to think of principles that could be used to guide this choice.

A perspective that we feel could be fruitful is the following. One may think of situations

as being parameterized by a vector of attributes. The similarity and homogeneity functions

could then be thought of as relying only on a subset of these attributes (for example, those

attributes appearing more frequently across the various games or environments faced by

the subject). One approach could then consist in choosing the similarity and homogeneity

functions based only on those attributes in an attempt to maximize the similarity and

homogeneity of opponent’s behavior across the various situations (as measured by some

notion of correlation). For example, in the bargaining application, we could consider an

environment consisting of games obtained by varying the outside option v of the responder.

In our language, a situation as viewed by the proposer would be parameterized by the

offer sP as well as v. Assuming that the only attribute used to form the similarity and

homogeneity function is sP would lead to adopt some homogeneity function that depends

on the euclidean distance in the sP space, as considered above in Section 3.

Obviously, more work is needed to develop such a perspective, but we hope the frame-

work introduced in this paper will be a useful step in pursuing this task left for future

research.

36One approach to prove this would be to propose Wi and κ̃i functions such that any solution to
optimization problem (2) would satisfy the conditions of Definition 4.
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Appendix

A.1 Ultimatum Game Application

Proof of Proposition 1. Suppose that κm > εm/2 as m → ∞ (which must hold in a

coarse categorization equilibrium). It implies that there is a single off-path analogy class for

allm. As εm → 0 the following holds. The responder rejects if sP < v and accepts if sP > v

and at sP = v she is indifferent between accepting and rejecting. Hence, the proposer

believes that the acceptance probability is 1 − v for an off-path offer, and consequently

believes that the expected utility of making an off-path offer sP is (1− sP ) (1− v). Note

that (1− sP ) (1− v) is decreasing in sP and approaches 1−v (from below) as sP approaches

0. Thus in categorization equilibrium the proposer must get at least 1− v, meaning that

we need s∗P ≤ v. Suppose v > 0. If s∗P ∈ (0, v) then the proposer earns 0 in categorization

equilibrium meaning that a deviation to off-path sP = 0 appears profitable. Thus, if v > 0

then s∗P = v in a categorization equilibrium. Suppose v = 0. If s∗P > 0 then the proposer

earns less than 1 in categorization equilibrium meaning that a deviation to off-path sP = 0

appears profitable. Thus, if v = 0 then s∗P = 0 in a categorization equilibrium.

Now suppose that εm/2 > κm > εm/3 as m → ∞, implying that there are two off-path

analogy classes for all m. As εm → 0 the following holds.

For (a), consider the case of v ≥ 0.5. The responder rejects if sP < v and accepts

if sP > v and at sP = v she is indifferent between accepting and rejecting. Hence, the

proposer believes that the acceptance probability is 0 for an off-path offer sP < 0.5, and

believes that the acceptance probability is 2 (1− v) for an off-path offer sP > 0.5. It follows

that the proposer perceives the expected utility of offering an off-path sP < 0.5 to be 0

and perceives the expected utility of offering an off-path sP > 0.5 to be (1− sP ) 2 (1− v).

Note that (1− sP ) 2 (1− v) is decreasing in sP and approaches 1 − v (from below) as sP

approaches 0.5. Thus in categorization equilibrium the proposer must get at least 1 − v,

meaning that we need s∗P ≤ v. If s∗P < v then the proposer earns 0 in categorization

equilibrium meaning that a deviation to off-path sP ∈ (0.5, 1) appears profitable.

For (b) and (c), consider the case of v ∈ (0, 0.5). The proposer believes that the

acceptance probability is 1 for an off-path offer sP > 0.5, and believes that the acceptance

probability is 2
(
1
2
− v
)
= 1−2v for an off-path offer sP < 0.5. It follows that the proposer

perceives the expected utility of offering an off-path sP > 0.5 to be 1−sP and perceives the

expected utility of offering an off-path sP < 0.5 to be (1− sP ) (1− 2v). Thus by deviating

to sP > 0.5 she perceives that she can get an amount that approaches 0.5 from below and

by deviating to sP = 0 < 0.5 she perceives that she can get exactly 1 − 2v. Deviation to

sP = 0 is perceived more profitable than deviation to sP > 0.5 if and only if v ≤ 0.25.

Naturally, in categorization equilibrium we must have sP ≥ v, as otherwise the responder

rejects and the proposer would perceive it profitable to deviate to sP > 0.5. Combining

this we see that if v > 0.25 then any sP ∈ [v, 0.5] is part of a categorization equilibrium,
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and if v ≤ 0.25 then any sP ∈ [v, 2v] is part of a categorization equilibrium.

A.2 Chainstore Application

Proof of Proposition 2. We need to show that for T > T ∗ there is a sequence (σm
T )m

converging to σT , such that (σm
T , C) is an (εm, κm)-categorization equilibrium for all m. We

define σm
T as the strategy profile which at each node puts probability εm on the action that

σT puts zero probability on. Since there are only two actions at each node this is enough

to specify σm
T . Since the starting point of (εm, κm) is arbitrary it is sufficient to show the

following: There exists a T ∗ such that for any T > T ∗ there is exists an m∗ such that if

T > T ∗ and m > m∗ then σm
T is an (εmT , κ

m
T )-categorization equilibrium of the chainstore

game with T periods.

1. First we explain why C is adjusted to σm
T for all m > m∗ (and all T ).

(a) For any T , if m is large enough, then κm
T < (1 − εmT )

T , ensuring that on-path

nodes have a mass exceeding the threshold κm
T and thus are treated as singleton

analogy classes, by point 1 of Definition 4.

(b) For off-path nodes following histories in which there was some E not matched

with F , our homogeneity assumptions imply that nodes in QSoft
C cannot be

bundled with nodes that are not inQSoft
C , and nodes inQt,Soft

M cannot be bundled

with nodes that are not in Qt,Soft
M , according to point 2 of Definition 4. (The

total mass of such histories would typically fall short of the κm
T threshold, but

the dissimilarity with other histories would not allow further bundling.)

(c) Furthermore, all off-path nodes in QSoft
C have to be bundled together and all

off-path nodes in Qt,Soft
M have to be bundled together (but separately for each

t) according to point 3 of Definition 4. This follows from the assumption that

limm→∞ κm
T /ε

m
T = ∞, which implies that the total mass of the off-path nodes

vanishes relative to the threshold κ.

(d) The situation is analogous for off-path nodes following histories in which there

was no E or any E was immediately followed by an F . The off-path nodes of

the challenger Qoff
C have to be partitioned into C1

M and C2
M , and the off-path

nodes of the monopolist have to be partitioned, for each t, into C1
Ct and C2

Ct.

2. Second we examine the analogy-based expectations

(a) Players have correct expectations at on-path nodes.

(b) Players also have correct expectations at nodes following off-path histories in

which there was some E not matched with F , i.e. at off-path nodes in QSoft
C

and Qt,Soft
M . This is so because after such histories, the challenger consistently

chooses E and the monopolist consistently chooses A after E.
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(c) Next consider off-path monopolist nodes following histories in which there was

no E or any E was immediately followed by an F , i.e. off-path nodes in Qt,Tough
M

for some t. (Such a node is only reached when the challenger plays E before

t ≤ T − k∗.) Challengers have correct expectations since they do not bundle

together nodes from different time periods. (Indeed this would be true even if

challengers did not distinguish between Qt,Tough
M and Qt,Soft

M .)

(d) It only remains to check the monopolist’s expectations at off-path nodes in

QTough
C . As εm → 0 the expectations here are determined by behavior at nodes

with histories containing a single mistake. The fraction of such nodes at which

the challenger chooses E vanishes as T → ∞. It follows that as T gets large,

the monopolist will expect that O is chosen with a probability close to 1.

3. Third and finally we verify that σm
T induces a εmT -best-responses given the analogy-

based expectations. We have found that the challengers have correct expectations

and it is easy to see that they best-responds to the monopolist’s strategy, so we focus

on the monopolist.

(a) Monopolist in period t ≤ T at an off-path node in QTough
M . By playing F , the

monopolist expects that with a probability close to 1, a string of O occur from

then on until the end of the game. By playing A, the monopolist correctly

expects a string of (E,A) until the end of the game. The former is at least as

good as the latter if uM(E,F ) + (T − t)uM(O) ≥ (T − 1 + 1)uM(E,A). For

t ≤ T − k∗ this is satisfied, but for t > T − k it is not satisfied, by the definition

of k∗.

(b) Monopolist at the on-path node in period t = T − k∗ + 1. This node is in

QTough
M , immediately preceded by the first instance of E. By deviating from

σT and playing F , the monopolist expects that with a probability close to 1, a

string of O occur from the next period until the end of the game. By complying

with σT and playing A, the monopolist correctly expects a string of (E,A) until

the end of the game. Deviation is then perceived unprofitable by the same

condition as before.

(c) Monopolist at an off-path node in QSoft
M . Regardless of what happens in the

current period, the monopolist (correctly) expects E in all subsequent periods.

The best response is to play A from now until the end of the game.

(d) Monopolist at an on-path node in period t > T − k∗ + 1. In the history of

such a node there has been at least one instance of E that was not immediately

followed by A, i.e. the node is in QTough
M . The monopolist (correctly) expects E

in all subsequent periods. The best response is to play A until the end of the

game.
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A.3 Adverse Selection Application

A.3.1 Deriving Perceived Expected Payoff

Proof of Lemma 1. The perceived expected payoff is

πCE (p|p∗) =
∫ p∗

0

̂Pr (a ≤ p|ω) (ω + b− p) g (ω) dω

+

∫ 1

p∗

̂Pr (a ≤ p|ω ∈ Ck) (ω + b− p) g (ω) dω,

where, using (4) we obtain

∫ p∗

0

̂Pr (a ≤ p|ω) (ω + b− p) g (ω) dω =

{
G (p) (E [ω|ω ≤ p] + b− p) if p < p∗

G (p∗) (E [ω|ω ≤ p∗] + b− p) if p ≥ p∗

and, writing i(p) for the analogy class that contains ω = p, using (5) we obtain,∫ 1

p∗

̂Pr (a ≤ p|ω ∈ Ck) (ω + b− p) g (ω) dω

=

k(p)−1∑
k=1

(
(G (ck)−G (ck−1))

(
E
[
ω|ω ∈ Ck

]
+ b− p

))
+
(
G̃ (p)− G̃

(
ck(p)−1

)) G
(
ck(p)

)
−G

(
ck(p)−1

)
G̃
(
ck(p)

)
− G̃

(
ck(p)−1

) (E [ω|ω ∈ Ck(p)
]
+ b− p

)

A.3.2 Preliminary Observations

Note that limp↑ck π
CE (p|p∗) = limp↓ck π

CE (p|p∗), for all i ∈ {1, ..., K − 1}, implying that

πCE (p|p∗) is continuous everywhere. Moreover, πCE (p|p∗) is piecewise differentiable with

points of non-differentiability only at category boundaries. The first derivative at p ∈(
ck(p)−1, ck(p)

)
is

∂πCE (p|p∗)
∂p

= −G
(
ck(p)−1

)
−
(
G̃ (p)− G̃

(
ck(p)−1

)) G
(
ck(p)

)
−G

(
ck(p)−1

)
G̃
(
ck(p)

)
− G̃

(
ck(p)−1

) (A1)

+ g̃ (p)
G
(
ck(p)

)
−G

(
ck(p)−1

)
G̃
(
ck(p)

)
− G̃

(
ck(p)−1

) (E [ω|ω ∈ Ck(p)
]
+ b− p

)
.
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One can show (Online Appendix S.3.1) that

∂πCE (p|p∗)
∂p

≥ g̃ (p)

((
E
[
ω|ω ∈ C1

]
+ b− p

)
− G̃ (p)

g̃ (p)

)
. (A2)

Letting p ↓ p∗ = ck(p)−1 we obtain

∂πCE (p|p∗)
∂p

∣∣∣∣
p↓p∗

= g̃ (p∗)
G (c1)−G (p∗)

G̃ (c1)− G̃ (p∗)

(
E
[
ω|ω ∈ C1

]
+ b− p∗

)
−G (p∗) .

One can show (Online Appendix S.3.1) that

∂πCE (p|p∗)
∂p

∣∣∣∣
p↓p∗

> g (p∗)
(
E
[
ω|ω ∈ C1

]
+ b− p∗

)
−G (p∗) . (A3)

Finally, we can find a lower bound on the second derivative of πCE (p|p∗) with respect

to p (see Online Appendix S.3.1). For p ∈ (p∗t , c1) we have

∂2πCE (p|p∗)
∂p2

≥ g̃′ (p)
(
E
[
ω|ω ∈ C1

]
+ b− p

)
− 2g̃ (p) . (A4)

A.3.3 Proof of Lemmata 2-4

Proof of Lemma 2. Since πCE
(
p|pNE

)
coincides with πNE (p) on [0, p∗] =

[
0, pNE

]
,

the constrained optimal p ∈ [0, p∗] is at p = p∗ = pNE. Differentiating πCE at p ∈ C1 =(
pNE, c1

]
, and letting p go to pNE, we obtain, using (A3),

∂πCE
(
p|pNE

)
∂p

∣∣∣∣∣
p↓pNE

> g
(
pNE

) (
E
[
ω|ω ∈ C1

]
+ b− pNE

)
−G

(
pNE

)
= G

(
pNE

)( g
(
pNE

)
G (pNE)

(
E
[
ω|ω ∈ C1

]
+ b− pNE

)
− 1

)

= G
(
pNE

)(1

b

(
E
[
ω|ω ∈ C1

]
+ b− pNE

)
− 1

)
=

G
(
pNE

)
b

(
E
[
ω|ω ∈ C1

]
− pNE

)
= g

(
pNE

) (
E
[
ω|ω ∈ C1

]
− pNE

)
> 0.

Here, the third and fifth equalities use the fact that g
(
pNE

)
/G
(
pNE

)
= 1/b. Since πNE (p)

is continuous, the desired result is implied.

Proof of Lemma 3. Since πCE (p|p∗t ) coincides with πNE (p) on [0, p∗t ], the constrained

optimal p ∈ [0, p∗t ] is at p = pNE < p∗t . Suppose that argmaxp∈[p∗t ,1] π
CE (p|p∗t ) = p∗t (requir-

ing
∂πCE(p|p∗t )

∂p

∣∣∣
p↓p∗t

≤ 0). By continuity of πCE (p|p∗t ), we have argmaxp∈[0,1] π
CE (p|p∗t ) =

pNE < p∗t .
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Proof of Lemma 4. Suppose, p∗t < pNE. Then the constrained optimal p ∈ [0, p∗t ]

is at p∗t . Differentiating πCE at p ∈ C1 = (p∗t , c1], and letting p go to p∗t , we obtain, using

(A3),

∂πCE (p|p∗)
∂p

∣∣∣∣
p↓p∗t

> g (p∗t )
(
E
[
ω|ω ∈ C1

]
+ b− p∗t

)
−G (p∗t )

= G (p∗t )

(
g (p∗t )

G (p∗t )

(
E
[
ω|ω ∈ C1

]
+ b− p∗t

)
− 1

)
≥ G (p∗t )

(
g
(
pNE

)
G (pNE)

(
E
[
ω|ω ∈ C1

]
+ b− p∗t

)
− 1

)

= G (p∗t )

(
1

b

(
E
[
ω|ω ∈ C1

]
+ b− p∗t

)
− 1

)
= g (p∗t )

(
E
[
ω|ω ∈ C1

]
− p∗t

)
> 0.

Hence
∂πCE(p|p∗t )

∂p

∣∣∣
p↓p∗t

> 0. By continuity of πCE note argmaxp∈[0,1] π
CE (p|p∗t ) > p∗t .

A.3.4 Proof of Convergence to Cycle in Proposition 3

Lemma A1 There is some δ > 0 such that if p∗ ≤ pNE then E [ω|ω ∈ C1] > p∗ + δ.

Proof of Lemma A1. We only sketch the proof here. For details see Online

Appendix S.3. Assume p∗ ≤ pNE. The mass in each analogy class (above p∗) is at least κ.

Let gmin = minω∈[0,1] g (ω) and gmax = maxω∈[0,1] g (ω). By the full-support assumption we

have gmin > 0. It can then be shown that c1 − p∗ ≥ κ
εgmax . Using this we can establish a

lower bound on the expected quality in analogy class C1.

E
[
ω|ω ∈ C1

]
≥ p∗ +

1

2
(c∗1 (p

∗)− p∗)2 gmin

(
1− F

(
1

2

(
pNE + 1

)))
We use Lemma A1 to establish convergence to the cycle from initial prices below pNE.

Lemma A2 Starting at p∗1 < pNE there is convergence to the set
[
pNE, 1

]
.

Proof of Lemma A2. Consider p∗t < pNE. By Lemma 4 we know that p∗t+1 > p∗t .

Using Lemma A1 in the proof of Lemma 4 we find that the first derivative of πCE (p|p∗t )
wrt to p, is bounded above zero as p goes to p∗t (from above)

∂πCE (p|p∗t )
∂p

∣∣∣∣
p↓p∗t

> g (p∗t )
(
E
[
ω|ω ∈ C1

]
− p∗t

)
> g (p∗t ) δ > δgmin > 0. (A5)

Here gmin = minp∈[0,1] g (p) > 0 by the full support assumption. We can also find a lower

33



bound for the second derivative of πCE (p|p∗t ) wrt to p. From equation (A4) we have

∂2πCE (p|p∗t )
∂p2

≥ g̃′ (p)
(
E
[
ω|ω ∈ C1

]
+ b− p

)
− 2g̃ (p)

≥
(
min
p∈[0,1]

g̃′ (p)

)
(p∗t + δ + b− p)− 2

(
min
p∈[0,1]

g̃ (p)

)
. (A6)

Note that

p∗t+1 ≥ min

{
p ∈ [p∗t , 1] :

∂πCE (p|p∗t )
∂p

≤ 0

}
(A7)

The bounds in (A5) and (A6) imply that the left hand side of (A7) is bounded above p∗t .

Proof of Proposition 3. Assume, to derive a contradiction, that the sequence p∗t is

monotonic. Lemmata 2–4 imply that p∗t+1 > p∗t for all t. Since p∗t ≤ 1 for all t, it follows

that p∗t → p̄ for some p̄ > pNE as t → ∞. (To see that there is a p̄ > pNE note that if

p∗1 ≥ pNE then p∗t ≥ pNE for all t.) This implies
∣∣p∗t+1 − p∗t

∣∣ → 0, which, by continuity

of πCE (p|p∗t ), implies
∣∣πCE

(
p∗t+1|p∗t

)
− πCE (p∗t |p∗t )

∣∣ → 0. Since πCE (p|p∗t ) = πNE (p) for

p ∈ [0, p∗t ], we have
∣∣πCE

(
p∗t+1|p∗t

)
− πNE (p∗t )

∣∣ → 0, and consequently πCE
(
p∗t+1|p∗t

)
→

πNE (p̄). Since the Nash equilibrium pNE is unique it holds that πNE
(
pNE

)
> πNE (p̄),

and since πCE (p|p∗t ) = πNE (p) for p ∈ [0, p∗t ] we get

πCE
(
p∗t+1|p∗t

)
→ πNE (p̄) < πNE

(
pNE

)
= πCE

(
pNE|p∗t

)
.

This is in contradiction to p∗t+1 = argmaxp∈[0,1] π
CE (p|p∗t ). We conclude that the sequence

p∗t is not monotonic. Lemmata 2–4 imply that it must be cyclical, consisting of cycles with

pNE and one or more price above pNE.

Note that the preceding argument can be used to show, that starting at p∗1 ≥ pNE

there is convergence to the cycle, from which there is no escape. To see this, suppose (to

obtain a contradiction) that there is some p∗1 > pNE that does not belong to the cycle (i.e.,

p∗1 ̸= p(1) for all i ∈ {1, ..., τ}), from which there is no convergence to the cycle. This means

that p∗t+1 > p∗t for all t and p∗t → p̄ for some p̄ ∈
[
pNE, p(τ)

]
as t → ∞. It remains to show

that starting at p∗1 < pNE there is convergence to the set
[
pNE, 1

]
, which is established in

Lemma A2 in the Online Appendix.

References

Akerlof, George A (1970): “The Market for” Lemons”: Quality Uncertainty and the Market Mecha-

nism,” The Quarterly Journal of Economics, 488–500.

Anderson, J. R (1991): “The Adaptive Nature of Human Categorization,” Psychological Review, 98 (3),

409–429.

34



Arad, Ayala and Ariel Rubinstein (2019): “Multidimensional reasoning in games: framework, equi-

librium, and applications,” American Economic Journal: Microeconomics, 11 (3), 285–318.

Azrieli, Yaron (2009): “Categorizing others in a large game,” Games and Economic Behavior, 67 (2),

351–362.

Battigalli, Pierpaolo (1987): “Comportamento razionale ed equilibrio nei giochi e nelle situazioni

sociali,” unpublished undergraduate dissertation, Bocconi University, Milano.

Bohren, J Aislinn and Daniel N Hauser (2021): “Learning with heterogeneous misspecified models:

Characterization and robustness,” Econometrica, 89 (6), 3025–3077.

Dekel, Eddie, Drew Fudenberg, and David K Levine (2004): “Learning to play Bayesian games,”

Games and Economic Behavior, 46 (2), 282–303.

Dow, James (1991): “Search Decisions with Limited Memory,” Review of Economic Studies, 58, 1–14.

Esponda, Ignacio (2008): “Behavioral equilibrium in economies with adverse selection,” American

Economic Review, 98 (4), 1269–1291.

Esponda, Ignacio and Demian Pouzo (2016): “Berk–Nash equilibrium: A framework for modeling

agents with misspecified models,” Econometrica, 84 (3), 1093–1130.

Esponda, Ignacio, Demian Pouzo, and Yuichi Yamamoto (2021): “Asymptotic behavior of

Bayesian learners with misspecified models,” Journal of Economic Theory, 195, 105260.

Eyster, Erik and Matthew Rabin (2005): “Cursed equilibrium,” Econometrica, 73 (5), 1623–1672.
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ONLINE APPENDIX
Categorization in Games: A Bias-Variance Perspective

Philippe Jehiel and Erik Mohlin

S.1 Chainstore Application

So far, in our analysis of the chainstore game we assumed a homogeneity function that

implies that histories are distinguished according to time. What happens if we assume a

homogeneity function which relaxes this while still keeping the idea that histories in which

a previous entry was not immediately matched by a fight behavior are very dissimilar from

other? Compared to the above setting, the only difference is that for the challenger we now

consider QTough
M = ∪tQt,Tough

M and Qsoft
M = ∪tQt,Soft

M and we require that if Y contains two

nodes q and q′ that do not both belong to QTough
M nor both belong to Qsoft

M , then ξ̃C(Y ) = 0

(while any set Y not having this property satisfies ξ̃C(Y ) > 0). We define a corresponding

categorization profile C̃ which only differs from C in that the challengers’ categorizations

do not differentiate periods, i.e. C̃1
C = ∪tC1

Ct and C̃2
C = ∪tC2

Ct.

We now observe that in this alternative setting, there is a coarse categorization equi-

librium, this time relying on erroneous expectations of the challengers. Still defining k∗ as

above, we consider the following strategy profile σ̃T :

• Challenger strategy. If E was always matched with F in the past, or if there was no

E in the past, play O. Otherwise play E.

• Monopolist strategy. At t > T − k∗, play A. At t ≤ T − k∗; play F if E was always

matched with F in the past, or if there was no E in the past; otherwise play A.

Proposition S1 There exists a T ∗ such that if T > T ∗, then
(
σ̃T , C̃

)
is a coarse catego-

rization equilibrium of the chainstore game with T periods, implying that in the absence of

mistakes there is not entry, and the monopolist fights the challenger in all but the last k∗

periods.

On the path of play induced by this strategy profile the challenger never enters. In

case there is entry the monopolist fights the challenger in all but the last k∗ periods. In

this construction, the monopolist plays a best-response to the challenger’s strategy and

the mistaken belief concerns the challenger who refrains from entering in all periods. She

stays out at histories with no earlier (E,A) because she fears the monopolist would fight

with a large probability in case of entry. This expectation arises due the bundling of many

1



histories in QTough
M and the observation that according to σ̃T the monopolist would play F

at such histories in all but the last k∗ periods. 1

Proof of Proposition S1. The proof is similar to that of proposition 2. We focus on

the differences.

1. Why C̃ is adjusted to σ̃m
T for all m > m∗ (and all T ). Our revised homogeneity

assumptions imply that nodes in Qt,Soft
M should be bundled with nodes in Qt′,Soft

M ,

and nodes in Qt,Tough
M should be bundled with nodes in Qt′,T ough

M for t ̸= t′.

2. Analogy-based expectations.

(a) Players have correct expectations at on-path nodes, as in the proof of proposition

2.

(b) Players also have correct expectations at off-path nodes in QSoft
C and QSoft

M , as

in the proof of proposition 2.

(c) Next consider off-path monopolist nodes in QTough
M . Challengers have erroneous

expectations since they bundle together nodes from different time periods. As

εm → 0 the expectations here are determined by behavior at nodes with histories

containing a single mistake with E. The fraction of such nodes at which the

monopolist chooses A vanishes as T → ∞. It follows that as T gets large, the

challenger will expect that F is chosen with a probability close to 1.

(d) It remains to check the monopolist’s expectations at off-path nodes in QTough
C .

At all such nodes the challenger plays O unless trembling. Hence the monopolist

has correct expectations.

3. Verify that σ̃m
T induces a εmT -best-responsese given the analogy-based expectations.

We have found that the challengers have correct expectations and it is easy to see

that they best-responds to the monopolist’s strategy, so we focus on the monopolist.

(a) Monopolist at an off-path node in QTough
M . By playing F , the monopolist cor-

rectly expects that with a probability close to 1, a string of O occur from then

on until the end of the game. (Same belief as in the proof of proposition 2 but

now it is a correct belief.) By playing A, the monopolist correctly expects a

string of (E,A) until the end of the game (as in the proof of proposition 2). The

1It should be noted that σ̃T cannot part of a categorization equilibrium when using the homogeneity
assumptions of Proposition 2, i.e. when the challenger is induced to categorize different time periods
separately. This is so because the challenger would then have to expect that in the last k∗ period histories
in QTough

M the monopolist would play A after entry, thereby leading challengers to choose E in those events
in contrast to the prescription of σ̃T . We see here the effect of the homogeneity functions in shaping the
categorization equilibria.

2



time period t ≤ T − k∗ where the incentive to take F is weakest is t = T − k∗.

Taking F not unprofitable if

uM(E,F ) + k∗uM(O) ≥ (k∗ + 1)uM(E,A),

which is satisfied by the definition of k∗. At later time periods taking A is

strictly profitable.

(b) Monopolist at an off-path node in QSoft
M . The monopolist (correctly) expects

the challengers to play E in all subsequent periods and best-responds by playing

A from now until the end of the game, as in the proof of proposition 2.

(c) Challenger at an off-path node in QTough
M . Here, the challenger will expect that

E is met by F with a probability close to 1 (as T gets large), hence plays O.

(d) Challenger at an off-path node in QSoft
M . Here the challenger has correct expec-

tations, hence plays E.

S.2 Public Goods Game

S.2.1 The Game With or Without Punishment

We now apply our approach to public good games. The game has more than two players.

So far we have only considered two-player games but it is straightforward to extend our

basic definitions to the multi-player case. We consider a finitely repeated n-player linear

public good game with punishment. The game is repeated T times and players maximize

the sum of payoffs. Each round consists of a contribution stage and a punishment stage

. Each player holds an endowment of e units. We focus on the simplified case where i

can either contribute her entire endowment to the public good or not contribute at all,

gi ∈ G = {0, e}. The payoff of player i from the contribution stage is

uCont
i (g) = α

n∑
j=1

gj + (e− gi),

where α, with 1
n
< α < 1, captures the marginal per capita return from contributing to the

public good. The contribution stage is followed by a punishment stage: each player i can

decide whether to punish another player or not. In particular, each player i can subtract

punishment points pij ∈ P = {0, p} from each other player j. For each punishment point

a cost of β > 0 is incurred. This gives rise to the following payoff function,

uPun
i (g, p) = α

n∑
j=1

gj + (e− gi)−
n∑

j ̸=i

pji − β
n∑

j ̸=i

pij.
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In the unique SPNE of this game no player contributes, and no player punishes, yielding

payoffs of e to everybody. Total payoff is maximized when everyone contributes e, resulting

in payoffs of αne.

S.2.2 Zero Contributions without Punishment Stage

We first examine the game without the punishment stage. In this game the stage game

payoff of player i is given by uCont
i . All categorization equilibria are based on the same

strategy profile, which coincides with the SPNE, implying that no one contributes. To see

why note that in the last round no player contributes, since there is no punishment stage.

Suppose there is an equilibrium with full contribution in the second to last round. In this

case players on the equilibrium path in the second to last round have a correct belief that

no one will contribute in the next round, despite everyone contributing in the second to

last round. Thus not contributing in the second to last round is perceived to give a higher

payoff, no matter what the off-path expectations about the last round are. Extending this

reasoning, we get:

Proposition S2 Every categorization equilibrium prescribes non-contribution by all play-

ers in all rounds.

Proof. We prove this by induction using the following base case and induction step.

Base case: All categorization equilibria prescribe no-contribution by all players at all

information sets in round T .

Induction step: If a categorization equilibrium prescribes no-contribution by all players

on the equilibrium path in rounds {t+ 1, ...T} then the categorization equilibrium also

prescribes non-contribution by all players on the equilibrium path in round t.

To establish the base case, consider a player i in period T at an information set at

which the her strategy prescribes contribution. Regardless of what she expects the other

players to do, no-contribution yields a higher payoff.

To establish the induction step, consider a categorization equilibrium that prescribes

no-contribution by all players on the equilibrium path in rounds {t+ 1, ...T}. Consider

player i in period t at an information setHt on the equilibrium path (there is only one unless

non-degenerate mixed strategies are used). Suppose the strategy prescribes contribution

by player i. All on-path nodes are singleton categories. Hence, player i has a correct

belief that compliance, i.e. contribution in the current round and no-contribution in the

following round yields α
(
e+

∑
j ̸=i gj (Ht)

)
+ e (T − t). Deviation is expected to yield at

least α
(∑

j ̸=i gj (Ht)
)
+ e+ e (T − t). The latter is larger than the former.

S.2.3 Positive Contributions with Punishment Stage

Our assumption regarding similarity and homogeneity is that players distinguish sharply

between two kinds of histories: (i) histories in which all acts of non-contributions where
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punished (by all those who contributed) and no act of contribution was punished, and (ii)

all other histories. A history of either kind is never bundled with a history of the other kind.

We also assume that (n− 1) p ≥ e (1− α), meaning that the cost of being punished is high

enough relative to the benefit of not contributing. Under these assumptions we can show,

that for sufficiently long games (sufficiently large T ) there is a categorization equilibrium

with contribution in every round, and (off-path) punishment in a no-contribution event

except in the last few periods. The construction is similar to the one underlying Propo-

sition S1 for the chainstore game. In the first kind of histories (i) the strategy prescribes

contribution and punishment of non-contributors (and only non-contributors), except in

the last few rounds in which non-punishment is prescribed. In the second kind of history

(ii) the strategy prescribes non-contribution and no punishment. The threat of punish-

ment off-path would not be credible in a standard SPNE. The reason players contribute

throughout the interaction in our categorization equilibrium is that the bundling of all

off-path histories of the first kind induce players to believe that they will be punished with

probability approaching one (as T → ∞) if they fail to contribute, even towards the end

of the game where in reality they would not be punished. In what follows we provide a

detailed description of our construction

Similarity and Homogeneity In general it is natural to assume that if two situations

xi, x
′
i ∈ Xi have different actions sets, i.e. Ai (xi) ̸= Ai (x

′
i), then any analogy class

that contains both situations has minimal homogeneity. This implies that an adjusted

analogy partition will never bundle nodes with different action sets, as in Jehiel (2005).

Since contribution decision information sets and punishment information sets have different

actions sets any analogy class that contains both kinds of information sets have minimal

homogeneity. Let HCon denote the sets of contribution decision information sets, and

let HPun denote the set of punishment decision information sets. Since the action sets

are different any set that bundles information sets from HCon and HPun have minimal

homogeneity. For both HCon and HPun we assume that homogeneity is mainly determined

by whether non-contributors, but not contributors, were punished. Let HFair denote the

set of information sets with a history such that in each previous round all non-contributors

were punished by all contributors, and no contributors were punished.

HFair =


In each previous round in the history of H, for all j:

gj = 0 ⇒ plj = p for all l with gl = e, and

gj = 1 ⇒ plj = 0 for all l.


LetHUnfair denote the complement, i.e. information sets with a history such that in at least

one previous round there was a non-contributor who was not punished by all contributors,

or there was a contributor who was punished. We assume if H and H ′ belong to X but
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H ∈ HFair and H ′ ∈ HUnfair, then ξ(X) = 0. Let

HCon−Fair = HCon ∩HFair

HCon−Unfair = HCon ∩HUnfair

HPun−Fair = HPun ∩HFair

HPun−Unfair = HPun ∩HUnfair

Any subset X containing only elements in HCon−Fair or only elements in HCon−Unfair

satisfies ξ(X) > 0. Likewise, any subset X containing only elements in HPun−Fair or only

elements in HPun−Unfair satisfies ξ(X) > 0.

Strategy profile We assume

(n− 1) p ≥ e (1− α) . (S1)

For each n̄ ∈ {1, ..., n− 1} let

k∗
n̄ = min {k ∈ N such that (αn+ 1) ek ≥ βpn̄} . (S2)

Consider the strategy profile σ̂, where each individual i plays the following strategy:

• At H ∈ HCon−Fair, contribute e.

• At H ∈ HCon−Unfair, do not contribute.

• At H ∈ HPun−Fair, where in the immediately preceding contribution stage,

– i contributed and n̄ ∈ {1, ..., n− 1} other players did not contribute: punish if

t ≤ T − k∗
n̄, otherwise do not punish.

– i contributed and all other players contributed: do not punish.

– i did not contribute: do not punish.

• At H ∈ HPun−Unfair, do not punish.

On the path of play induced by this strategy profile everyone contributes in all rounds.

In case there is non-contribution all contributors punish, except the last period.

Categorization profile Under the categorization profile Ĉ, each on-path information

set is in a separate analogy class, as usual. Off-path information sets are categorized based

on the type of decision (contribution or punishment) and on whether the history was in
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HFair or HUnfair. Formally, let Hoff
−i denote the off-path information sets at which players

other than i move, define

CCon−Fair
−i =

{
H ∈ Hoff

−i : H ∈ HCon−Fair
}
;

CCon−Unfair
−i =

{
H ∈ Hoff

−i : H ∈ HCon−Unfair
}
;

CPun−Fair
−i =

{
H ∈ Hoff

−i : H ∈ HPun−Fair
}
;

CPun−Unfair
−i =

{
H ∈ Hoff

−i : H ∈ HPun−Unfair
}
.

Proposition S3 If (S1) then there exists a T ∗ such that if T > T ∗, then
(
σ̂T , Ĉ

)
is a

coarse categorization equilibrium of the chainstore game with T periods, implying that in

the absence of mistakes everyone contributes in all rounds.

Remark S1 Condition S1 requires that the cost of being punished is high enough relative

to the benefit of not contributing, and the definition of k∗
n̄ in (S2) implies that in period

t ≤ T − k∗ the cost of punishing is lower that the loss from others not contributing (in

response to non-punishment), whereas in in period t ≤ T − k∗ the cost of punishing is

higher than the loss from others not contributing.

Proof of Proposition S3. We need to show that for T > T ∗ there is a sequence

(σ̂m
T )m converging to σ̂T , such that (σ̂m

T , Ĉ) is an (εm, κm)- categorization equilibrium for

all m. We define σ̂m
T as the strategy profile which at each node puts probability εm on the

action that σ̂T puts zero probability on. Since there are only two actions at each node this

is enough to specify σ̂m
T . Since the starting point of (εm, κm) is arbitrary it is sufficient

to show the following: There exists a T ∗ such that for any T > T ∗there is exists an m∗

such that if T > T ∗ and m > m∗ then σ̂m
T is an (εmT , κ

m
T )-categorization equilibrium of the

chainstore game with T periods.

1. Why Ĉ is adjusted to σ̂m
T for all m > m∗ (and all T ).

(a) For any T , if m is large enough, then κm
T < (1− εmT )

2nT , ensuring that on-path

nodes have a mass exceeding the threshold κm
T and thus are treated as singleton

analogy classes.

(b) For off-path nodes our homogeneity assumptions imply that information sets

in HFair and HUnfair have to be separated. Likewise, information sets in HCon

and HPun have to be separated. No further refinement is allowed (for m large

enough).

2. Analogy-based expectations2

2In a game with more than two players there are at least two options for how to specify analogy
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(a) Players have correct expectations at on-path information sets.

(b) Players also have correct expectations at off-path information sets in HUnfair,

since after the corresponding histories no one contributes at any information set

and no one punishes at any information set.

(c) Next consider off-path information sets inHCon−Fair. At all such nodes everyone

contributes, resulting in correct expectations.

(d) Finally consider off-path information sets in HPun−Fair. As εm → 0 the ex-

pectations here are determined by behavior at information sets with histories

containing a single act of non-contribution (due to a mistake) in the present

round. The fraction of such nodes at which not everyone punishes vanishes as

T → ∞. It follows that as T gets large, expects everyone except the non-

contributor to punish with a probability close to 1.

3. Verify that σ̂m
T induces a εmT -best-responsese given the analogy-based expectations.

(a) First consider player i at an information set H ∈ HCon−Fair (on-path or off-

path) in round t ≤ T . Complying with the proposed strategy profile yields for

the continuation

EUi (gi = e|t) = αne (T − t+ 1) .

The player believes that if she makes a one-shot deviation then with probability

approaching 1 (as T → ∞) everyone else punishes her, and play remains in

HCon−Fair. Hence, a one-shot deviation yields

EUi (gi = 0|t) = αne+ e (1− α) + (− (n− 1) p+ αne (T − t))

The difference is

EUi (gi = e|t)− EUi (gi = 0|t) = (n− 1) p− e (1− α) .

If (S1) holds then deviation is not profitable.

(b) Second, consider player i at information set H ∈ HCon−Unfair in round t ≤ T .

Complying with the proposed strategy profile yields EUi (gi = 0|t) = (T − t+ 1) e.

A one-shot deviation yields EUi (gi = 0|t) = αe+(T − t) e. The former is larger

than the latter since α < 1.

(c) Third, consider player i at an information set H ∈ HPun−Fair (on-path or off-

path) in round t ≤ T .

based expectations at off-path information sets. Players may ignore correlation across the other players’
actions and form expectations about individual actions (here contributions), or they may form expectations
about the distribution of actions (contributions). Here we present results derived for expectations about
individual contributions. We can confirm that the results are essentially the same under expectations
about the distribution of contributions.
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i. If everyone complied in the contribution stage then (clearly) not punishing

is perceived to be optimal.

ii. If player i was the only one not to contribute, then (clearly) not punishing

is perceived to be optimal.

iii. If i contributed and n̄ other players did not contribute then i believes that

with probability approaching 1 (as T → ∞) all other contributors will

punish the non-contributors, so that punishing yields

EUi (pil = p|t) = −βpn̄+ αne (T − t) .

not punishing leads to HUnfair, hence yields EUi (pil = 0|t) = e (T − t).

The difference is

EUi (pil = p|t)− EUi (pil = 0|t) = −βpn̄+ (αn+ 1) e (T − t) .

This is decreasing in t. For t = T − k∗
n̄ the difference is

EUi (pil = p|t)− EUi (pil = 0|t) = −βpn̄+ (αn+ 1) ek∗
n̄.

By the definition of k∗
n̄ this non-negative, hence punishing is profitable for

t ≤ T − k∗. For t > T − k∗ it is strictly negative so punishing is not

profitable.

(d) Fourth, consider player i at information set H ∈ HPun−Unfair in round t ≤ T .

Clearly, punishing is not perceived as optimal.

S.3 Adverse Selection Application

S.3.1 Preliminary Observations

To demonstrate (A2) we rewrite (A1) as follows

∂πCE (p|p∗)
∂p

=
G̃ (p∗t )G (p∗t )

G̃ (c1)− G̃ (p∗t )

G (c1)−G (p∗t )

G (p∗t )
−

(
G̃ (c1)− G̃ (p∗t )

)
G̃ (p∗t )


+

G (c1)−G (p∗t )

G̃ (c1)− G̃ (p∗t )
g̃ (p)

((
E
[
ω|ω ∈ C1

]
+ b− p

)
− G̃ (p)

g̃ (p)

)
.
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We note that(
G̃ (c1)− G̃ (p∗t )

)
G̃ (p∗t )

=

∫ c1
p∗t

(1− Fp∗ (ω)) g (ω) dω(∫ p∗t
0

(1− Fp∗ (ω)) g (ω) dω
) <

(1− Fp∗ (p
∗
t ))
∫ c1
p∗t

g (ω) dω

(1− Fp∗ (p∗t ))
∫ p∗t
0

g (ω) dω

=

∫ c1
p∗t

g (ω) dω∫ p∗t
0

g (ω) dω
=

G (c1)−G (p∗t )

G (p∗t )
.

Moreover, we note that

G (c1)−G (p∗t )

G̃ (c1)− G̃ (p∗t )
=

∫ c1
p∗t

g (ω) dω∫ c1
p∗t

(1− Fp∗ (ω)) g (ω) dω
≥ 1,

Thus (A2) is implied. To demonstrate (A3) note that

g̃ (p∗)
G (c1)−G (p∗)

G̃ (c1)− G̃ (p∗)
=

(1− Fp∗ (p
∗)) (G (c1)−G (p∗))∫ c1

p∗
g (ω) (1− Fp∗ (ω)) dω

g (p∗)

=
(1− Fp∗ (p

∗))
∫ c1
p∗

g (ω) dω∫ c1
p∗

(1− Fp∗ (ω)) g (ω) dω
g (p∗) > g (p∗) .

Finally, to demonstrate (A4) we note that for p ∈ (p∗t , c1)

∂2πCE (p|p∗)
∂p2

= g̃′ (p)

((
E
[
ω|ω ∈ C1

]
+ b− p

)
− 2

g̃ (p)

g̃′ (p)

)
G (c1)−G (p∗t )

G̃ (c1)− G̃ (p∗t )
.

Using (S.3.1) we obtain (A4)

S.3.2 Nash equilibrium

Proposition S4 There exists a unique Nash equilibrium in which the bid price pNE of

uninformed buyers is uniquely defined by

g
(
pNE

)
G (pNE)

=
1

b
.

Proof of Proposition S4. Note that

∂

∂p
(E [ω|ω ≤ p]) =

1

G (p)
pg (p)−

(∫ p

ω=0

ωg (ω) dω

)
g (p)

G (p)2

=
g (p)

G (p)

(
p−

∫ p

ω=0

ω
g (ω)

G (p)
dω

)
=

g (p)

G (p)
(p− E [ω|ω ≤ p]) .
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Thus

∂

∂p
πNE (p) = g (p) (E [ω|ω ≤ p] + b− p) +G (p)

(
∂

∂p
(E [ω|ω ≤ p])− 1

)
= g (p) (E [ω|ω ≤ p] + b− p) +G (p)

(
g (p)

G (p)
(p− E [ω|ω ≤ p])− 1

)
= g (p) (E [ω|ω ≤ p] + b− p) + g (p) (p− E [ω|ω ≤ p])−G (p)

= g (p) b−G (p) ,

and so the first-order condition of maxp π
NE(p) is

g (p)

G (p)
=

1

b
,

and the second-order condition is satisfied in virtue of the assumption that |g′ (p)| < g (p).

Notice that limp→0
g(p)
G(p)

= ∞ and g(1)
G(1)

= g (1). Hence, by the assumption that g (1) < 1/b

and ∂
∂p

(
g(p)
G(p)

)
< 0, the first-order condition has a unique solution that is interior.

S.3.3 Lemma for Proof of Convergence to Cycle

Proof of Lemma A1. Assume p∗ ≤ pNE. The mass in each analogy class (above

p∗) is at least κ. We establish a lower bound on the width of analogy class C1. Let

gmin = minω∈[0,1] g (ω) and gmax = maxω∈[0,1] g (ω). By the full-support assumption we

have gmin > 0. Note that∫
ω∈C1

µ (ω) dω = ε

∫
ω∈C1

g̃ (ω) dω ≤ ε

∫
ω∈C1

gmaxdω = ε (c1 − p∗) gmax ⇒ c1 − p∗ ≥ κ

εgmax
.

Using this we can establish a lower bound on the expected quality in analogy class C1.

Define

c∗1 (p
∗) = min

{
p∗ +

κ

εgmax
,
1

2

(
pNE + 1

)}
≤ c1,

implying that

c∗1 (p
∗)− p∗ ≥ min

min
{
κ, ε

(
G̃ (1)− G̃

(
pNE

))}
εgmax

,
1− pNE

2

 := M1.

Note that

E
[
ω|ω ∈ C1

]
≥

(
1− 1

µ (C1)

∫ c∗1(p
∗)

ω=p∗
gmin (1− F (c∗1 (p

∗))) dω

)
· p∗

+
1

µ (C1)

∫ c∗1(p
∗)

ω=p∗
gmin (1− F (c∗1 (p

∗))) dω ·
(
p∗ +

c∗1 (p
∗)− p∗

2

)
.
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Moreover,∫ c∗1(p
∗)

ω=p∗
gmin (1− F (c∗1 (p

∗))) dω ≥ (c∗1 (p
∗)− p∗) gmin

(
1− F

(
1

2

(
pNE + 1

)))
≥ M1 · gmin

(
1− F

(
1

2

(
pNE + 1

)))
:= M2.

Thus we have

E
[
ω|ω ∈ C1

]
≥
(
1− M2

µ (C1)

)
p∗ +

M2

µ (C1)

(
p∗ +

c∗1 (p
∗)− p∗

2

)
= p∗ +

M2

µ (C1)

(
c∗1 (p

∗)− p∗

2

)
≥ p∗ +

M2

2
M1,

or

E
[
ω|ω ∈ C1

]
≥ p∗ +

1

2
(c∗1 (p

∗)− p∗)2 gmin

(
1− F

(
1

2

(
pNE + 1

)))

S.4 Categorization Equilibrium and Nash Equilibrium

Here we present examples demonstrating that, CE may not be not outcome equivalent to

any NE, for the reason that this would require inconsistent beliefs, as mentioned in Section

6.1.

S.4.1 Example where Feedback Differs from the Path of Play

Consider the following game. Player 1 (row) and Player 2 (column) simultaneously choose

between actions A and B, with the following outcomes.

A B

A 0, 1 1, 0

B 1, 1 0, 0

The unique Nash equilibrium is (B,A). Note that B is dominated for Player 2 so we can

ignore her belief formation. Suppose that the feedback is such that the outcome of the

game is reported if and only if it is (B,B). This means that an entering cohort will see a

record consisting entirely of (B,B) outcomes, and those acting as Player 1 will form the

belief that Player 2 plays action B with probability 1. The best response is action A. Thus

the unique Categorization equilibrium outcome is (A,A).

S.4.2 Example where Feedback Coincides with the Path of Play

We now turn to an example where the feedback is the path of play. We need to assume

that there are three players so that two of them can disagree about what the remaining
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player does off the path. Consider the following game.

3

2

GF

E

1

C

D

A

3
GF

3
GF

B

(1,3,0)(0,4,1)(0,0,0)(0,0,1)(5,0,0)(0,0,0)(0,0,1)

There is a categorization equilibrium involving the strategy profile (C,E, FG), accord-

ing to which Player 1 plays C, Player 2 plays E, and Player 3 plays F at the node following

A and plays G at the information set following B and D. Only the root node and the

node following C are on the path of play. Suppose that Player 1 deems all of Player 3’s

nodes sufficiently similar to be bundled together in a single analogy class, whereas Player

1 perceives them sufficiently dissimilar to put each of them in a separate category.

To see that this constitutes a categorization equilibrium note that F is dominant for

Player 3 at the node following A, and G is dominant for Player 3 at the information set

following B and D. Since Player 2 has correct beliefs about the behavior of Player 3 it

follows that E is optimal for Player 2. All of Player 3’s nodes are reached by a single

mistake. Hence Player 1 believes that Player 3 plays F with probability 1/3 at all of

Player 3’s nodes (since Player 1 bundles them all together). Player 1 has a correct belief

about Player 2’s behavior at the on-path node following C. Under these beliefs Player 1

optimally plays C.

In order for Player 2 to take action E she needs to believe that player 3 plays F with

at least probability 1/4 at the information set following B and D. Hence, in a Nash

equilibrium implementing the outcome (C,E) Player 3 must follow a strategy that puts at

least probability 1/4 on F at the information set following B and D. In order for Player 1

to take action C rather than action B she needs to believe that player 3 plays F with at

most probability 1/5 at the node following B. Hence in a Nash equilibrium implementing

the outcome (C,E) Player 3 must follow a strategy that puts at most probability 1/5 on

F at the information set following B and D. Thus the beliefs required for Players 1 and 2

are inconsistent.
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