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1 Introduction

Many economists recognize that the rational expectation hypothesis that is central

in solution concepts such as the Nash equilibrium is very demanding, especially in

complex multi-agent environments involving lots of different situations (games, states

or nodes, depending on the application). Several approaches have been proposed to

relax it. When the concern with the hypothesis is that there are too many situations for

players to fine tune a specific expectation for each such situation, a natural approach

consists in allowing players to lump together situations into just a few categories, and

only require that players form expectations about the aggregate play in each category.

The analogy-based expectation equilibrium (Jehiel, 2005) is a solution concept that

has been proposed to deal with this. In addition to the usual primitives describing a

game form, players are also endowed with analogy partitions, which are player-specific

ways of partitioning situations or contingencies in the grand game. In equilibrium,

the expectations in each analogy class correctly represent the aggregate behavior in

the class, and players best-respond as if the behavior in every element of an analogy

class matched the expectation about the aggregate play in the corresponding analogy

class. This approach has been developed and applied to a variety of settings, but

in almost all these developments, the analogy partitions are taken as exogenous (see

Jehiel (2022) for a recent exposition of this strand of literature).

From a different perspective, psychologists have long recognized the use of cate-

gories to facilitate decision making and predictions (see, in particular, Anderson (1991)

on predictions). For psychologists, a categorization bundles distinct objects into groups

or categories, whose members are viewed as sufficiently similar to warrant a similar

treatment. In one of the leading approaches, there is a prototype in each category that

can be viewed as a representative -possibly fictitious- object in this category (say the

mean or the mode of the objects in the category, see Rosch (1978) for an early account

of the literature on prototype theory),1 and categories are defined so that objects are

1An alternative approach in psychology is that of exemplar theory (Medin and Schaffer (1978),
Nosofsky (1986)) in which only real existing objects are considered to describe the category. Such
an alternative approach would introduce an element of stochasticity in the choice of representative
exemplar that is somehow orthogonal to the focus of the present study, hence our primary reference
to the prototype approach.
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assigned to the category with nearest prototype (see Posner and Keele (1968) or Reed

(1972)).

From yet another perspective, the K-means clustering technique considered in Ma-

chine Learning has been widely used as a method to categorize large sets of exogenously

given datapoints into a pre-specified number K of clusters (see Steinhaus (1957), Lloyd

(1957) and MacQueen (1967)). From that perspective, datapoints are the primitives,

and the clustering problem consists in partitioning the datapoints into K clusters

with representative points for each cluster defined so that the original datapoints are

best approximated by the representative points in their cluster. Solving the cluster-

ing problem (defined as deriving the variance-minimizing categorization, say) is hard

(NP-complete), and practitioners most of the time rely on a simple algorithm to ap-

proximate its solution (see the end of Subsection 2.3 for a succinct exposition of the

algorithm).

In this paper, we propose endogenizing the choice of partitions in the analogy-based

expectation setting on the basis of the above basic principles. Specifically, we consider

a strategic environment consisting of different normal form two-player games drawn

by nature according to some prior distribution where we have in mind that the various

games are played at many different times by many different subjects. In each of the

normal form games ω ∈ Ω, player j = 1, 2 has the same action set Aj. An analogy

partition for player i takes the form of a partition of the set of games Ω, which is used

by player i to assess the behavior of player j in the various games. The data points

accessible by players consist of the empirical frequencies of past play of the subjects

assigned to the role of the opponent in the various games. That is, a typical data point

for player i consists of an element of ∆Aj for each of the games ω. To make sense

of these data points (and prior to knowing which specific game ω and corresponding

utility will apply), a subject assigned to the role of player i is viewed as clustering these

data points into an exogenously given (typically small) number K of categories where

K can be related to the number of items human beings can remember in short-term

memory (see Miller (1956) for pioneering research on this).2 While we are agnostic

2Even if the exact formulation in terms of number of categories is specific to our setting, at some
broad level, one can relate the bound K in our approach to the maximum number of states considered
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on how the clustering is achieved by a subject, we require in our approach that each

game is assigned to the cluster with nearest representative behavior of the opponent

and that the representative behavior in a cluster is identified with the mean behavior

of the opponent across the games assigned to the cluster. The clustering is made so

as to facilitate the prediction of the opponent’s behavior in a later stage when the

relevant game ω becomes known to the subject (but the raw data for each game are

no longer accessible). More precisely, at this later stage (that should be thought of as

arising with a lag), a randomly selected game ω is drawn, the player then identifies

the behavior of his opponent in this game ω with the representative expectation that

comes out from the clustering stage, and best-responds to it. This in turn generates

new data points, and we are interested in the steady states - referred to as clustered

analogy-based expectation equilibria - generated by such dynamic processes.

Roughly, the clustered analogy-based expectation equilibria (C-ABEE) can be de-

scribed as profiles of analogy partitions and strategies such that i) given the analogy

partitions, players’ strategies form an analogy-based expectation equilibrium and ii)

given the strategies, clustering leads players to adopt the analogy partitions considered

in steady state.

Different formalizations of clustering can be considered whether we only require

that games are assigned to categories such that the observed opponent’s behavior is

best approximated by the representative behavior in the category (local criterion, sim-

ilarly as in the psychological perspective suggested above) or else whether we consider

an exact resolution of the clustering problem (variance minimization, say). But, no

matter what approach to clustering is adopted, a key observation is that it may not

be possible in some cases to have a steady state with a single analogy partition for

each player. This is so because unlike in the usual clustering problem, there is here

an extra endogeneity of the dataset. A change in analogy partitions may affect the

adopted strategies through the working of the analogy-based expectation equilibrium,

which in turn may affect how clustering is done. This extra channel from the cluster-

in automaton theory (see in particular Neyman (1985) or the discussion in Rubinstein (1986)) or to
the maximum number of clauses that can be considered by an agent in a contract setting (Jakobsen
(2020)).
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ing to the dataset makes it sometimes impossible to have a clustered analogy-based

expectation equilibrium with a single analogy partition for each player. This will be

first illustrated with a simple example involving three matching pennies games.

This observation leads us to extend the basic definition of C-ABEE to allow for

distributions over analogy partitions defined so that each analogy partition in the

support is required to solve (either locally or globally) the clustering problem for that

player and the strategies, now parameterized by the chosen analogy partition, satisfy

the requirements of the analogy-based expectation equilibrium appropriately extended

to cope with distributions over analogy partitions. We refer to such an extension as a

clustered distributional analogy-based expectation equilibrium (CD-ABEE).

We show that in finite environments (i.e. environments such that there are finitely

many normal form games and finitely many actions for each player), there always

exists at least one CD-ABEE. We also sketch a dynamic learning model making more

precise the learning environment that would give rise to CD-ABEE as steady states.

The learning environment involves populations of subjects assigned to the roles of

the various players. When several analogy partitions are required in steady state, it

implies that different subjects assigned to the role of the same player would end up

categorizing the various games differently, despite being exposed to the same objective

datasets.

We next consider various applications. A common theme that we consider through-

out is whether the environment is such that starting from any candidate analogy

partition profile, we obtain behaviors (through the machinery of ABEE) that would

lead to the re-categorization of at least one game (through the machinery of cluster-

ing) or else whether the environment is such that starting from several (sometimes

many) analogy partition profiles, we obtain (ABEE) behaviors that in turn lead to the

same partition profile from the clustering perspective. We say that analogy partitions

are self-attractive in the former case and self-repelling in the latter. Environments

with self-attractive analogy partitions suggest for such environments a novel channel

through which different societies may settle down on different behaviors and differ-

ent models of expectation formation. By contrast, environments with self-repelling
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analogy partitions lead to CD-ABEE (as discussed above) and can be interpreted as

suggesting a new channel of heterogeneity in behaviors and expectation formation

within societies.

We first provide an illustration of an environment with self-attractive analogy par-

titions in the context of beauty contest games in which players care both about being

close to a fundamental value (which parametrizes the game) and being close to what

the opponent is expected to be choosing. We show that the set of CABEE expands

as the concern for coordination with the opponent increases. We also observe that

when the coordination motive is sufficiently strong, virtually all analogy partitions of

the fundamental value can be used to construct a CABEE, and as a result many dif-

ferent strategies can arise in a CABEE. The latter result illustrates in a very extreme

way a case of self-attractive analogy partitions that we interpret as providing a novel

perspective on the phenomenon of echo chambers.

We next illustrate the possibility of self-repelling analogy partitions in the context

of a monitoring game involving an employer who has to choose whether or not to exert

some control and a worker who can be one of three possible types (which defines the

game), and has to decide his effort attitude. We assume that one type of worker always

exerts low effort, one type always exerts high effort and the last type exerts high effort

only if he expects to be controlled with high enough probability. This defines, as we

show, an environment with self-repelling analogy partition when the employer can use

only two categories and she finds control best only when the worker is expected to be

shirking with high enough probability. We observe that when the type whose effort

choice depends on the expectation is the least likely, it is always bundled with one of

the other types in all CD-ABEE. Such an illustration can be interpreted to shed new

light on discrimination and why there may be heterogeneity in how the effort attitude

of minority groups is assessed in societies.

Finally, we consider families of games with linear best-responses parameterized

by the magnitude of the impact of opponent’s action on the best-response (a one-

dimensional parameter). We analyze separately the case of strategic complements and

the case of strategic substitutes allowing us to cover applications such as Bertrand or
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Cournot duopoly with product differentiation, linear demand and constant marginal

costs, or moral hazard in teams. We show that the strategic complements case cor-

responds to an environment with self-attractive analogy partitions and the strategic

substitute case corresponds to an environment with self-repelling analogy partitions.

In the rest of the paper, we develop the framework (solution concepts, existence

results, learning foundation) in Section 2. We develop applications in Section 3. We

conclude in Section 4.

1.1 Related Literature

This paper belongs to a growing literature in behavioral game theory, proposing new

forms of equilibrium designed to capture various aspects of misperceptions or cogni-

tive limitations. While some papers in this strand posit some misperceptions of the

players and propose a corresponding notion of equilibrium (see Eyster-Rabin (2005)

on misperceptions about how private information affects behavior, Spiegler (2016) on

misperceptions on the causality links between variables of interest or Esponda-Pouzo

(2016) for a more abstract and general formulation of misspecifications), other papers

motivate their equilibrium approach by the difficulty players may face when trying

to understand or learn how their environment behaves (see Jehiel (1995) on limited

horizon forecasts, Osborne-Rubinstein (1998) on sampling equilibrium, Jehiel (2005)

on analogical reasoning or Jehiel-Samet (2007) on coarse reinforcement learning). Our

paper has a motivation more in line with the latter, but it adds structure on the coars-

ening of the learning based on insights or techniques borrowed from psychology and/or

machine learning (which the previous literature just mentioned did not consider).3

This paper also relates to papers dealing with coarse or categorical thinking in

decision-making settings (see, in particular, Fryer and Jackson (2008) for such a model

3Our approach (like the ABEE more generally) can be related to the self-confirming equilibrium
(Battigalli, 1987) to the extent that our players form their expectations based on coarse statistics that
describe only partially others’ behaviors. A key aspect of the ABEE approach that contrasts with
the approach in the self-confirming equilibrium is that ABEE players select the simplest conjecture
consistent with the coarse statistics. Another key difference that is specific to this paper is that the
coarse statistics used by our players are not exogenously given as in the self-confirming equilibrium (or
the ABEE), but they are endogenously determined from the actual behaviors through the clustering
machinery.
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used to analyze stereotypes or discrimination, Peski (2011) for establishing the opti-

mality of categorical reasoning in symmetric settings or Al-Najjar and Pai (2014) and

Mohlin (2014) for models establishing the superiority of using not too fine categories in

an attempt to mitigate overfitting or balance the bias-variance trade-off). Our paper

considers a clustering technique not discussed in those papers, and due to the strate-

gic character of our environment the data-generating process in our setting is itself

affected by the categorization, which these papers did not consider.

Finally, a contemporaneous and alternative approach to categorization in the con-

text of the analogy-based expectation equilibrium is that introduced in Jehiel and

Mohlin (2023) who propose putting structure on the analogy partitions based on the

bias-variance trade-off where an exogenously given notion of distance between the var-

ious nodes or information sets is considered by the players. This is a different approach

to categorization than the one considered in this paper, and in the context considered

here with a set of normal form games (all arising with positive probability) it would

lead to consider the finest analogy partition and accordingly the Nash Equilibrium, in

sharp contrast with the findings obtained here.4

2 Theoretical setup

2.1 Strategic environment

We consider a finite number of normal form games indexed by ω ∈ Ω where game ω

is chosen (by Nature) with probability p(ω). To simplify the exposition, we restrict

attention to games with two players i = 1, 2, and we refer to player j as the player

other than i.5 In every game ω, the action space of player i is the same and denoted by

Ai. It is assumed in this part to be finite. The payoff of player i in game ω is described

4Some other papers consider categorization in games (see in particular Samuelson (2001), Mengel
(2012) or Gibbons et al. (2021)) with the view that the strategy should be measurable with respect
to the categorization. This is somewhat different from the expectation perspective adopted here. It
may be mentioned that Gibbons et al. (2021) discuss the possibility that some third party could
influence how categorizations are chosen, which differs from our perspective that views the categories
as being chosen by the players themselves.

5The framework, solution concept and analysis extend in a straightforward way to the case of
more than two players.
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by a von Neumann-Morgenstern utility where ui(ai, aj, ω) denotes the payoff obtained

by player i in game ω if player i chooses ai ∈ Ai and player j chooses aj ∈ Aj. Let

pi ∈ ∆Ai denote a probability distribution over Ai for i = 1, 2. With some abuse of

notation, we let:

ui(pi, pj, ω) =
∑
ai,aj

pi(ai)pj(aj)ui(ai, aj, ω)

denote the expected utility obtained by player i in game ω when players i and j play

according to pi and pj, respectively.

We assume that players observe the game ω they are in when choosing their actions.

A strategy for player i is denoted σi = (σi(ω))ω∈Ω where σi(ω) ∈ ∆Ai denotes the

(possibly mixed) strategy employed by player i in game ω. The set of player i’s

strategies is denoted Σi, and we let Σ = Σi × Σj.

A Nash equilibrium is a strategy profile σ = (σi, σj) ∈ Σ such that for every player

i, ω ∈ Ω, and pi ∈ ∆Ai,

ui(σi(ω), σj(ω), ω) ≥ ui(pi, σj(ω), ω).

2.2 Analogy-based expectation equilibrium

Players are not viewed as being able to know or learn the strategy of their opponent

for each game ω separately as implicitly required in Nash equilibrium. Maybe because

there are too many games ω, they are assumed to learn the strategy of their opponent

only in aggregate over collections of games, referred to as analogy classes. Throughout

the paper, we impose that player i considers (at most) Ki different analogy classes,

where Ki is kept fixed. Such a bound can be the result of constraints on memory

(see the introduction), and we will have in mind that Ki is no greater and typically

(possibly much) smaller than |Ω|, the number of possible normal form games. We refer

to Ki as the set of partitions of Ω with Ki elements. Formally, considering for now the

case of a single analogy partition for each player i, we let Ani =
{
α1
i , . . . α

Ki
i

}
denote

the analogy partition of player i. It is a partition of the set Ω of games with Ki classes,

hence an element of Ki. For each ω ∈ Ω, we let αi(ω) denote the (unique) analogy

class to which ω belongs.
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βi(αi) ∈ ∆Aj will refer to the (analogy-based) expectation of player i in the analogy

class αi. It represents the aggregate behavior of player j across the various games ω in

αi.

We say that βi is consistent with σj whenever for all αi ∈ Ani,

βi(αi) =
∑
ω∈αi

p(ω)σj(ω)/
∑
ω∈αi

p(ω).

In other words, consistency means that the analogy-based expectations correctly

represent the aggregate behaviors in each analogy class when the play is governed by

σ.

We say that σi is a best-response to βi whenever for all ω ∈ Ω and all pi ∈ ∆Ai,

ui(σi(ω), βi(αi(ω)), ω) ≥ ui(pi, βi(αi(ω)), ω).

In other words, player i best-responds in ω as if player j played according to βi(αi(ω))

in this game, which can be viewed as the simplest representation of player j’s strategy

given the coarse knowledge provided by βi.

Definition 1 Given the strategic environment and the profile of analogy partitions

An = (Ani, Anj), σ is an analogy-based expectation equilibrium (ABEE) if and only

if there exists a profile of analogy-based expectations β = (βi, βj) such that for each

player i (i) σi is a best-response to βi and (ii) βi is consistent with σj.

This concept has been introduced with greater generality in Jehiel (2005) (allowing

for multiple stages and more than two players) and in Jehiel and Koessler (2008)

(allowing for private information).6 We have chosen a simpler environment to focus

on the choice of analogy partitions, which is the main concern of this paper.

2.3 Clustering

Psychologists have long recognized the use of categories to facilitate decision making

and predictions (see, in particular, Anderson (1991) on predictions). A categorization

6See Jehiel (2022) for a definition in a setting covering both aspects and allowing for distributions
over analogy partitions.
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bundles distinct objects into groups or categories, whose members are viewed as suf-

ficiently similar to warrant a similar treatment. In each category, there is a prototype

that can be viewed as a representative element in the category (say the mean or the

mode, see Rosch (1978)). And categories are defined so that objects are assigned to the

category with nearest prototype (Posner and Keele (1968) or Reed (1972)). Another

approach to categorization would require that objects are categorized so as to mini-

mize some measure of dispersion such as the variance (or the relative entropy when

objects can be identified with probability distributions, as in our environment).

In our framework, the objects considered by a subject assigned to the role of player i

consist of the frequencies of choices of the subjects assigned to the role of player j in the

various normal form games ω (this is made explicit when describing the learning envi-

ronment, see section 2.6). That is, for player i, the objects are {(ω, σj(ω)), ω ∈ Ω}. An

obvious attribute of (ω, σj(ω)) is the distribution of opponent’s behavior as described

by σj(ω), and we will assume that player i focuses on that attribute when choosing

his categorization. This will in turn lead the chosen categorization to minimize (either

locally or globally) the prediction error about the play of the opponent. This feature,

we believe, would naturally be regarded as desirable by player i, as predicting the

opponent play is the only thing player i cares about to determine his best-response.7

We first introduce a measure of closeness in the space of distributions over actions.

Formally, for three distributions of player j’s play pj, p
′
j and p′′j in ∆Aj, we say that

pj is less well approximated by p′j than by p′′j whenever d(pj, p
′
j) > d(pj, p

′′
j ) where

d is a divergence function that will either be the square of the Euclidean distance

d(pj, p
′
j ) =

∥∥pj − p′j
∥∥2 (as defined over (∆Aj)

2) or the Kullback-Leibler divergence

applied to distributions d(pj, p
′
j) =

∑
aj

pj(aj) ln
pj(aj)

p′j(aj)
.8

We next define two notions of clustering relating the analogy partition of player i

to the strategy of player j.

7Considering extra attributes in relation to ω would not raise conceptual difficulties, and our main
insights would carry over as long as some positive weight is given to this attribute. See further
discussion in subsection 2.6.

8In some of the applications to be developed later, the best-responses are linear, and we iden-
tify the strategy with the mean action that it induces. Accordingly, for d, we consider d(pj , p

′
j) =(

E(pj)− E(p′j)
)2
.
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Definition 2 A partition Ani of Ω is locally clustered with respect to σj iff for every

classes αi, α
′
i of Ani and every ω ∈ αi,

d(σj(ω), βi(αi)) ≤ d(σj(ω), βi(α
′
i)).

It is globally clustered with respect to σj iff Ani belongs to

arg min
Pi∈Ki

∑
ci∈Pi

p(ci)
∑
ω∈ci

p(ω | ci)d(σj(ω), βi(ci)) (1)

where, for all c ⊆ Ω, βi(c) =
∑
ω∈c

p(ω | c)σj(ω).

In the above definition, βi(c) is viewed as the prototype in category c and it is

defined as the mean of the elements assigned to c. Local clustering retains the idea that

objects should be assigned to the category with nearest prototype. Global clustering

on the other hand requires that categorizations are chosen to minimize dispersion as

measured by (1).9 When d is the square of the Euclidean distance, the measure of

dispersion corresponds to variance. When d is the the Kullback-Leibler divergence,

the measure of dispersion corresponds to relative entropy. We note that in both cases,

choosing the prototype to be the mean of the elements assigned to the category is

optimal (in the sense of minimizing the dispersion measure),10 thereby giving a further

argument for using the mean as the prototype in our context.

It should be stressed (and as formally established in Lemma 1 in the Online Ap-

pendix B) that global clustering implies local clustering for the d as specified above. As

it turns out, the local clustering conditions can be viewed as the first order conditions

9We refer to local (global) clustering as the device of identifying a local (global) solution to the
clustering problem in (1).

10Formally, for i = 1, 2 and any subset αi of Ω, let d be either the square of the Euclidean distance
or the Kullback-Leibler divergence, we have that∑

ω∈αi

p(ω | αi)σj(ω) = arg min
q∈∆Aj

∑
ω∈αi

p(ω | αi)d(σj(ω), q).

This property is central for the convergence of the K-means algorithm and it holds for a divergence if
and only if this is a Bregman divergence, as shown by Banerjee et al. (2005). We regard the relative
entropy and the variance as the most commonly used measures of dispersion in the class of Bregman
divergences.
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for the minimization problem (1).

Link to K means clustering.

In Machine Learning, a very popular way to categorize object is based on the K-

means clustering algorithm (Steinhaus (1957), Lloyd (1957) and MacQueen (1967)).

The objective of clustering is also to minimize variance (or relative entropy) as consid-

ered in our global clustering approach, but this is known to be NP hard in computer

science. Practitioners instead use the following algorithm. Representative points are

initially drawn, then at each subsequent iteration of the algorithm, first points are

allocated to the cluster with closest representative, then, a new representative point,

identified with the mean of the points allocated to the cluster, is determined in each

cluster. Such an algorithm can be shown to converge, and it turns out that it nec-

essarily converges to a local minimizer of the dispersion measure. Moreover, all local

minimizers satisfy the local clustering condition requiring that points are assigned to

the cluster with closest representative point. In light of this, one may interpret subjects

who would have found analogy partitions that satisfy the local clustering requirements,

as ones using the K-means clustering algorithm (but, note that we are agnostic as to

whether real human subjects rely on such methods to find out their categorizations).

2.4 Clustered analogy-based expectation equilibrium

Combining Definitions 1 and 2 yield:

Definition 3 A pair (σ, An) of strategy profile σ = (σi, σj) and analogy partition

profile An = (Ani, Anj) ∈ Ki ×Kj is a locally (resp. globally) clustered analogy-based

expectation equilibrium iff (i) σ is an analogy-based expectation equilibrium given An

and (ii) for each player i, Ani is locally (resp. globally) clustered with respect to σj.

The more interesting and novel aspect in this definition is the fixed point element

linking analogy partitions to strategies and vice versa. With respect to the previous

papers (using the ABEE framework), it suggests a way to endogenize the analogy

partitions (given the numbers Ki and Kj of allowed analogy classes). With respect

to the clustering literature, the novel aspect is that the set of points to be clustered
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(σj(ω))ω∈Ω for player i is itself possibly influenced by the shape of the clustering, as

captured by the analogy-based expectation equilibrium.

When either player 1 or 2 has a dominant strategy in all games ω ∈ Ω, there

always exists a (locally or globally) clustered ABEE. To see this, suppose player i has

a dominant strategy in all ω. The behavior of player i coincides with the dominant

strategy irrespective of the profile of analogy partitions. This ensures that on player

j’s side, the analogy partition can simply be obtained by using the standard clustering

techniques applied to the exogenous dataset given by player i’s dominant strategy in

the various games. Once such a clustering is derived, the rest of the construction of a

clustered ABEE is easily derived.

Also, if the number of games ω with different Nash equilibrium strategies is no

larger than Ki for each player i, a (globally) clustered ABEE is readily obtained

by requiring that players play such a Nash equilibrium in each game and that they

bundle games in the same analogy class, only when these games have the same Nash

equilibrium. This is so because the opponent’s behavior is then the same across the

various games assigned to the same analogy class, and thus each player has correct

expectations, thereby allowing to support the Nash equilibrium strategies in a clustered

ABEE.11

But, in general, a clustered analogy-based expectation equilibrium may fail to

exist. We illustrate this in a context with three matching penny games with different

parameter values assuming that one of the players can use only two categories.

Example 1. Let x = a, b, c, with 0 < a < b < c < 2. The following three games

are played, each with probability 1
3
. The corresponding payoff matrices are given by:

Gx L R

U (1 + x, 0) (0, 1)

D (0, 1) (1, 0)

11Observe that whenever all the objects in a category coincide exactly with the prototype, then the
correct expectations would lead to play optimally. This would not be so in general if the clustering
were based on alternative attributes (say, player i’s own payoff structure), thereby giving a normative
appeal to the use of opponent’s behavior as the main attribute for clustering purpose.
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Proposition 1 Assume that K1 = 2 and K2 = 3, and d is the square of the Euclidean

distance in the space of probability distributions on {L,R}. There is no Clustered

ABEE.

Roughly, Proposition 1 can be understood as follows. Matching pennies games are

such that the Nash equilibrium involves some mixing. When the Row player puts two

games x and x′ in the same analogy class, she can be mixing in at most one of these

games (this is so because the incentives of Row are different in the two games and

Row makes the same expectation about Column in both x and x′ when these belong

to the same analogy class). This in turn induces some polarization of the behaviors of

both players in the two games x and x′, which when a, b and c are not too far apart

leads the Row player to re-categorize one of the two bundled games x or x′ with the

left alone game x′′ ̸= x, x′. Details appear in Appendix.

2.5 Clustered distributional analogy-based expectation equi-

librium

We address the existence issue by adopting a distributional approach (that will be

interpreted from a learning perspective in the next subsection). Formally, we allow

the analogy partition Ani of player i to take different realizations in Ki, and we refer to

λi as the distribution of Ani over Ki. The distributions of analogy partitions of the two

players are viewed as independent of one another (formalizing a random assignment

assumption, see below the section on learning). We refer to λ = (λi, λj) as the profile of

these distributions, and we let Λ = ∆Ki×∆Kj be the set of (λi, λj). For each analogy

partition Ani of player i in the support of λi referred to as Suppλi, we let σi(· | Ani) :

Ω → ∆Ai refer to the mapping describing how player i with analogy partition Ani

behaves in the various games ω ∈ Ω. We refer to σi = (σi(· | Ani))Ani∈Suppλi
as player

i’s strategy, and we let σ = (σi, σj) denote the strategy profile, the set of which is still

denoted Σ.

Given λ ∈ Λ and σ ∈ Σ, we can define the aggregate behaviors of the two players

in each game, as aggregated over the various realizations of analogy partitions. We
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have in mind that these aggregate behaviors in the various games ω ∈ Ω constitute

the only data accessible to players, thereby implying that only these aggregates are

used to construct the analogy-based expectations and implement the clustering of the

games. Formally, the aggregate strategy of player j in game ω is given by

σj(ω) =
∑

Anj∈Kj

λj(Anj)σj(ω | Anj). (2)

Let σ̄ = (σ̄i, σ̄j) denote a profile of aggregate strategies and let Σ denote the set of

such profiles.

The analogy-based expectation of player i defines for each analogy partition Ani ∈

Suppλi and each analogy class αi ∈ Ani, the aggregate behavior of player j in αi

denoted by βi(αi | Ani) ∈ ∆Aj (the dependence on Ani is here to stress that player

i with analogy partition Ani considers only the aggregate behaviors in the various

analogy classes in Ani). Similarly as above, βi(· | Ani) is said to be consistent with σj

iff, for all αi ∈ Ani,

βi(αi | Ani) =
∑
ω∈αi

p(ω)σj(ω)/
∑
ω∈αi

p(ω). (3)

We are now ready to propose the distributional extensions of our previous definitions.

Definition 4 Given λ = (λi, λj) ∈ Λ, a strategy profile σ = (σi, σj) ∈ Σ is a distribu-

tional analogy-based expectation equilibrium (ABEE) iff there exists β = (βi, βj) such

that for every player i and Ani ∈ Suppλi, we have that i) σi(· | Ani) is a best-response

to βi(· | Ani) and ii) βi(· | Ani) is consistent with σj (where σj is derived from σj as

in (2)).

Definition 5 A pair (σ, λ) ∈ Σ×Λ is a locally (resp. globally) clustered distributional

analogy-based expected equilibrium iff i) σ is a distributional ABEE given λ, and ii) for

every player i and Ani ∈ Suppλi (where λ = (λi, λj)), Ani is locally (resp. globally)

clustered with respect to σj (where σj is derived from σj as in (2)).

Clearly, a clustered distributional ABEE coincides with a clustered ABEE if the

distributions of analogy partitions assign probability 1 to a single analogy partition
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for both players i and j. Clustered distributional ABEE are thus generalizations of

clustered ABEE. We now establish an existence result.

Theorem 1 In finite environments, there always exists a locally (resp. globally) clus-

tered distributional ABEE when d is the square of the Euclidean distance or the

Kullback-Leibler divergence.

We prove this result by making use of Kakutani’s fixed point theorem. Details

appear in Appendix.12

Comment. An implication of clustered distributional ABEE that would involve

several analogy partitions is that different subjects exposed to the same objective

datasets (and the same memory constraints as summarized by the number of allowed

categories) may end up choosing different analogy partitions. Such a motive for an

heterogeneous way of processing the same objective dataset is a consequence of the link

between the categorizations and the datasets (through ABEE) and it has no analog in

the literature.

2.6 Learning foundation

Consider the following learning environment. There are populations of mass 1 of

subjects assigned to the roles of player 1 and 2. At time 0, subjects are randomly

matched, they are informed of the game ω they are in and they play. The play at time

0 is a parameter of the learning environment. At all other time periods t, there are

two stages.

� In stage 1, subjects assigned to the role of i see the datasets{
(ω, σt−1

j (ω)), ω ∈ Ω
}
, where σt−1

j (ω) denotes the aggregate frequencies of actions

chosen at t−1 (and only at t−1) by the subset of subjects assigned to the role of j

when the game was ω. We consider the possibility of measurement error by which

we mean that each observation σt−1
j (ω) may be perturbed by a (small) subject-

specific idiosyncratic term. Every subject i implements a clustering of his dataset

12We also provide in the online Appendix B a description of the clustered distributional ABEE in
the context of the matching pennies environment of Example 1.
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into Ki categories. That is, he either implements a solution to (1) or he finds

a local solution to this problem (say resulting from the implementation of the

K-means algorithm). At the end of this, a subject is able to recognize to which

category/analogy class αt
i(ω) a game ω is assigned as well as the representative

point βt
i(α

t
i(ω)) in αt

i(ω) defined as the mean of the elements assigned to αt
i(ω).

� In stage 2, subjects are randomly matched and each subject is informed of the

game ω he is in. He then expects that the subject j he is matched with will play

according to βt
i(α

t
i(ω)), which is the representative behavior in the analogy class

to which ω has been assigned. Subject i plays a best-response to this expectation.

At the best-response stage, we consider the possibility of small perturbations in

the payoff specifications as is commonly assumed in learning models (Fudenberg

and Kreps, 1993).

In the Online Appendix A, we establish that the dynamic model just proposed

admits steady states. Moreover, when subjects solve the full clustering problem (i.e.,

solving (1) in stage 1), we show that the limit of these steady states as the measurement

error and the payoff perturbations vanish correspond to the globally clustered distri-

butional ABEE. These results provide a learning foundation for the globally cluster

ed distributional ABEE.13

In order to interpret the learning environment, a few comments are in order. Stage

1 of a given period represents a stage in which the subject sees the raw data about

opponent’s behaviors but does not know yet how he will use these data (since he does

not know the state ω that will apply to him). In stage 2, the subject learns the relevant

state ω but he is assumed to no longer have access to the raw data (or from a memory

perspective, he is assumed to not be able to retrieve the data state by state).14 This

may be because stage 2 arises with a significant lag making access to the original raw

13In Jehiel and Weber (2023) (the WP version), we discuss why more work would be needed to
provide a learning foundation for the locally clustered distributional ABEE in this variant of the
learning model.

14Our constraint on memory should be viewed as a physical constraint and should be contrasted
with ideas of selective memory that have been developed in psychology (see Fudenberg et al. (2024)
for a recent model studying the equilibrium impact of selective memory).
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data too difficult or costly.15

In such a scenario, it seems natural that the subject would use the data accessible

in stage 1 so as to make the best prediction of opponent’s behavior in the relevant

state ω that will be disclosed in stage 2. We impose the constraint that the subject

can remember only K representative points in stage 2 (which is in line with important

insights developed in psychology à la Miller), and this leads us to assume that the

subject in stage 1 considers the clustering of the data into K categories in an attempt

to minimize the prediction error in stage 2.

In the above learning model, subjects in stage 1 are supposed to do themselves the

clustering of the raw data describing opponents’ behaviors in the various games. This

may be challenging for some subjects. We propose now a variant in which the task

performed by subjects in stage 1 is simpler.

Specifically, this variant adopts the perspective of intergenerational cultural trans-

mission, by which we mean that each subject in the population at time t is short-lived

and inherits the representative points adopted by a subject, say his parent, in the

previous period. In stage 1 of this variant, the subject assigns the various datapoints

(still corresponding to the distributions of opponents’ behavior in the various games

observed in period t− 1) to the nearest representative point he is been provided with,

and he computes the new representative points in each cluster viewed as the means

of the datapoints assigned to the various clusters. This process is much simpler than

the one considered in the above learning model and it is close in spirit to how psy-

chologists have thought of categorizations (see in particular Posner and Keele (1968)

or Reed (1972)).16 At the end of stage 1, the subject may also randomly consider

alternative representative points, repeat the process for this new set of representative

points and adopt the latter if it reduces the prediction error (measured by variance or

entropy as discussed above). Stage 2 is identical to the one described above. While an

explicit study of such a dynamic would require further work, it is readily verified that

the steady states of such an alternative learning dynamic correspond to the globally

15Furthermore, accessing the original raw data would be made even more difficult if the subject
has to make a decision quickly in ω.

16Technically, the process in this variant corresponds to just the first step of the K-means clustering
algorithm with initial representative points as provided by the parent.
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clustered ABEE.17

3 Applications

In this Section we consider various applications. We focus throughout on whether

the environment has multiple self-attractive analogy partitions or only self-repelling

analogy partitions. In the former case, several choices of analogy partitions may lead

to behaviors (through the machinery of ABEE) that agree (form the clustering per-

spective) to the initial choice of analogy partitions. In the latter case, any choice of

analogy partitions leads to behaviors (through the machinery of ABEE) in at least one

game that would have to be reallocated to another analogy class (from the clustering

perspective).18

Clearly, environments in which there is no pure CABEE are self-repelling ones.

While the matching penny environment discussed above gives an illustration of this,

we will cover more applications in which this arises. We will also illustrate that the

polar case of self-attractive analogy partitions can arise in classic environments, thereby

suggesting a novel source of multiplicity of equilibria in such cases.

3.1 Self-Attractive Analogy Partitions: A Beauty Contest

Game Illustration

We consider a family of games that induce strategic behavior in the spirit of the

“beauty contest” example mentioned in Keynes’s General Theory (1936). These games

are similar to those introduced in Morris and Shin (2002) except that in our setting

there is no private information and players form their expectations in a coarse way.

Formally, a fundamental value (playing the role of the state in the above setting)

can take values θ in Θ ⊂ R and θ is assumed to be distributed according to some

17In this variant, we have in mind that there is no measurement error unlike in the main version.
This is to ensure that in the steady state, subjects stick to the set of representative points that are
transmitted to them by their parents. Also, unlike in the main version of the learning model, there is
no problem dealing with locally clustered ABEE: these are obtained when there is no experimentation
with the representative points in stage 1 of the proposed learning model.

18We use the labels attractive and repelling by analogy with their use in magnetic fields.
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smooth density f(·) on Θ. Player i has to choose an action ai ∈ R.

When the fundamental value is θ, player i ’s utility is

Ui(ai, a−i; θ) = −(1− r)(ai − θ)2 − r(ai − aj)
2,

where 0 < r < 1. In other words, players would like to choose an action that is

close both to the fundamental value and to the action chosen by the opponent where

r measures the weight attached to the latter and 1 − r the weight attached to the

former. It is the coordination aspect that gives to this game the flavor of the beauty

contest game.19

As in the framework of Section 2, players are assumed to observe θ. The quadratic

loss formulation implies that if player i expects j to play according to the distribution

σj ∈ ∆R the best-response of player i in game θ is

BR(θ, σj) = (1− r)θ + rE(aj | σj).

The unique Nash Equilibrium in game θ requires then that

aNE
1 (θ) = aNE

2 (θ) = θ.

Consider now this same environment assuming players use K categories as in Section

2. Given the symmetry of the problem, we focus on symmetric equilibria in which

players 1 and 2 would both choose the same analogy partition (Θk)
K
k=1 and we let for

each k

θk = E(θ | θ ∈ Θk)

denote the mean of the fundamental values conditional on θ lying in the analogy class

Θk. Straightforward calculations (detailed for completeness in the online Appendix B)

19While these games are usually presented with more than two players, we note that the analysis
to be presented now is the same whether there are two or more players (where in the latter case, one
should require that a player wants to coordinate with the mean action of the others). Furthermore,
while this environment has a continuum of games and a continuum of actions, extensions of the
definitions provided above for finite environments are straightforward in this case.

21



show that the analogy-based expectation equilibrium requires that for θ ∈ Θk:
20

aABEE
1 (θ) = aABEE

2 (θ) = (1− r)θ + rθk. (4)

In this equilibrium, players do not choose the fundamental value θ because their coarse

expectation leads them to expect the mean action of the opponent to be θk and not θ

when θ ∈ Θk.

Assume that players use the square of the Euclidean distance applied to the mean

of the distribution for clustering purposes. That is, for global clustering, given the

behaviors aABEE
j (θ), player i seeks a partition (Θ′

k)
K
k=1 that minimizes

K∑
k=1

∫
Θ′

k

(aABEE
j (θ)− E(aABEE

j (θ′) | θ′ ∈ Θ′
k))

2f(θ)dθ.

Our main insight is the observation that there are many possible clustered analogy-

based expectation equilibria when the concern for coordination is large enough. More

precisely,

Proposition 2 Take any partition (Θk)
K
k=1 such that θk = E(θ | θ ∈ Θk) are all

different. Then for r sufficiently close to 1, when both players use this analogy partition

and play according to (4), we have a Clustered Analogy-based Expectation Equilibrium.

Proof. When r is close to 1, actions aABEE
j (θ) in Θk are all close to θk. When θk

are all distinct, the clustering (whether local or global) leads to (Θk)
K
k=1. Q.E.D.

In other words, our beauty contest game illustrates in a stark way the possibility of

self-attractive analogy partitions. When r is close to 1, virtually all analogy partitions

can be sustained as part of a clustered ABEE.21 Or to put it differently: Once the

analogy partition (Θk)
K
k=1 is chosen and no matter what this partition is, players are

20It is readily verified that such strategies define an ABEE given that in each Θk, the mean action
E(aABEE

i (θ) | θ ∈ Θk) obviously coincides with θk. In online Appendix B, we show the stronger
result that this is the only ABEE.

21It may be mentioned that for local (not global) clustering, we could dispense with the requirement
that θk are all different. This is so because, with local clustering, if θk = θk′ , any game θ ∈ Θk ∪
Θk′could be assigned to either Θk or Θk′ as from (4) it is readily verified that E(aABEE

i (θ) | θ ∈ Θk)
and E(aABEE

i (θ) | θ ∈ Θk′) would both be equal to θk = θk′ .
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led through the working of the ABEE to behave in a way that makes the clustering

into (Θk)
K
k=1 best for the purpose of minimizing prediction errors. Observe that the

vast multiplicity of analogy partitions so derived results in a vast range of possible

equilibrium behaviors as well, where behaviors are concentrated around the various

θ̄k.
22

Of course, we should not expect to have such an extreme form of self-attraction for

all parameter values of the beauty contest game. For example, when r is small (close

to 0), then behaviors are not affected much by the analogy partition (see (4)), and in

the limit as r = 0, the only globally clustered ABEE would require choosing (Θk)
K
k=1

so as to minimize
K∑
k=1

∫
Θk

(θ − θk)
2f(θ)dθ.

In the case θ is uniformly distributed on
[
θ, θ
]
, this would lead to the equal splitting

analogy partition (i.e., Θk = (θk−1, θk) where θ0 = θ and θk = θ + k
K
(θ − θ)).

For intermediate values of r, we can support a bigger range of analogy partitions as

part of a CABEE but not as many as when r approaches 1. The next Proposition es-

tablishes that as r grows larger, more and more analogy partitions are self-attractive.23

Proposition 3 Take a partition (Θk)
K
k=1 and the corresponding ABEE. Suppose it is

a locally CABEE for some r < 1. Then it is a locally CABEE for all r′ > r.

Proof. As r increases, for each θ ∈ Θk, a(θ) gets strictly closer to θ̄k and weakly

further apart from any θ̄k′ , where k′ ̸= k. Thus, if (Θk)k is locally clustered with

respect to a(θ), given r, then it also locally clustered for any r′ > r. Q.E.D.

The insight of this Proposition can possibly be related to some features of echo

chambers. When the concern for coordination is big, the clustering of fundamental

values into analogy classes may not be much related to the objective realization of

the fundamental values, and different societies (which may settle down on different

22Observe also that our construction would be robust to the introduction of any share of rational
agents to the extent that in the limit as r tends to 1 players in our equilibrium are picking best-
responses to their opponent’s strategy.

23The same result would hold for globally clustered ABEE (even if a detailed proof is a bit tedious
to derive). A weaker statement that can easily be established is that if a partition is part of a globally
CABEE at r, then there exists r∗ such that it is also part of a globally CABEE at all r′ ≥ r∗.
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CABEE) may end up forming different beliefs and adopting different behaviors in

objectively identical situations.

From a different perspective, even within a given CABEE, we observe that the cat-

egorization leads to more polarized behaviors as compared with the Nash Equilibrium

case. In the Nash equilibrium, the distribution of actions is continuous in θ. This

is not so in any CABEE when r > 0: behaviors in CABEE are more concentrated

around the θk, and the polarization is stronger as r gets larger. At the limit when

r = 1, the distribution of behaviors is simply K mass points each corresponding to

one of the θk. In other words, even within a single society assumed to have settled

down on one CABEE, we observe more polarization of behavior in any such CABEE

than in the Nash equilibrium, and this is all the more pronounced that the motive for

coordination (i.e., r) is larger.

The analysis presented here should be contrasted with insights obtained in the

tradition of global games, suggesting a unique selection of equilibrium (see Morris and

Shin (2002) for references). Of course, our setting is different (no private information),

and our formalization of expectations through categories is also different, leading to

alternative predictions and a novel perspective on the possibility of multiple equilibria.

We believe that our finding that a larger variety of behaviors and larger departures

from the fundamental can be obtained as agents are more concerned with coordinat-

ing with others is more in line with Keynes’ intuition about beauty contests. While

rational expectations in the beauty contest game would lead agents to adopt behav-

iors coinciding with the fundamental value, in our approach a much wider variety of

behaviors and expectations can arise when the concern for coordination is big enough.

3.2 Self-Repelling Analogy Partitions: A Monitoring Game

Illustration

We consider the following Employer-Worker environment. There are three types of

workers a, b, c. An employer is matched with one worker who can be either of type a,

b, or c with probability pa, pb, pc, respectively. The type ω = a, b, c of the worker is

observed by the employer. It can be identified with the state in our general framework.
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In each possible interaction ω, the employer and the worker make simultaneous

decisions. The employer decides whether he will Control (C) the worker or not (D).

The worker decides whether to exert low effort e = 0 or high effort e = 1.24

We assume that the employer cares about the type only through the effort attitude

that she attributes to the type of worker. Specifically, we assume that the employer

finds it best to choose C only if she expects the worker to choose low effort with

probability no less than ν∗.

Workers’ effort attitudes depend on their type and possibly on their expectation

about whether they will be controlled or not. Type a of worker always chooses e = 0

(irrespective of his expectation about the Control probability). Type b always chooses

e = 1. Type c of worker finds it best to exert low effort e = 0 when he expects C to

be chosen with probability no more than µ∗.

In the unique Nash equilibrium, the employer would choose C when facing type

a, D when facing type b and would mix between C with probability µ∗ and D with

probability 1 − µ∗ when facing type c. Type c of worker would choose e = 0 with

probability ν∗.

Assume the employer uses two categories K = 2 whereas the worker is rational.25

We have:

Proposition 4 Assume pc is no larger than pa and pb,
pc

pa+pc
< ν∗ < pb

pb+pc
, and

ν∗ ̸= pb
pa+pb

. There is no pure Clustered Analogy-based expectation equilibrium in which

a single analogy partition is used by the employer.

Proof. This is proven by contradiction. Let βe=1 denote the probability attached

to e = 1 by the employer in her non-singleton analogy class. 1) If ac are put together,

consistency implies that βe=1 is at most pc
pa+pc

, which is smaller than ν∗. Best-response

of the employer implies that C (Control) is chosen when facing worker c. Best-response

of the c-worker leads to ec = 1. The resulting profile of effort attitude is (ea = 0, eb =

24A practical way to motivate the simultaneous move formulation is to view the C decision as
requiring time before it is implemented.

25One can possibly motivate this asymmetry by saying that each type of worker can safely focus on
the situations in which similar types are involved whereas employers need to have a more complete
understanding on how the type maps into an effort attitude.
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1, ec = 1), which leads at the clustering stage to reassign c with b, thereby yielding a

contradiction. 2) If bc are put together, βe=1 > ν∗ so that D is chosen by the employer

when facing the c-worker. This leads the c-worker to choose ec = 0 and the resulting

profile of effort attitudes (ea = 0, eb = 1, ec = 0) would lead to reassign c to a, thereby

leading to a contradiction. 3) If ab are put together, βe=1 =
pb

pa+pb
, and the probability

that ec = 1 is ν∗ (as the mixed Nash equilibrium is then played in the interaction

with c). This violates the condition for local clustering, for either a or b whenever

ν∗ ̸= pb
pa+pb

. Q.E.D.

In other words, in this monitoring environment, any categorization is self-repelling,

and steady state requires some mixing. Relying on global clustering, we have:

Proposition 5 Assume pc is no larger than pa and pb and
pc

pa+pc
< ν∗ < pb

pb+pc
. There

is a unique globally Clustered Distributional ABEE in which the analogy partition

putting ac (resp. bc) together is chosen with probability µ∗ (resp. 1 − µ∗), the c

worker chooses e = 0 and 1 each with probability half, and the employer chooses C in

any analogy class containing a and D in any analogy class containing b.

This can easily be understood as follows. Given the choice of the Employer for

each of her analogy partition, the distribution over analogy partitions is chosen so as

to make the c worker indifferent between his two effort options. The mixing of the c

worker is then chosen so as to make the two analogy partitions equally good for the

purpose of minimizing the total variance. The rest of the construction follows easily.

One noteworthy aspect of the equilibrium is that ν∗ plays no role in the equilibrium

(so long that pc
pa+pc

< ν∗ < pb
pb+pc

). This is so because, in equilibrium, the employer

is made indifferent between the two possible partitions at the clustering stage, but

then her monitoring choice is deterministic for each analogy partition. Instead, Nash

equilibrium prescribes that the employer is made indifferent between her monitoring

options, thereby implying that the worker should exert effort e = 1 with probability

ν∗.

Similar insights are obtained when local clustering is considered: a wider range of

equilibria can be sustained, but in all of them, the analogy partition putting ac (resp.

bc) together must be chosen with probability µ∗ (resp. 1 − µ∗). The range of these

26



depend on the probabilities pω of ω = a, b, c and to fix ideas, we consider in the next

proposition that types a and b are equally likely.

Proposition 6 Assume that pa = pb = p > 1
3
and pc

pa+pc
< ν∗ < pb

pb+pc
. The following

define the locally Clustered Distributional ABEE. The analogy partition putting ac

(resp. bc) together is chosen with probability µ∗ (resp. 1 − µ∗), the c worker chooses

e = 0 with probability ζ in the range (p, 1−p
2−3p

), and the employer chooses C in any

analogy class containing a and D in any analogy class containing b.

The main difference between the above two Propositions is that for local clustering,

any mixing of the c type that assigns probability ζ ∈ (p, 1−p
2−3p

) on e = 0 makes the two

analogy partitions locally clustered with respect to the proposed strategy of the worker.

Indeed, when the analogy partition putting ac (resp. bc) together is considered, the

aggregate effort distribution in ac (resp. bc) assigns probability p+(1−2p)ζ
1−p

(resp. (1−2p)
1−p

ζ)

to e = 0 and the mixing ζ on e = 0 is then closer to p+(1−2p)ζ
1−p

(resp. (1−2p)
1−p

ζ) than to

0 (resp. 1) since ζ > p (resp. ζ < 1−p
2−3p

).

With the above learning interpretation that involves populations of employers and

workers, the observation that several analogy partitions must arise in a clustered dis-

tributional ABEE imply that not all employers categorize c workers in the same way.

This implies that different employers may have have different beliefs about the work-

ing attitude of c workers. Some employers (in proportion µ∗) believe c workers choose

e = 0 with probability p+(1−2p)ζ
1−p

and others (in proportion 1 − µ∗) believe c workers

choose e = 0 with probability (1−2p)
1−p

ζ. That is, some overestimate the working atti-

tude of c workers and some underestimate it, leading in our model to polarized beliefs.

Those employers underestimating the working attitude will treat the minority group

(c is the least likely type) exactly like type a, while the others will treat them exactly

like type b. Even if stylized, we believe our analysis may provide a novel argument as

to how different beliefs about the working attitude of minority groups and different

treatments of said groups may co-exist in a society.
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3.3 Strategic interactions with linear best-replies

In this section we apply the notion of Clustered ABEE to families of games with

continuous action spaces parameterized by an interaction parameter µ, which takes

values in an interval of the real line. This parameter is a determinant of the intensity

of players’ reactions to their opponent’s behavior. Players have best-responses which

are linear both in the strategy of the opponent and in µ.

Formally, we consider a family of games parameterized by µ ∈ [−1, 1], where µ is

distributed according to a continuous density function f with cumulative denoted by

F . Players observe the realization of µ and player i = 1, 2 chooses action ai ∈ R.26

In game µ, when player i expects player j to play according to σj ∈ ∆R, player i’s

best-response is:

BRi(µ, σj) = A+ µB + µCEσj
(aj),

where Eσj
(aj) denotes the mean action derived from the distribution σj, and A,B

and C are constants with 0 < C < 1. We will analyze separately the cases in which

µ ∈ [0, 1] and µ ∈ [−1, 0], and in each case we will assume that f(·) has full support.

In the former case, the games exhibit strategic complementarity. In the latter, they

exhibit strategic substitutability.

The restriction to linear best-replies while demanding allows us to accommodate

classic applications.27 In particular, consider the case of strategic complementarity

(µ ≥ 0). Such games with linear best-responses arise in a duopoly with differentiated

products in which firms have constant marginal costs, demand is linear, and firms com-

pete in prices à la Bertrand (see Vives 1999 for a textbook formulation). Such games

can also be viewed as capturing in a reduced form moral hazard in team problems (a

specific formulation of the model introduced by Holmström 1982) in which the agents

26The environment we consider here has a continuum of games and a continuum of actions. While
our general existence results do not apply to such environments, we will obtain the existence of
locally clustered ABEE in the case of strategic complements by construction. The case of strategic
substitutes will be shown not to admit locally clustered ABEE.

27It may be mentioned that in our formulation, we allow the actions to take any value (positive
or negative) whereas in some of the applications mentioned below it would be natural to impose
that the actions (quantities, prices or effort level) be non-negative. We do not impose non-negativity
constraints to avoid dealing with corner solutions, but none of our qualitative insights would be
affected with such additional constraints.
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receive a bonus if the team is successful, agents simultaneously choose how much effort

to exert, the probability of success depends on the profile of effort in a bilinear way

and the cost of effort is quadratic.28

Consider next the case when µ is non-positive so that the game exhibits strategic

substitutability. A setting fitting our formulation is one of a duopoly with differentiated

products with constant marginal costs and linear demands, but this time assuming

firms compete in quantities à la Cournot (see again Vives 1999 for elaborations).

Regardless of the sign of µ, it is readily verified that there exists a unique Nash

Equilibrium of the game with parameter µ. It is symmetric, it employs pure strategies

and it is characterized by aNE
1 (µ) = aNE

2 (µ) = A+µB
1−µC

. The function aNE
i (µ) is continu-

ous and monotone in µ. When B = −AC, the function aNE
i (µ) is flat. The function is

strictly increasing (decreasing) and convex (concave) in µ for B greater (smaller) than

−AC, when µ ∈ [−1, 1].

In our family of games parameterized by µ, we will impose that if two games

belong to the same analogy class, any game in between the two belongs to that class

as well. Accordingly, we will be considering analogy partitions with the property that

each analogy class is an interval of µ, and we will refer to these as interval analogy

partitions.

Specifically, assume that players use (pure) symmetric interval analogy partitions,

splitting the interval into K subintervals, so that

An1 = An2 = {[µ0, µ1], (µ1, µ2], . . . , (µK−1, µK ]}

where µ0 = 0, µK = 1 in the case of strategic complements, and µ0 = −1, µK = 0 in

the case of strategic substitutes.29

Since analogy partitions are symmetric, we simplify notation by dropping the sub-

script that indicates whether player 1 or 2 is considered. We simply denote the interval

(µk−1, µk] by αk for k = 2, ...K − 1 and α1 = [µ0, µ1].

28Complementarity is obtained for positive coefficients applying to the product of effort levels in
the probability of success.

29Whether µk is assigned to (µk−1, µk) or (µk, µk+1) plays no role in our setting with a continuum
of µ.
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Given that players care only about the mean action of their opponent, we will

assume that players focus only on this mean and accordingly compare the behaviors in

different games using the squared Euclidean distance between the mean action these

games induce. That is, we will consider the square of the Euclidean distance in the

space of these mean actions for clustering purposes.

Specifically, with some abuse of notation, we will refer to βi(αk) as the expected

mean action of player j in the analogy class αk. The consistency of βi with σj imposes

that βi(αk) =
1

F (µk)−F (µk−1)

∫ µk

µk−1
σj(µ)f(µ)dµ, where σj(µ) denotes the (mean) action

chosen by player j in game µ. Moreover in each game µ ∈ αk, best-response requires

that player i chooses action BRi(µ, βi(αk)) = A + µ(B + Cβi(αk)) as given by µ and

his analogy-based expectation βi(αk) about the mean action in αk.

Given a (symmetric) interval analogy partition profileAn1 = An2 = {[µ0, µ1], . . . , (µK−1, µK ]},

an ABEE is a strategy profile (σ1, σ2) such that for each player i, each class αk and

each game µ ∈ αk, we have σi(µ) ∈ BRi(µ, βi(αk)) with the requirement thate βi is

consistent with σj. Exploiting the linearity of the best-response, it is easily established

(through routine calculations provided in the Online Appendix B) that there exists a

unique ABEE, which is symmetric.

Proposition 7 Assume players use symmetric interval analogy partitions. There ex-

ists a unique ABEE where, for all k = 1, . . . , K, β1(αk) = β2(αk) =
A+BE[µ|αk]
1−CE[µ|αk]

and for

µ ∈ αk, σ1(µ) = σ2(µ) = A+ µ B+AC
1−CE[µ|αk]

.

Since under symmetric interval analogy partitions the ABEE is symmetric, we drop

the subscript that refers to players and we write β1(αk) = β2(αk) = β(αk). We also

let a(µ|αk) refer to A + µ B+AC
1−CE[µ|αk]

for the remainder of this section where as seen in

Proposition 7, a(µ|αk) = A + µ B+AC
1−CE[µ|αk]

describes the ABEE strategies of players 1

and 2 in the analogy class αk. The function a(µ|αk) is linear in µ. Similarly to the

discussion of Nash Equilibrium above, when B = −AC, the function a(µ|αk) is flat,

and it is strictly increasing (decreasing) in µ for B greater (smaller) than −AC, if

µ ∈ [0, 1].

As far as clustering is concerned, and as already mentioned, we consider the square

of the Euclidean distance in the mean actions. That is, considering a symmetric
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interval analogy partition given by {αk}Kk=1 and the associated ABEE (as described

by β(αk) and a(µ | αk)), {αk}Kk=1 is locally clustered, if for all k = 1, . . . , K and all

µ ∈ αk,

(β(αk)− a(µ|αk))
2 ≤ (β(αk′)− a(µ|αk))

2, ∀k′ ̸= k.

By the monotonicity of the function a(µ|αk) the problem of local clustering boils

down to checking the above inequalities only at the extreme points of each analogy

class. That is, the sequence {µ0, µ1, . . . , µK} generates an interval analogy partition

that is locally clustered with respect to the corresponding ABEE, if and only if, for

k = 1, . . . , K − 1,

(β(αk)− a(µk|αk))
2 ≤ (β(αk+1)− a(µk|αk))

2 and

(β(αk+1)− a(µk|αk+1))
2 ≤ (β(αk)− a(µk|αk+1))

2 (5)

As far as global clustering is concerned, one has to check for a given candidate

interval analogy partition An = {αk}Kk=1 whether

An = arg min
{α′

k}
K
k=1

∑
k

∫
α′
k

[
β(α′

k)− aABEE(µ)
]2
f(µ)dµ

where aABEE(µ) ≡ A+ µ
∑K

k=1 1{µk−1<µ≤µk]}
B+AC

1−CE[µ|αk]
is the ABEE strategy given An

and β(α′
k) = E(aABEE(µ) | µ ∈ α′

k).

3.3.1 Strategic Complements

In this part, we consider the strategic complements case, and we assume that µ is

distributed according to a continuous density f with support on [0, 1].

Given (µk)
K
k=0, we wish to highlight that

aABEE(µ) = A+ µ
K∑
k=1

1{µk−1<µ≤µk]}
B + AC

1− CE[µ|αk]
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has discontinuities at µ1, µ2, . . . , µK−1. If B ≥ −AC, the function aABEE(µ) is in-

creasing in µ and the discontinuities take the form of upward jumps. Similarly, if

B < −AC, the function aABEE(µ) is decreasing in µ and the discontinuities take the

form of downward jumps. The direction of the jumps is a consequence of the strategic

complement aspect, and it will play a key role in the analysis of local clustering. Indeed

assuming B ≥ −AC, as one moves in the neighborhood of µk from the analogy class

(µk−1, µk] to the analogy class (µk, µk+1], the perceived mean action of the opponent

jumps upwards and this leads to an upward jump in the best-response due to strategic

complementarity.

There is a simple geometric characterization of local clustering. Assuming B ≥

−AC, we have that β(αk) ≤ β(αk+1), for all k. The local clustering requirements

summarized by inequalities in (5) are equivalent to the condition that the arithmetic

average of the analogy-based expectations of two adjacent analogy classes should be

between the largest action in the first and the smallest action in the second analogy

class. That is,

a(µk|αk) ≤
β(αk) + β(αk+1)

2
≤ a(µk|αk+1).

Similarly, when B < −AC, the ABEE function is strictly decreasing and (5) can be

reduced to a(µk|αk) ≥ β(αk)+β(αk+1)

2
≥ a(µk|αk+1). These inequalities can receive a

simple graphical interpretation as illustrated in Figure 1 where the horizontal dashed

lines in black represent the arithmetic average between the analogy-based expectations

of two consecutive classes, and whenever aABEE(µ) does not cross any dashed line, the

requirements for local clustering are satisfied by that analogy class.30

One can easily see from Figure 1 that the analogy partitions depicted in the graphs

are locally clustered. As a matter of fact, and as we will show later, when µ is uni-

formly distributed between 0 and 1, an analogy partition that splits the interval into

30Figure 1 shows how the (simplified) local clustering requirements would appear graphically. There
are two graphs, one for B > −AC on the left and one for B < −AC on the right. Both graphs depict
how the Nash Equilibrium function aNE(µ) = A+µB

1−µC (in blue) and the ABEE function aABEE(µ) (in

orange) change as µ varies. For these graphs we assume that µ is distributed uniformly over [0, 1],
we let K = 4, and we pick the interval analogy partition induced by the equal splitting sequence
{0, 1

4 ,
2
4 ,

3
4 , 1}. When B > (<)AC, aNE(µ) and aABEE(µ) are strictly increasing (decreasing).
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K subintervals of equal size leads to a locally clustered ABEE. For more general dis-

tributions, we introduce the notion of equidistant-expectations sequence µ0, µ1, . . . , µK

defined so that for any µk, with k ̸= 0, 1, the Euclidean distance between µk and the

mean value of µ in (µk−1, µk] is equal to the Euclidean distance between µk and the

mean value of µ in (µk, µk+1]. That is, µk − E[µ|(µk−1, µk]] = E[µ|(µk, µk+1]] − µk.

We refer to the corresponding interval partition (αk)
K
k=1 with αk = (µk−1, µk] as the

equidistant-expectations partition. We note that when µ is uniformly distributed on

[0, 1], the equidistant-expectations sequence is uniquely defined by µk = k
K
. For more

general density functions f , it is readily verified (by repeated application of the inter-

mediate value theorem) that there always exists at least one equidistant-expectations

partition.31

Our main result in this application is:

Proposition 8 In the environment with strategic complements, consider an equidistant-

expectations partition (µ∗
k)

K
k=0. There exist

{
µ
k
, µk

}K

k=0
satisfying µ

k
< µ∗

k < µk such

that for any (µk)
K
k=0 satisfying µk ∈ (µ

k
, µk), the analogy partition An = (αk)

K
k=1 with

αk = (µk−1, µk] together with the corresponding ABEE is a locally clustered ABEE.

The rough intuition for this result can be understood as follows. First, start with

an equidistant-expectations partition (µ∗
k)

K
k=0. Suppose we were considering games

with no interaction term, i.e., such that C = 0. Then in game µ, players would be

31See the Lemma 3 in the Online Appendix B for details.
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picking their dominant strategy a(µ) = A + µB irrespective of the analogy partition,

given that players would not care about the action chosen by their opponent. It is

readily verified that the local clustering conditions for the points a(µ) would lead to

pick an equidistant-expectations partition in this case, and this would force a locally

clustered ABEE when C = 0 to be relying on such equidistant-expectations partitions.

Allowing for non-null interaction parameters C makes the problem of finding a locally

clustered ABEE a priori non-trivial due to the endogeneity of the data generated by

the ABEE with respect to the chosen analogy classes, as emphasized above. However,

what the Proposition implies is that using the same analogy classes as those obtained

when C = 0 can be done to construct a locally clustered ABEE. Intuitively, this is

so because the strategic complement dimension makes the points obtained through

ABEE in a given class of the equidistant-expectations partition look closer to one

another relative to points outside a class, as compared with the case in which C = 0.

As a result, the local clustering conditions which hold for the equidistant-expectation

partition when C = 0 hold a fortiori when C is non-null. Now given the jumps, there

is some slack in the conditions for local clustering, thereby ensuring that one can find

open intervals of boundary points µk that satisfy the conditions of the Proposition.

Our environment with strategic complements can be viewed as one in which there

is an element of self-attraction in the choice of analogy partitions. As can easily be

inferred from the above discussion, the larger C is, the more analogy interval analogy

partitions can be used to support locally clustered ABEE, i.e., the more partitions

are self-attractive. In Jehiel and Weber (2023) (the working paper version), we have

characterized more fully the set of locally clustered ABEE confirming that insight, and

we have noted that when C is too large the equidistant-expectations partition need

not be compatible with the requirement for global clustering.32

32While our analysis there suggests that intervals with larger µ should be smaller than in the
equidistant-expectations partition, we have not been able to provide a general characterization of
globally clustered ABEE in this case.
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3.3.2 Strategic Substitutes

We consider now the strategic substitute case, and we assume that µ is distributed

according to a continuous density function f with support [−1, 0].

Note that, differently from the strategic complements environment, here the ABEE

function aABEE(µ) = A+
∑K

k=1 1{µ∈[µk−1,µk)}µ
B+AC

1−CE[µ|αk]
is not monotone in µ. This is

due to the fact that at the discontinuity points the jumps of the function are in the

opposite direction with respect to the slope of a(µ|αk) = A+µ B+AC
1−CE[µ|αk]

, and this is a

fundamental difference induced by the change from strategic complements to strategic

substitutes. To illustrate this, consider the case where a(µ|αk) has a positive slope, that

is, B < −AC. Recall that β(αk) =
A+BE[µ|αk]
1−CE[µ|αk]

. Since µ is non-positive, B < −AC and

E[µ|αk] < E[µ|αk+1] imply that β(αk) < β(αk+1). Since in the strategic substitutes

environment the best-response is decreasing in the analogy-based expectations, at the

adjacency point between two classes, the action played in equilibrium will be greater

in the first of the two classes: β(αk) < β(αk+1) implies that a(µk|αk) > a(µk|αk+1).

Hence, when a(µ|αk) is increasing in µ, the ABEE function jumps downwards at the

discontinuity points. This is depicted in Figure 2.

The non-monotonicities that arise in the ABEE strategies with interval analogy

partitions in turn make it impossible to satisfy the local clustering conditions in a
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neighborhood of µ = µk. This is so because it cannot be simultaneously the case that

limµ→µ+
k
aABEE(µ) is closer to β((µk, µk+1]) and aABEE(µk) is closer to β((µk−1, µk]).

33

Formally, we have:

Proposition 9 In the strategic substitutes environment, whenever B ̸= −AC, there

are no symmetric interval analogy partitions that are locally clustered with respect to

the induced ABEE.

Our environment with strategic substitutes illustrates a case with self-repelling

analogy partitions. In light of our general theoretical framework, it would then be

natural to look for clustered distributional ABEE. In our setting with a continuum

of games, this is a challenging task, and in Jehiel and Weber (2023) (the working

paper version), we characterize the clustered distributional ABEE when µ can take

only three values.

4 Conclusion

In this paper we have introduced the notion of Clustered ABEE defined so that i) given

the analogy partitions, players choose strategies following the ABEE machinery, and ii)

given the raw data on the opponent’s strategies, players select analogy partitions so as

to minimize the prediction errors (either locally or globally). We have highlighted the

existence of environments with self-repelling analogy partitions in which some mixing

over analogy partitions must arise as well as environments with self-attractive analogy

partitions for which multiple analogy partitions can arise in equilibrium. In the case

of environments with self-repelling analogy partitions, an implication of our analysis

is that faced with the same objective datasets and the same objective constraints

(as measured by the number of classes), players must be processing information in

a heterogeneous way in equilibrium. Our derivation of this insight follows from the

strategic nature of the interaction, and it should be contrasted with other possible

33For example when B + AC > 0, we would have β((µk, µk+1]) > aABEE(µk) >
limµ→µ+

k
aABEE(µ+

k ) > β((µk−1, µk]), making it impossible to satisfy the local clustering conditions

for µ = µk and µ = µ+
k (i.e., µ slightly above µk).
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motives of heterogeneity, for example, based on the complexity of processing rich

datasets.34 The case of self-attractive analogy partitions suggests a novel source of

multiplicity, not discussed in the previous literature, and it may shed light on why,

in such environments, different societies may settle down on different behaviors and

different models of expectation formation. Our applications reveal among other things

that environments with strategic complements have self-attractive analogy partitions

and environments with strategic substitutes have self-repelling analogy partitions.

This study can be viewed as a first step toward a more complete understanding

of the structure and impact of categorizations on expectation formation in strategic

interactions. Among the many possible future research avenues, one could consider the

effect of allowing the clustering to be based not only on the opponent’s distribution

of action but also on other characteristics of the interaction such as the own payoff

structure. One could also consider the effect of allowing the pool of subjects assigned

to the role of a given player to be heterogeneous in the number of categories that is

considered.35

Appendix

Proof of Proposition 1

The column player partitions games finely. Let row player’s analogy partition be

An1 = {{x1, x2}, {x3}} with x1 < x2, and let βL denote the probability attached to L

in the expectation β1(x1, x2).

In any ABEE, the Nash equilibrium strategies are played in x3, thus the column

player plays L with probability 1
2+x3

in x3 to make the row player indifferent. The

row player must be mixing in game x1 too: if σ1(x1) = D, then σ2(x1) = R which

implies βL ≥ 1
2
, while the best response of the row player in x1, given βL, would be U ;

34Such forms of heterogeneity are implicitly suggested in Aragones et al (2005) (when they highlight
that finding regularities in complex datasets is NP-hard) or Sims (2003) (who develops a rational
inattention perspective to model agents who would be exposed to complex environments).

35We believe that our main qualitative insights would be quite similar in such extensions. For
example, in the context of the beauty contest game, it is readily verified that our limit result obtained
when r is close to 1 would remain unchanged considering now as the relevant number of categories
the minimum Kmin in the support of the possible K.
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If σ1(x1) = U is a best response for the row player, it has to be that βL ≥ 1
2+x1

which

is greater than 1
2+x2

and so the row player would play U in x2 as well. This in turn

would imply that column player would play R in both games, which would violate the

consistency requirement on βL.

Therefore, any ABEE requires βL = 1
2+x1

. Given βL, row plays σ1(x2) = U leading

column to play σ2(x2) = R. By consistency, the column player must be playing L with

probability 2
2+x1

in game x1.

Note that the strategy profile σ2 just obtained is such that An1 is not locally

clustered. If x1 = b, the probability of playing L in x1 is greater than 1
2
, while

βL = 1
2+b

< 1
2+a

< 1
2
, where 1

2+a
is the probability assigned to L by row’s expectations

in x3 = a: game x1 should be reassigned to x3. Whenever x1 = a, regardless of x2

being b or c, x2 should be reassigned to x3 because the probability of L being played

in x2 is zero, which is closer to 1
2+x3

than to βL = 1
2+a

. Q.E.D

Proof of Theorem 1.

Compared to classic existence results in game theory, the main novelty is to show that

the global clustering correspondence has properties that allow to apply Kakutani fixed

point theorem to a grand mapping M : Σ̄×Λ ⇒ Σ̄×Λ, which is a composition of the

following functions and correspondences. Given (σ̄, λ) we compute the analogy-based

expectations β through consistency and we call this function C. Given (β, λ), the Best

Response correspondence (BR) yields the optimal strategies for each analogy partition

in the support of λ. We aggregate the strategies following (2) obtaining σ̄′ and define

β′ to be consistent with σ̄′. We denote this function AG. We perform global clustering

(GC) on (σ̄′, β′). Then, we obtain the following composition:

(σ̄, λ) 7→C (β, λ) 7→BR (σ′, λ) 7→AG (σ̄′, β′) 7→GC (σ̄′, λ′)

where M(σ̄, λ) denotes the set of (σ̄′, λ′) that can be obtained through this composi-

tion.

Note that C and AG are continuous functions, while BR and GC are correspondences.

The mapping BR is upper-hemicontinuous (uhc) with non-empty, convex and compact
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values by standard arguments. Since, as we will prove later, GC is also uhc with non-

empty, convex and compact values, it follows that:

(i) M is nonempty;

(ii) M is uhc as a composition of uhc mappings;

(iii) M is convex-valued since BR and GC are convex-valued;

(iv) M is compact-valued because BR being compact-valued and uhc implies that

BR(β, λ) is compact. Also, since, AG is single-valued and continuous, and GC is

compact-valued and uhc, then GC◦AG◦BR◦C(σ̄, λ) is compact, for all (σ̄, λ) ∈ Σ̄×Λ.

Since Σ̄× Λ is a compact and convex set, properties (i) to (iv) ensure that M has

a fixed point by Kakutani’s theorem.

To conclude the proof we need to show the properties of the GC correspondence.

GC maps Σ̄× Σ̄ into Σ̄×Λ, where both Σ̄ and Λ are convex and compact. The image

of the correspondence is defined as follows:

GC(σ̄, β) = {σ̄} ∪ {λ ∈ Λ|λi(Ani) > 0 ⇐⇒ Ani ∈ arg min
An′

i∈Ki

V (σ̄j, β
′
i)}

where Vi(σ̄j, β
′
i) =

∑
αi∈An′

i
p(αi)

∑
ω∈αi

p(ω|αi)d (σ̄j(ω), βi(αi|An′
i)).

For ease of exposition, let us denote the latter set in the union above as Gi(σ̄j) ∪

Gj(σ̄i). Note that Gi is nonempty because Ki is finite, thereby implying that there

is always a solution to the minimization problem. Also, Gi is a simplex hence it is

convex and compact. Thus, GC is nonempty, convex and compact valued. We check

that GC(σ̄, β) is uhc by showing that it has a closed graph.

We first establish the continuity of Vi by verifying that d is a continuous func-

tion. When d is the squared Euclidean distance, d is clearly continuous in σ̄ and

in β. Instead, when d represents the KL divergence, it is not generally continuous

because whenever there is ω ∈ αi such that supp[σ̄j(ω)] ̸⊂ supp[βi(αi|Ani)], then

d(σ̄j, βi) goes to infinity. However, the consistency requirements impose supp[σ̄j(ω)] ⊆

supp[βi(αi|Ani)]. Since global clustering imposes for both players that βi is consis-

tent with σ̄, for all ω, αi and Ani, then d(σ̄j, βi) is finite. Recall that, d(x, y) =∑
a(xa lnxa − xa ln ya). Since xa, ya ∈ [0, 1] and xa > 0 implies ya > 0, under the con-

vention that 0 ln 0 = 0, d is continuous when it represents the KL divergence. Hence,
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Vi is continuous, if βi is consistent with σ̄j for both players.

We can now proceed to establish that GC is uhc. Assume by contradiction that

GC does not have a closed graph. That is, σ̄n
j → σ̄j, λ

n
i → λi and λn

i ∈ Gi(σ̄
n
j ), but

λi /∈ Gi(σ̄j). Note that λi /∈ Gi(σ̄j) implies that there is some Ãni ∈ supp[λi] and

ε′, ε > 0 such that

+∞ > Vi(σ̄j, β̃i) ≥ Vi(σ̄j, βi) + ε+ ε′,

where β̃i is consistent with σ̄j according to Ãni. Also, let β̃n
i be consistent with σ̄n

j ,

according to Ãni. We want to show that for some n, λn
i (Ãni) > 0 and Vi(σ̄

n
j , β̃

n
i ) >

Vi(σ̄
n
j , β

n
i ). For λn

i → λi and λi(Ãni) > 0, for any n large enough, λn
i (Ãni) > 0. As

σ̄n
j → σ̄j, for n large enough, by continuity of Vi, Vi(σ̄

n
j , β

n
i ) is in a neighborhood of

Vi(σ̄j, βi) so we can write: Vi(σ̄j, βi) > Vi(σ̄
n
j , β

n
i ) − ε. Then, Vi(σ̄j, β̃i) ≥ Vi(σ̄j, βi) +

ε + ε′ > Vi(σ̄
n
j , β

n
i ) + ε′. Similarly, σ̄n

j → σ̄j implies that, for any n large enough,

Vi(σ̄
n
j , β̃

n
i ) > Vi(σ̄j, β̃i)− ε′. Thus,

Vi(σ̄
n
j , β̃

n
i ) > Vi(σ̄j, β̃i)− ε′ ≥ Vi(σ̄j, βi) + ε > Vi(σ̄

n
j , β

n
i )

We get Vi(σ̄
n
j , β̃

n
i ) > Vi(σ̄

n
j , β

n
i ) and λn

i (Ãni) > 0, which contradicts λn
i ∈ Gi(σ̄

n
j ).

It follows that GC is uhc. Q.E.D.

Proof of Propositions 8

Consider the increasing sequence {µk}Kk=0 with µ0 = 0, µK = 1 and µk =
E[µ|(µk−1,µk]]+E[µ|(µk,µk+1]]

2
.36

We simply check that the sequence we propose satisfies the conditions for local clus-

tering.

That is, An is locally clustered if, for all k = 1, . . . , K−1, (i) (β(αk)− a(µk|αk))
2 ≤

(β(αk+1)− a(µk|αk))
2, and (ii) (β(αk+1)− a(µk|αk+1))

2 ≤ (β(αk)− a(µk|αk+1))
2.

It is readily verified that condition (i) reduces toE[µ|(µk, µk+1]] ≥ 2µk−E[µ|(µk−1,µk]]

1+2C(µk−E[µ|(µk−1,µk]])
.

By substituting µk in the inequality with E[µ|(µk−1,µk]]+E[µ|(µk,µk+1]]

2
we obtain:

E[µ|(µk, µk+1]] >
E[µ|(µk, µk+1]]

1 + 2CE[µ|(µk, µk+1]]

which is true because the denominator is greater than 1.

36We prove the existence of such a sequence in Lemma 3 in the Online Appendix B.
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Condition (ii) is equivalent to requiring that, if E[µ|(µk−1, µk]] <
1
2C

, the follow-

ing inequality holds: E[µ|(µk, µk+1]] ≤ µk + µk−E[µ|(µk−1,µk]]

1−2CE[µ|(µk−1,µk]]
. Recalling that µk =

E[µ|(µk−1,µk]]+E[µ|(µk,µk+1]]

2
, we obtain

E[µ|(µk, µk+1]]− E[µ|(µk−1, µk]]

2
<

E[µ|(µk,µk+1]]−E[µ|(µk−1,µk]]

2

1− 2CE[µ|(µk−1, µk]]

which holds because 0 < 1− 2CE[µ|(µk−1, µk]] < 1 when E[µ|(µk−1, µk]] <
1
2C

.

Since both conditions hold strictly, sequences in the neighborhood of {µk}Kk=0 would

also satisfy the conditions for local clustering. Q.E.D.
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For Online Publication

Online Appendix A: Learning Environment

In this part of the appendix we formalize the learning environment introduced in

section 2.6.

Learning dynamics. There is a continuum of mass 1 of subjects assigned to the

role of player i = 1, 2.

We introduce two perturbations that are used to deal with possible indifferences.

First, when playing a game, we assume the payoffs are slightly perturbed (see Fuden-

berg and Kreps (1993) or Esponda and Pouzo (2016)). Specifically, let ρ̃i be a random

variable with a continuous density gi on [0, 1] and ε > 0 a number that should be

thought of as small (ε measures the degree of perturbation)and we assume that the

distribution of realizations in the population matches the densities and probabilities

induced by p and ρ̃i. Player i in game ω (with draws ρi(ai, ω), ρi(a
′
i, ω)) picks action

ai whenever for all a
′
i ̸= ai,

37

ui(ai, βi, ω) + ερi(ai, ω) > ui(a
′
i, βi, ω) + ερi(a

′
i, ω)

where βi refers to player i’s expectation about player j’s behavior in ω.

The second perturbation concerns how clustering is implemented. Suppose in the

previous period σj(ω) represents the aggregate play of population j when playing game

ω. Let η̃i be a random vector with continuous density hi over the interior of ∆Aj. We

assume that a given player of population i implements a (global) clustering into Ki

classes of
(
sj(ω) ≡ σj(ω)+εηi(ω)

1+ε

)
ω∈Ω

where ηi(ω) is a realization drawn from η̃i and the

draws are assumed to be independent across games ω. As before, we assume that

the distributions of realizations in the population match the density η̃i. To be more

specific, player i (with draws ηi(ω)) picks the partitioning into Ki classes so as to

solve38

37Cases of indifference are insignificant whenever ρ̃ is distributed in the continuum as assumed here.
38For generic ηi(ω), there is a unique solution, thus the handling of indifferences is inconsequential

when η̃i has a density with no atom, as assumed here.
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arg min
Pi∈Ki

∑
ci∈Pi

p(ci)
∑
ω∈ci

p(ω | ci)d(sj(ω), βi(ci)),

note that in cluster ci, the belief βi is identified with the mean of sj(ω) conditional on

ω ∈ ci.

The learning dynamics is as described in the main text and it is fully pinned down

by the initial values of σ0(ω) used in period 1 (as well as ε, gi, hi).

Steady state. In this part, we show that for a fixed ε, there always exists a steady

state of the learning dynamics just described. We then show that the limits of such

steady states as ε converges to 0 correspond to the globally clustered distributional

ABEE.

Proposition 10 For a fixed ε, there always exists a steady state of the learning dy-

namics.

Proof. The proof shares similarities with the purification techniques introduced

by Harsanyi (1973). We consider the same grand mapping M that we introduced in

the proof of Theorem 1, but now in the perturbed environment. The perturbations of

the payoffs make best-responses single-valued as commonly observed in the previous

learning literature. The main novelty here is that the perturbations on the strategies

at the clustering stage make the clustering mapping single-valued too. The argument

to show this is a bit more involved than for the payoff perturbation part because the

perturbations at the clustering stage do not allow for additive separability.

More precisely, consider the compound mapping (σ̄, λ) 7→C (β, λ) 7→BR (σ′, λ) 7→AG

(σ̄′, λ) where σ̄′ is the profile of aggregate best-responses, given λ.

Fix the probability distributions over analogy partitions λ. From the profile of

aggregate strategies σ̄ = (σ̄1, σ̄2) we can compute the corresponding analogy-based

expectations (βi(·|Ani))Ani∈suppλi
that are consistent with σ̄. The mapping (σ̄, λ) 7→

(β, λ) is continuous, single-valued and defined over convex and compact sets.

We consider best-responses in the perturbed environment. Let us order the actions

in Ai, so that azi is the z-th element in Ai. We denote by a∗i (ω|Ani)(·) the function
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that maps each realization of the profile of random variables ρ̃i for each action ai ∈ Ai

in game ω into a best-response, and we write ai = a∗i (ω|Ani)(ρi) to indicate that ai is

played when the profile of realizations is ρi(ω) = (ρi(a
′
i, ω))a′i where ρi = (ρi(ω))ω. We

denote by Xz
i (a

∗
i (ω|Ani)) the set of perturbations under which the action azi is chosen

according to a∗i (ω|Ani). That is:

Xz
i (a

∗
i (ω|Ani)) = {ρi|azi = a∗i (ω|Ani)(ρi)}. (6)

The mixed strategy played by player i, under the analogy partition Ani in game ω is

induced by a∗i (ω|Ani) if and only if σi(ω|Ani) assigns probability pi(a
z
i ;ω,Ani) to azi

where

pi(a
z
i ;ω,Ani) =

∫
· · ·
∫
ρi∈Xz

i (a
∗
i (ω|Ani))

dρi(a
1
i , ω) . . . dρi(a

|Ai|
i , ω)gi(ρi(a

1
i , ω)) . . . gi(ρi(a

|Ai|
i , ω))

(7)

and gi(ρi) is the continuously differentiable pdf of ρ̃i.

Consider first the mapping BR : (β, λ) 7→ (σ′, λ), where σ′ is a profile of mixed

strategies that is a best-response to β. Let a∗i (ω|Ani) prescribe actions that are best

responses to βi(·|Ani), given the perturbed payoffs. Then BR is single-valued (because

the set of realizations of the perturbations under which there are indifferences has

measure zero), and it is readily verified that BR is a continuous function over convex

and compact sets.

Consider the AG function, (σ′, λ) 7→ (σ̄′, β′) which aggregates the strategies over

games and computes consistent expectations. AG is single-valued and continuous.

Thus, the compound mapping (σ̄, λ) 7→C (β, λ) 7→BR (σ′, λ) 7→AG (σ̄′, β′) is also

continuous and single valued over convex and compact sets.

For the clustering part, the argument is somewhat similar to the best response

part. Consider the clustering mapping GC : (σ̄′, β′) 7→ (σ̄′, λ′), where λ′ = (λ′
i, λ

′
j) is

such that λ′
i solves the global clustering problem for player i.

Consider the perturbed strategies s̄, where s̄j(ω) =
σ̄j(ω)+εηi(ω)

1+ε
and impose that

βi is consistent with s̄j. As established in Theorem 1, for each ω ∈ α, the function

d(s̄j(ω), βi(α|Ani)) is continuous in s̄j.
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We define An∗
i (ηi) as the function mapping the realization of the perturbation η̃i

to an analogy partition Ani that solves the clustering problem. As before, we denote

by Xk
i (An

∗
i ) = {ηi|Ank

i = An∗
i (ηi)} the set of realizations such that the k-th analogy

partition is prescribed by An∗
i .

The mixture of analogy partitions λi is induced by An∗
i (·) iff λi assigns probability

q(Ank
i ) toAn

k
i where q(An

k
i ) =

∫
· · ·
∫
ηi∈Xk

i (An∗
i )
dηi(ω1) . . . dηi(ωN)hi(ηi(ω1))....hi(ηi(ωN)),

where hi is the continuously differentiable pdf of ηi. We show now that the clus-

tering mapping is single-valued. To establish this, we rely on results from chap-

ter 2 in Milnor (1965). More precisely, we show that if Ani and An′
i yield the

same V value (the criterion used for the clustering problem), then the set of real-

izations of η̃i that allow this has measure zero. Given, σ̄j we can define the function

h(ηi) = Vi(s̄j, βi(·|Ani)) − Vi(s̄j, βi(·|An′
i)), which is a mapping h : U → R, where

ηi ∈ U .39 The function h is smooth (all partial derivatives exist and are continu-

ous). Since ηi(ai, ω) > 0, for all ω and all ai, then U is an open set. As h(ηi) = 0

is a regular value,40 then the set {η̂i|h(η̂i) = 0} is a smooth manifold of dimension

dim(U)− 1 = (|Ai| − 1) · |Ω| − 1, which has measure zero in U . Then, the argument

for C being single valued and continuous are the same as those used for BR.

Thus, the compound mapping

M : (σ̄, λ) 7→C (β, λ) 7→BR (σ′, λ) 7→AG (σ̄′, β′) 7→GC (σ̄′, λ′)

is single-valued and continuous, and it maps Σ̄ × Λ into Σ̄ × Λ, which are convex

and compact sets. By Brouwer’s fixed point theorem, this mapping has a fixed point.

It is then readily verified that the fixed point (σ, λ) is a steady state of the learning

dynamics. Q.E.D.

Proposition 11 Consider a sequence of steady states (σ(ε), λ(ε)) of the learning dy-

namics induced by ε where σ(ε) denotes the ex ante strategy (prior to the realizations

of the perturbations ρ) and λ(ε) denotes the distribution of the profile of analogy parti-

39Vi is defined as in the proof of Theorem 1.
40To show this, we note that the first derivatives of h(·) wrt to ηi(ai, ω) are linearly independent

as one varies ai and ω.

48



tions.41 Consider an accumulation point (σ, λ) of (σ(ε), λ(ε)) as ε tends to 0. (σ, λ) is

a globally clustered distributional ABEE.

Proof. If limε→0(σ
(ε), λ(ε)) = (σ, λ), then for ε small enough supp[σi(ω)] ⊆ supp[σ

(ε)
i (ω)]

and supp[λi] ⊆ supp[λ
(ε)
i ], for i = 1, 2 and ω ∈ Ω.

Since (σ(ε), λ(ε)) is a steady state, any Ani ∈ supp[λ
(ε)
i ] solves the clustering problem

for player i in the perturbed environment. Thus, for ε = 0, Ani ∈ supp[λi] solves the

clustering problem because d is continuous in ε (as established in Theorem 1, imposing

consistency on β suffices to guarantee continuity in the case of KL divergence). The

same argument can be made to show that σ is a best-response to λ. Thus, (σ, λ) is a

steady state of the learning dynamics when ε = 0.

It follows that (σ, λ) is a globally clustered ABEE because the requirements for the

equilibrium and the steady states coincide when ε = 0 and the independence of the

random draws ensures that σ ∈ Σ1 × Σ2 and λ ∈ Λ1 × Λ2. Q.E.D.

Online Appendix B

Globally CD-ABEE in Example 1

We also provide a description of the globally clustered distributional ABEE.

Let Anx = {{x}, {x′, x′′}} denote an analogy partition of player 1 and λx =

Pr(Anx). Let px denote the probability that L is played in game x by player 2.

Let px ≤ px′ ≤ px′′ . For the purposes of global clustering it must be the case that

px′ =
px+px′′

2
, and also λx′ = 0 unless px = px′ = px′′ , but it is readily verified that

there is no ABEE such that px = px′ = px′′ .

Then, in order to ensure global clustering, player 2’s strategies must be such that

px < px′ =
px+px′′

2
< px′′ . It is easily verified that there is no distributional ABEE

where player 2 is playing pure strategies in game x or x′′. Thus, player 2 is mixing in

both games and, clearly, also in x′. For player 2’s indifference, the aggregate strategy

of player 1 σ̄1(x) must be to play U with probability 1
2
in all games x. In order to

41σ
(ε)
i is a strategy of player i that depends on the game ω and the analogy partition Ani of player

i as in the general construction above.
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sustain such aggregate strategies for player 1, whenever x < x′ < x′′ player 1 must be

indifferent in game x′′ when using Anx and in game x when using Anx′′ .

To illustrate this, take x < x′ < x′′. Player 1 expects L to be played with probability
px+3px′′

4
in games {x′, x′′} when using Anx, and with probability

3px+px′′
4

in games {x, x′}

when using Anx′′ . By setting the former probability equal to 1
2+x

and the latter equal

to 1
2+x′′ , we can always sustain σ̄1(x) and σ̄1(x

′′) where U is played with probability

1
2
. Also, since

px+3px′′
4

< 1
2+x′ <

3px+px′′
4

, player 1 plays U in x′ when using Anx and D

when using Anx′′ . Therefore, U is played in aggregate in x′ with probability 1
2
if and

only if λx = λx′′ = 1
2
.

ABEE in Beauty-Contest game, section 3.1

We provide here the details needed to compute the ABEE in the framework in-

troduced in section 3.1, in the context of the Beauty-Contest game illustration. We

assume players use the same analogy partition (Θk)
K
k=1. For θ ∈ Θk, player i’s best

response is: ai(θ) = (1− r)θ + rE[aj(θ)|Θk].

Then, the average best response of i in θ is:

E[ai(θ)|Θk] =

∫
Θk

ai(θ)f(θ|Θk)d(θ) = (1− r)E[θ|Θk] + rE[aj(θ)|Θk] ⇐⇒

E[ai(θ)|Θk] = (1− r)E[θ|Θk] + r ((1− r)E[θ|Θk] + rE[ai(θ)|Θk])

and so both players expects their opponent to play the average θ in the analogy class:

E[a1(θ)|Θk] = E[a2(θ)|Θk] = E[θ|Θk] and they play:

aABEE
1 (θ) = aABEE

2 (θ) = (1− r)θ + rE[θ|Θk]

Proof of Proposition 7.

By definition, σj(µ) ∈ BRj(µ, βi(αk)) implies that the following equations must hold

in equilibrium:

σj(µ) = A+ µB + µC

∫ µk

µk−1

f(µ)

F (µk)− F (µk−1)
σi(µ)dµ
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= A+ µ

(
B + AC +BC E[µ|αk] + C2E[µ|αk]

∫ µk

µk−1

f(ν)

F (µk)− F (µk−1)
σj(ν)dν

)

Taking the weighted average of σj(µ) over the interval [µk−1, µk], according to the

distribution of µ, yields the following equation:∫ µk

µk−1

f(µ)

F (µk)− F (µk−1)
σj(µ)dµ =

= A+ E[µ|αk]

(
B +AC +BC E[µ|αk] + C2E[µ|αk]

∫ µk

µk−1

f(ν)

F (µk)− F (µk−1)
σj(ν)dν

)
By consistency of βi(αk), the equation above simplifies into βi(αk) =

A+BE[µ|αk]
1−C E[µ|αk]

.

In equilibrium, both players have the same expectations β1(αk) = β2(αk). Substi-

tuting the expression of βi(αk) into the best-responses yields the following equilibrium

(pure) strategies: for all αk ∈ An1 (and An2) and for all µ ∈ αk,

σ1(µ) = σ2(µ) = A+ µ
B + AC

1− C E[µ|αk]

This is the unique ABEE and it is symmetric. Q.E.D.

Lemma 1 Let σ be some strategy profile and d be either the squared Euclidean distance

or the KL divergence. If Ani ∈ Ki is a globally clustered analogy partition for player

i with respect to σ, then Ani is a locally clustered analogy partition for player i with

respect to σ.

Proof. Let Ani be a globally clustered analogy partition with respect to σ. Let βi be

consistent with σ. Assume by contradiction that Ani is not locally clustered. Then,

∃αi, α′i ∈ Ani ∧ ω̂ ∈ αi s.t. d(σj(ω̂), βi(αi)) > d(σj(ω̂), βi(α′i)).
Let α̂i = αi \ {ω̂} and α̂′i = α′i ∪ {ω̂}. Then,

∑
ω∈αi

p(ω)d(σj(ω), βi(αi)) +
∑
ω∈α′i

p(ω)d(σj(ω), βi(α′i))

>
∑
ω∈α̂i

p(ω)d(σj(ω), βi(αi)) +
∑
ω∈α̂′i

p(ω)d(σj(ω), βi(α′i))
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= p(α̂i)
∑
ω∈α̂i

p(ω|α̂i)d(σj(ω), βi(αi)) + p(α̂′i)
∑
ω∈α̂′i

p(ω|α̂′i)d(σj(ω), βi(α′i))

> p(α̂i)
∑
ω∈α̂i

p(ω|α̂i)d(σj(ω), βi(α̂i)) + p(α̂′i)
∑
ω∈α̂′i

p(ω|α̂′i)d(σj(ω), βi(α̂′i))

where the second inequality holds because, when βi is consistent with the strate-

gies played in the games in a given analogy class, this is the representative object

that minimizes the sum of prediction errors in that analogy class among all possible

representative objects in ∆Aj.

Let Âni = α̂i ∪ α̂′i ∪ {Ani \ {αi, α′i}}, then:

∑
αi∈Ani

p(αi)
∑
ω∈αi

p(ω|α)d(σj(ω), βi(αi)) >
∑

αi∈Âni

p(αi)
∑
ω∈αi

p(ω|αi)d(σj(ω), βi(αi))

which contradicts Ani being a globally clustered analogy partition. Q.E.D.

Lemma 2 (Reverse Truncation) Let X be a RV on [0, 1] with continuous pdf fX and

cdf FX . There exists a continuous pdf g over [0,+∞), such that:

gX|[0,1](x) = fX(x), where gX|[0,1](x) =
gX(x)

Prg[0 ≤ X ≤ 1]

Proof. We want to find a continuous function gX such that:

gX(x) =

Prg[0 ≤ X ≤ 1]fX(x) 0 ≤ x ≤ 1

v(x) 1 < x < ∞

Note that gX is continuous if v(·) is continuous and v(1) = Prg[0 ≤ X ≤ 1]fX(1).

Also, gX must be a pdf, so it must be the case that
∫ +∞
0

gX(x)dx = 1. That is,∫ 1

0
Prg[0 ≤ X ≤ 1]fX(x)dx+

∫ +∞
1

v(x)dx = Prg[0 ≤ X ≤ 1]+(1−Prg[0 ≤ X ≤ 1]) =

1.

Let us pick the right function v(.). This function must be continuous and satisfy two

conditions: (i)
∫ +∞
1

v(x)dx = 1 − T , and (ii) v(1) = TfX(1), where T ≡ Prg[0 ≤

X ≤ 1]. Let v() be defined as v(x) = Tf(1)e
Tf(1)
1−T

(1−x) which is continuous since, for
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a, b ∈ R, the function aebx is continuous in x. Also, v(1) = Tf(1)e
Tf(1)
1−T

(0) = Tf(1).

And finally:
∫ +∞
1

v(x)dx = Tf(1)e
Tf(1)
1−T

∫ +∞
1

e−
Tf(1)
1−T

xdx = 1− T . Q.E.D.

Lemma 3 There always exists an equidistant-expectations partition.

Proof. We show that there always exists a sequence {µk}kk=0 with µ0 = 0, some

µ1 ∈ [0, 1] and, for k = 2, . . . , K, µk defined so that E[µ|(µk−1, µk]] = 2µk−1 −

E[µ|(µk−2, µk−1]]. We note that if µ1 is too large, µK might be above 1. Lemma

2 allows us to consider µ to be a random variable from [0,+∞) distributed according

to a continuous strictly positive pdf g, and cdf G, with g(µ) = f(µ)G(1), for 0 ≤ µ ≤ 1.

Let µk ≥ µk−1 ≥ 0. Since g(µ) is striclty positive and continuous in µ, then

E[µ|(µk−1, µk]] =
1

G(µk)−G(µk−1)

∫ µk

µk−1
µg(µ)dµ is continuous and strictly decreasing in

µk−1, and it is continuous and strictly increasing in µk. Moreover, if µk ≤ 1, we have:∫ µk

µk−1
µg(µ)dµ

G(µk)−G(µk−1)
=

∫ µk

µk−1
µG(1)f(µ)dµ

G(1)(F (µk)− F (µk−1))

so the term G(1) cancels out and we are back to the original distribution F .

Fix µk−1. The functionm(µk) ≡ E[µ|[µk−1, µk]] is continuous and strictly increasing

over (µk−1,+∞), with image (µk−1,+∞). Then the inverse function m−1 exists over

(µk−1,+∞) and it is continuous and strictly increasing over (µk−1,+∞).

Given µk−2, µk−1, we use the inverse function to retrieve µk from the equation

E[µ|(µk−1, µk]] = 2µk−1−E[µ|(µk−2, µk−1]]. Let h(µk−2, µk−1) ≡ 2µk−1−E[µ|(µk−2, µk−1]].

Note that h(·) is a continuous function and h(µk−2, µk−1) ≥ µk−1.

Starting from µ0 = 0 and some µ1(µ1) ≡ µ1, we recursively define µk as a function

of µ1 as follows: µ2(µ1) = m−1(h(µ0, µ1)) and

µk(µ1) = m−1(h(µk−2(µ1), µk−1(µ1)))

for k = 3, . . . , K. Note that, for each k, the function µk(µ1) is well defined. Since

h(µk−2, µk−1) ≥ µk−1, then the inverse function exists at the point h(µk−2, µk−1).

Since m−1 : (µk−1,+∞) → (µk−1,+∞) is also strictly increasing and continu-

ous, then µk(µ1) is continuous, being a composition of continuous functions, and

µk(µ1) ≥ µk−1, with equality if and only if h(µk−2, µk−1) = µk−1 ⇐⇒ µk−1 =
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E[µ|(µk−2, µk−1]] ⇐⇒ µk−1 = µk−2. So, either we get the sequence with 0 every-

where, or a strictly increasing sequence.

Let µ1 = 0, then µK(0) = 0. Let µ1 = 1, then µK(1) > 1. Then, by the intermedi-

ate value theorem, there must exist 0 < µ∗
1 < 1 such that µK = 1. Q.E.D.
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