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1 Introduction

In expressing support for a given policy, politicians (henceforth, policymakers) must often make public
statements asynchronously. For example, they may be interviewed in the print or television media at
random times. Likewise, on social media, appropriate opportunities to respond to a particular tweet or
post may also come at random times, for each of them. Moreover, only when sufficiently many other
policymakers have expressed support for a given policy—or are expected to do so in the near future—does
it become worth expressing support for the policy, leading to a dynamic coordination problem.

In addition to this dynamic coordination problem, the policymakers inclined to supporting the policy
may also face opposition from a lobby (or NGO) with diverging interests. The lobby may try to dissuade
the policymakers by taking retaliatory action against those who express support for the policy.

Note that this basic setting can be applied to other situations. For instance, the same dynamic
coordination problem is faced by civil society activists trying to build a movement. In this case, it is a
government police force that may try to prevent this movement from forming. Although applications are
multiple, in this article we will mainly focus on the policy makers/lobby example. This is for convenience
and we will occasionally analyze other examples when appropriate.

It has often been argued that lobbies/NGOs must be well-funded in order to effectively influence
policymakers. Indeed, dissuading policymakers from taking a position can be a costly undertaking that
may involve lawsuits or the release of public statements against policymakers who have expressed support
for the policy, and if many policymakers are engaged in the collective action, this may require enormous
funding abilities for lobbies to be effective. Based on this observation, some argue that lobbies should
be regulated by limiting their funding1.

In this article, we examine this claim and will argue that a lobby’s ability to react quickly to the
policymakers’ actions is a key determinant of the effectiveness of the lobbying activity, more so than its
financial ability in our environment in which actions are taken sequentially at different times.

Specifically, we study a dynamic model where agents (policymakers) with shared interests are each
given an opportunity, at a random time, to take a binary action (i.e. expressing support for a policy or
not). This can model, for example, a random opportunity to give a television interview or to reply to a
particular tweet or social media post. These random opportunities are driven by a Poisson process with
a given arrival rate. The marginal benefit of expressing support for the policy is increasing in the number
of policymakers who have (and who will) express support for it, thus defining a dynamic coordination
game among policymakers. On the other side, a Principal (a lobby) with interests diverging from those of
the agents is also given random opportunities to take retaliatory actions against the agents, in an effort
to prevent them from coordinating. These random opportunities are driven by another Poisson process
with a different arrival rate. The Principal has a limited budget and can thus only take retaliatory
actions against a finite number of agents.

We first show that in the absence of the Principal (or when the Principal is slow enough), the ability
of the policymakers to dynamically coordinate depends on the arrival rate of their opportunities to
express their support for the policy. Indeed, if the sequential asynchronous opportunities that they are
given arrive at a fast enough rate, we show by a subgame perfection argument that in any equilibrium,
policymakers all choose to express support for the policy. This effectively selects a unique equilibrium
behavior on the part of policymakers.

We then show that if the lobby can react quickly enough to the actions of the policymakers, in
equilibrium, policymakers are fully dissuaded from expressing support for the policy, irrespectively of the
size of its budget. More precisely, for this conclusion to hold, we only need the lobby to have a budget
ensuring the effective punishment of a single policymaker, and we also need the lobby to react sufficiently

1See, for instance, Hasen (2012), Briffault (2008) or Johnson (2006) for a broad discussion of this topic.
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quickly after the action of any policymaker. Under these conditions, after such a putative action by a
policymaker and considering the time at which the lobby can implement its punishment, there would
be little chance that another policymaker would also be given the opportunity to act. Thus, the lobby
would find it unambiguously optimal to punish that one policymaker who expressed his support and, as
a result, in equilibrium no policymaker dares express support for the policy.

We next note that if a lobby can perfectly observe the separate times at which the policymakers
expressed their viewpoints, and if it can publicly announce and commit to a retaliation strategy, then
it is able to fully dissuade the policymakers from expressing support for the policy, no matter how the
reaction speeds of the lobby and the policymakers compare to one another. It can do so by threatening
to punish the policymakers in the order in which they expressed their support, since then no policymaker
will want to be the first to express his support. As already mentioned, for our deterrence results to hold,
the lobby only needs to have a budget large enough to make the punishment of a single agent effective.
In other words, with a “single bullet” the lobby can discipline an entire population of policymakers.

Our findings contrast with those obtained in the equivalent simultaneous-actions coordination game,
in which the size of the lobby’s budget (i.e. its ability to punish a large number of policymakers) is key
to ensuring that, in all equilibria, policymakers are deterred from expressing support for the policy.

Our result that without the Principal, policmakers are able to coordinate on the outcome that is
efficient for them in a dynamic version of the coordination game is reminiscent of the work of Gale
(1995), who developed a similar insight in a different context of private provision of public goods with
asynchronous (yet deterministic) decision times. Our results in the presence of the Principal, while
simple, have no counterpart in the literature as far as we know. We believe our results are particularly
well suited to the understanding of lobbying activities in the age of social media technologies. Indeed,
the latter have had the effect of increasing the speed at which opportunities arrive for policymakers and
lobbyists. To the extent that lobbies are better at handling social media technologies (and thus are
quicker in their reaction times than policymakers are in expressing their views), our analysis suggests
that lobbies do not need large budgets in order to be effective.2

From a technical viewpoint, our modeling of stochastic decision times is somehow similar to that
adopted in the recent literature on revision games (Kamada and Kandori (2020)), in which players’
ability to change their actions is modeled in a stochastic fashion using Poisson distributions. However,
to our knowledge, that literature has not considered the kind of games discussed in our application. Less
directly related to our model, one could mention static approaches of coordination games allowing for
selection based on incomplete information. See, in particular, the global games approach of Carlsson and
Van Damme (1993), Morris and Shin (1998), Morris and Shin (2001) or more recently Persico (2023).
There is also an approach called Poisson games, introduced in Myerson (1998, 2000), where there is
uncertainty about the number of players (drawn according to a Poisson distribution, hence the name of
this approach), although the game itself is static.3 These are obviously different perspectives from the
one we develop here, which is based on the dynamic nature of decision making rather than asymmetric
or incomplete information.

Our paper is also related to the literature on the economics of policing (e.g. Owens and Ba (2021);
Knowles, Persico, and Todd (2001)) and to the literature on community enforcement (e.g. Kandori
(1992); Takahashi (2010); Kandori and Obayashi (2014)).

The paper is structured as follows. In Section 2, we describe the dynamic model and payoffs. In
Section 3, we characterize the equilibrium behavior of the policymakers and of the lobby when the
policymakers’ action times are perfectly observable and when the lobby may or may not be able to

2To be effective, the actions of the policmakers would have to be decided jointly or in such a way that the lobbyist
cannot observe them separately.

3See also Frankel (2023) for a treatment of participation games.
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publicly announce and commit to a retaliation strategy. We state our main results and also compare
our dynamic setting to a game where policymakers act simultaneously. In Section 4, we conclude and
discuss some extensions and robustness checks. A Supplementary Online Appendix further discusses
such extensions.

2 Model

2.1 Setting

We study a setting where at random times governed by a Poisson process, different infinitely-lived agents
(e.g. policymakers) get the chance to take a costly action and their payoff depends on the total number of
agents who choose this action. In effect, they play a dynamic coordination game. The number of agents
NA(0, t) getting the chance to play the game in an interval of time [0, t] is thus NA(0, t) ∼ Poiss(λAt)

where λA is the agents’ arrival rate. Let ti be the event time of the ith event of this Poisson point
process. At such a time, the ith agent will get the chance to choose an action ai ∈ {0, 1}.

A Principal (e.g. a lobby with interests diverging from those of the agents) also gets the chance to
police the population of agents, but at some random times. The number of times NP (0, t) ∼ Poiss(λP t)
the Principal gets to act in an interval of time [0, t] is thus also governed by a Poisson process where
λP is the intensity of the Principal’s policing activity. Call τk the event time of the kth event of this
Poisson point process. At each such time, the Principal can choose an action aP,k ∈ N+ (the identity of
the agent who is to be punished) or aP,k = ∅ (not take punitive action).

Let the history of play at time t be denoted by

ht = ({tj}tj≤t, {aj}tj≤t, {τk}τk≤t, {aP,k}τk≤t).

Calling H the set of possible histories, the Principal’s strategy is then σP : H → ∆({∅,N+}). That is,
at some action time τ , based on a history of past play hτ , the Principal can choose to punish any agent
i ∈ N+. She can also decide not to take punitive action (i.e. not to choose any agent to punish, ∅). She
can also randomize. It is important to note that the Principal has limited resources and is thus restricted
in the number of agents she can punish. Call Bt, with B0 = B ∈ N, the Principal’s finite budget at time
t. It represents the maximum number of agents she can choose to punish now and in the future. Thus,
for τk−1 < t ≤ τk, where τk−1 and τk are action times for the Principal, Bt = Bτk−1

− 1{aP,k−1 6=∅}. That
is, the Principal has the resources to punish at most B agents and her budget Bt decreases every time
she punishes an agent.

Likewise, the agents’ strategy is σA : H → ∆({0, 1}). That is, at some action time ti, based on a
history of past play hti , an agent i can choose to take action ai = 0 or ai = 1 and he can also randomize.

2.2 Payoffs

Given action times {tj}∞j=1 and {τk}∞k=1 for the agents and Principal, let us denote the agents’ and
Principal’s actions profiles as ~a = (a1, a2, ...) and ~aP = (aP,1, aP,2, ...).

It will be useful to also define the running action profiles at time t for the agents and for the Principal
as ~at and ~aP,t. Here aj,t = aj ∈ {0, 1} if tj ≤ t and thus agent j has already acted. By default, aj,t = 0

if tj > t and the agent has not yet acted. Likewise ~aP,t = {aP,1,t, aP,2,t, ...} with aP,k,t = aP,k ∈ {0, 1} if
τk ≤ t and, by default, aP,k = 0 if τk > t.
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2.2.1 Agents’ payoffs

At any time t, agent i receives a flow payoff

π̃i,t(ai,t,~a−i,t,~aP,t) = v(ai,t,
∑
j

aj,t)− κ · ai,t − C · 1φi,t . (1)

In the above equation, v : N2 → R is the benefit function, which is increasing in both own running
action ai,t and in the sum of the running actions of other agents

∑
j aj,t. Thus, at time t an agent benefits

from the actions of all the agents who chose aj = 1 up to time t. κ > 0 is the intrinsic cost to agent i
of taking action ai = 1. C > 1 is the punishment cost felt by agent i if he is punished by the Principal
and φi,t = {∃τs ≤ t : aP,s = i} is the event that agent i is punished no later than time t. Without loss of
generality, we let v(0, 0) = 0. Moreover, we let v(1, 0) < κ and v(1, n− 1)− v(0, n− 1) > κ for all n ≥ N
and some N ∈ N+, capturing the fact that agents play a coordination game among themselves. Thus, it
is not worth taking action ai = 1 if no other agent takes it, while it becomes worth taking action ai = 1

when sufficiently many other agents also take it. We also assume that limn→∞ v(1, n)− v(0, n)− κ < C

so that an agent always suffers from being punished, irrespectively of how many other agents have chosen
action ai = 1. These properties of v are summarized in the following assumption.

Assumption 1 (Properties of benefit function) (i) v(0, 0) = 0. (ii) Let ∆v(n) = v(1, n)− v(0, n).
∆v(n) is increasing in n, with ∆v(0) < κ, ∆v(N−1) > κ for some N ∈ N+ and limn→∞∆v(n)−κ < C.

The forward-looking, discounted realized payoff at time t is then

πi,t(ai,~a−i,~aP ) =

∫ ∞
s=t

δs−tA π̃i,s(ai,s,~a−i,s,~aP,s)ds, (2)

where δA ∈ (0, 1) is an agent’s discount factor.
At his decision time ti, agent i will thus choose a strategy σ∗A(hti) to maximize his expected payoff

E[πi,ti(ai,~a−i,~aP )|σP , σA, hti ], given the Principal’s strategy, the other agents’ strategy, and a history
of play at time ti.

2.2.2 Principal’s payoff

The Principal’s flow payoff at time t is

π̃P,t(~aP,t,~at) = −
∑
j

aj,t +
∑
j

ε1ψj,t · aj,t, (3)

where ε ∈ (0, 1) and ψj,t = {∃τk ≤ t : {aP,k = j}
⋂
{aP,s 6= j,∀τs ≤ t such that τs 6= τk}}.

We see, from the first term of Eq. (3), that the Principal suffers permanent disutility from all the
agents who have chosen action aj = 1 in the past, capturing her interests that diverge from those of
the agents. Moreover, from the second term of Eq. (3), we see that she enjoys4 a permanent benefit ε
from having punished (i.e. {aP,k = j}) agents who had chosen action aj = 1 and who had not yet been
punished (i.e. {aP,s 6= j,∀τs ≤ t such that τs 6= τk}).

The Principal’s forward-looking, discounted realized payoff at time t is then

πP,t(~aP ,~a) =

∫ ∞
s=t

δs−tP π̃P,s(~aP,s,~as)ds, (4)

where δP ∈ (0, 1) is the Principal’s discount factor.
4The Supplementary Online Appendix offers a microfoundation for ε, in which the punishment results in the action of

the targeted agent to be possibly cancelled.
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The Principal will thus choose a strategy σ∗P that maximizes her expected payoffE[πP,t(~aP ,~a)|σP , σA, ht],
given the agents’ strategy and a history of play at time t (and thus her running budget Bt).

3 Equilibrium analysis

Let the full history of play hτ be observable to the Principal at a time τ when she takes her own action.
Since hτ = ({tj}tj≤τ , {aj}tj≤τ , {τk}τk≤τ , {aP,k}τk<τ ), this includes both the identity j of the agents
who took action aj = 1 and the times tj at which they took it. This fits well with an application where
policymakers (the agents) are given opportunities, at random times, to express their support in the media
for a given policy, while a lobby (the Principal) can then attack them if they took a certain position,
when it is given an opportunity to react.

The equilibrium behavior will depend on the timing of actions (namely, on how quickly the Principal
can react to the agents’ actions), on the Principal’s ability to commit to a strategy, as well as on her
budget. We will analyze these in the following subsections.

3.1 Successful agent coordination

The dynamic nature of the game allows to select a unique equilibrium behavior for the agents. Namely,
if the intensity of the agents’ activity is high enough and the intensity of the Principal’s policing activity
is low enough, the agents always succeed in coordinating on action a = 1.

Proposition 1 (Successful agent coordination) There exist λP > 0 and λA(δA, N) > 0, such that
when λP < λP and λA > λA(δA, N), then any equilibrium involves a∗i = 1 for all i.

Note that, in contrast with a static version of the game outlined in Section 3.4, the dynamics can
allow us to select a unique equilibrium behavior on the part of the agents.

To gain some intuition into Proposition 1, note that if the lobby’s policing activity is slow enough,
then the chance of being punished in the not-too-distant future — by which we mean in a period of time
that is not too severely discounted by the discount factor δs−tA — can be low enough that agents always
have an interest in choosing a = 1. Indeed, if the agents’ arrival rate λA is high enough, then by choosing
a1 = 1, agent 1 precipitates a subgame in which agents i = 2, ..., N − 1 also choose ai = 1, as it then
becomes strictly dominant for agent N (and all subsequent agents) to choose aN = 1. As this happens
in the not-too-distant future with high probability when λA is high enough, it is then strictly dominant
for all agents to choose ai = 1. In other words, the early agents effectively have an incentive to initiate
a herding behavior by the subsequent agents. This allows agents to coordinate dynamically.

This result that agents are able to coordinate on the outcome that is efficient for them in a dynamic
coordination game is reminiscent of the work of Gale (1995), who provided a similar insight, but in the
different context of the private provision of public goods with asynchronous (yet deterministic) decision
times.

3.2 Successful deterrence without commitment from the Principal

On the contrary, if the intensity of the agents’ activity is low enough relative to the Principal’s, then
she can successfully deter the agents from choosing action a = 1, irrespectively of the size of her budget.
This is formalized in the following proposition.

Proposition 2 (Equilibrium without commitment from the Principal) There exist η such that
if λA − λP < η, then any equilibrium involves a∗i = 0 for all i and for any B > 0.

5



Thus, if the Principal acts sufficiently quickly relative to the agents, then with a single bullet she can
discipline an entire population. Indeed, as long as B > 0 (which holds for B = 1), the actual size of the
budget B is not important to obtain that, in any equilibrium, all agents choose the action a = 0. This
illustrates how the reaction time of a lobby is more important than its ability to take punitive actions
against a large number of policymakers (e.g. its financial ressources).

If λA−λP is too large, then an equilibrium where agents coordinate on a = 1 can be sustained. This
can be done requiring that the Principal randomizes her punishment uniformly among agents having
chosen a = 1. Then, agents would be confident enough that when the Principal moves, there would be a
large number of agents having chosen a = 1, making the punishment ineffective at deterring this action.

In an application to crime and policing, it is interesting to note a parallel with the famous5 “broken
window theory”, in which the police (the Principal, in this case) wants to react quickly even when a
minor crime is committed, as this signals to the criminals (the agents, in this case) that she has a high
λP . In this famous theory, the actions of the police must also be visible, which is the case in our model
as aP,k is observed by all agents.

3.3 Successful deterrence with commitment from the Principal

If the Principal can credibly commit to a strategy σP at time 0, we will see that she is allowed to
react much more slowly than in the case without commitment and still succeed in deterring agents from
coordinating on action a = 1. Indeed, since we suppose the full history of play hτ is observable to the
Principal at a time τ when she takes her own action, she has access to both the identity of the agents
who took action a = 1 and the times tj at which they took it, from which she is able to deduce the order
in which agents took action a = 1. Interestingly in this case, if the Principal announces and commits to a
strategy that consists in punishing the agents in the order in which they have chosen action ai = 1, then
(unless λP is so low that an agent has little chance of being punished in the not-too-distant future) the
equilibrium involves a∗i = 0 for all i. In other words, not only is the size of her budget B > 0 once again
irrelevant to successfully dissuading the agents from choosing action a = 1, but the required intensity λP
of the Principal’s policing activity is also independent of the intensity λA of the agents’ activity. λP only
needs to be large enough so that an agent has a reasonable chance of being policed in the not-too-distant
future.

This is formalized in the following definition and proposition.

Definition 1 (Ordered punishment strategy) σP is called an ordered punishment strategy if the
Principal punishes agents in the order in which they took action a = 1. That is σP (hτ1) = i, where i
is such that ai = 1 for ti < τ1 and aj = 0 for all tj < ti. Likewise, σP (hτ2) = i′, where i′ is such that
ai′ = 1 for ti′ < τ2 and aj = 0 for all tj < ti′ except for tj = ti where ai = 1, and so on.

Proposition 3 (Equilibrium with commitment from the Principal) Let the Principal commit to
an ordered punishment strategy σ∗P . (I) There exists λ

c

P > 0 such that for any budget size B > 0, if
λP > λ

c

P , then the equilibrium involves agents choosing a∗i = 0 for all i. (II) Moreover, λ
c

P is decreasing
in an agent’s discount rate δA and it does not depend on λA.

Thus, when a lobby can announce and commit to a punishment strategy, the information it possesses
about the order in which policymakers took action a = 1 (e.g. made statements in the media in support
of a policy that goes against the lobby’s interests) is not only more important than the size of its budget
(and thus its ability to take retaliatory action against multiple policymakers), it is also more important
than its reaction time. Again, the threat of a single bullet can discipline an entire population, but under
even less restrictive conditions than in the case without commitment.

5See, for instance, Corman and Mocan (2005).
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In Proposition 3, λP must only be high enough so that an agent has a large enough chance of being
punished in the not-too-distant future. λ

c

P is thus completely independent of the agents’ activity rate λA
and the principal does not need to react quickly to the agents’ actions. However, it still depends on how
much the agents value the future and thus on their discount rate δA.

Specifically, the Principal can achieve the same outcome as in Proposition 3 if she only recalls the
identity of the first6 offender!

3.4 Contrasts with a game where agents act simultaneously

The previous analysis contrasts sharply with the equivalent simultaneous-actions coordination game,
in which agents must act at the same time. Consider M agents, each of whom can choose an action
a ∈ {0, 1} at time 0. The set of agents {1, 2, ...,M} is unordered, in the sense that an agent’s identity i
is just a label or a name. The Principal then observes the action profile ~a and, at time 1, chooses which
agents to punish, i.e. her action aP ⊂ ∅

⋃
{1, ...,M} with |aP | ≤ B is the set of agents she punishes

(noting that she cannot punish more than B agents, the size of her budget). Payoffs are realized at time
1.

Agent i has payoff
πi(ai,~a−i, aP ) = v(ai,

∑
j

aj)− κ · ai − C · 1φi (5)

where φi = {i ∈ aP } is the event that agent i is in the set of agents punished by the Principal. All agents
are homogeneous. Call σA ∈ ∆({0, 1}) an agent strategy.

The Principal has payoff
πP (aP ,~a) = −

∑
j

aj +
∑
j

ε1φj · aj . (6)

Call σP : {0, 1}M → ∆(2{1,2,...,M}) the Principal’s punishment strategy. It is a mapping from a time-0
agents’ actions profile ~a, which she observes, to the set of probability measures over all subsets of agents.

As in Assumption 1, we let v(1, 0)− v(0, 0) < κ < v(1,M − 1)− v(0,M − 1) so that the coordination
problem among agents is not trivial. In such a game, there could be multiple equilibria. Namely a zero-
contribution equilibrium with ai = 0 for all i, a full contribution equilibrium with ai = 1 for all i as well
as mixed strategy equilibria. Equilibrium selection here will depend on the size of the Principal’s budget.
Namely, when B = 0, the Principal is effectively absent and this corresponds to a standard coordination
game among agents only. When 1 ≤ B < M , the best the Principal could do after observing agents
taking action a = 1 would be to punish up to B randomly-selected such agents, each agent being selected
with probability min( B∑

j aj
, 1). Indeed, here the Principal cannot condition her punishment strategy

σP (~a) on the (unordered) identities of the agents, but only on their actions. A sufficient condition to
obtain a unique, zero-contribution equilibrium (ai = 0 for all i) here is that the Principal’s budget be
large enough, since the expected marginal payoff of investing would be too low while the probability of
being punished is too large. This is summarized in the following proposition.

Proposition 4 Consider the game where M agents act simultaneously.

(I) In the absence of the principal (or when B = 0), there exist multiple equilibria. These include,
namely, a no-contribution equilibrium where agents choose a∗i = 0 for all i, a full-contribution
equilibrium where agents choose a∗i = 1 for all i, as well as a symmetric mixed-strategy equilibrium.

(II) In the presence of the principal (when B ≥ 1), when B/M < ∆v(M−1)−κ
C , then there is always an

equilibrium in which agents choose a∗i = 1 for all i. For all equilibria to require a∗i = 0, for all i,
we need that B/M > ∆v(M−1)−κ

C .
6The Online Supplementary Appendix provides such an elaboration.
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Thus the size B of the Principal’s budget (her ability to punish a large number of agents) is key
to equilibrium selection in this model where agents act simultaneously. Since under our assumptions,
∆v(M−1)−κ

C is bounded away from 0, we conclude that the Principal would need a budget B that also
grows very large as M gets large to be sure to deter any ai = 1 in equilibrium. This is to be contrasted
with our finding in the dynamic version of the game, for which we obtained that B ≥ 1 was enough to
deter any ai = 1 in equilibrium under the conditions of Propositions 2 or 3.

4 Conclusions and extensions

Finally we discuss certain extensions, a more detailed version of which is included in the Supplementary
Online Appendix.

4.1 Effect of the information structure available to the Principal

Suppose now that the actual times tj at which agents acted are not publicly observed, but their actions
are. Thus, the Principal cannot perfectly deduce the order in which agents took action a = 1. This fits
well with situations like political demonstrations or riots, where the Principal (e.g. the government) can
observe which agents (e.g. demonstrators) participated in a demonstration, but not the exact timing at
which they joined the protest.

As the Principal cannot do better than punishing a randomly chosen agent, the probability that an
agent gets punished will depend on the intensities λA and λP governing the action opportunities of the
agents and of the Principal. It is important to note that this is true both without and with commitment.
Thus, the benefits of being able to announce and commit to a punishment strategy—which, as stated in
Proposition 3, allowed the Principal to deter collective action irrespectively of the intensity of the agents’
activity λA—disappear. Commitment is useful when information about the timing of the agents’ actions
allows the Principal to announce and design an ordered punishment strategy (cf. Definition 1). Without
such information, commitment loses its advantage and the Principal must rely on his reaction speed to
deter agents.

4.2 Presence of fearless agents

Suppose there are two types of agents: rational and fearless, i.e. θi ∈ {R,F}. The fearless agents do not
fear punishment and thus cannot be deterred by the Principal.

If θi is publicly observable, a strategy by which only rational types can be punished can allow the
Principal to preserve her budget and keep as much control over the agents as she can. However, if θi
is private (not publicly observable), the Principal will have to punish any agent taking action a = 1 to
maintain credibility and will thus unavoidably deplete her budget. The presence of fearless agents can
thus ultimately allow rational agents to coordinate on action a = 1. The only way for the Principal to
deter rational agents from ultimately choosing action a = 1 in this setting would be to have an infinite
budget B, irrespectively of her reaction speed.

Interestingly, the Principal would benefit more from an improvement in the type detection technology–
which allows her to differentiate fearless from rational agents–than from an increase in her budget, again
illustrating the importance of factors such as information in allowing the Principal to deter collective
actions.
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5 Proofs

Call ∆πi,t(~a−i,~aP ) = πi,t(1,~a−i,~aP )− πi,t(0,~a−i,~aP ) and ∆v(
∑
j aj,t) = v(1,

∑
j aj,t)− v(0,

∑
j aj,t).

At time ti, given some history hti , a Principal’s strategy σP and a strategy σA for the agents, agent
i’s expected marginal payoff from choosing ai = 1 as opposed to ai = 0 can be written as

E[∆πi,ti(~a−i,~aP )|σP , σA, hti ] =

∫ ∞
s=ti

δs−tiA

(
E[∆v(

∑
j

aj,s)− κ|σP , σA, hti ]−E[C1φi,s |ai = 1, σP , σA, hti ]
)
ds

=

∫ ∞
s=ti

δs−tiA

(
E[∆v(

∑
j

aj,s)− κ|σP , σA, hti ]− CP{φi,s|ai = 1, σP , σA, hti}
)
ds (7)

where the expectation on the righthand side is taken over aj and tj .

Proof of Proposition 1.
Note that if the last term in Eq. (7), that is

∫∞
s=ti

δs−tiA CP{φi,s|ai = 1, σP , σA, hti}ds, is small enough
for all i, then by continuity the equilibrium will be the same as in a game without the Principal. This
occurs when λP < λP . Indeed, we can rewrite it as∫ ∞

s=ti

δs−tiA CP{φi,s|ai = 1, σP , σA, hti}ds = C

∫ T

s=ti

δs−tiA P{φi,s|ai = 1, σP , σA, hti}ds+

C

∫ ∞
s=T

δs−tiA P{φi,s|ai = 1, σP , σA, hti}ds. (8)

Moreover, P{φi,s|ai = 1, σP , σA, hti} ≤ P{ti ≤ τki ≤ s}, where τki is the first time the Principal gets a
chance to act after ti. Since for any ε′ > 0 and T > 0, there exists λP > 0 such that P{ti ≤ τki ≤ s} < ε′

when λP < λP and s < T , then the first term on the righthand side of Eq. (8) can be made arbitrarily
small.

The second term on the righthand side of Eq. (8) can also be made arbitrarily small when T gets
large. Indeed,

C

∫ ∞
s=T

δs−tiA P{φi,s|ai = 1, σP , σA, hti}ds ≤ C

∫ ∞
s=T

δs−tiA ds

= C
δs−tiA

ln δA

∣∣∣∞
s=T

= 0− C
δT−tiA

ln δA
= K(T )

> 0, (9)

where K(T ) ↓ 0 as T →∞.
Thus, we conclude that ∀ε > 0, there exists λP > 0 such that∫ ∞

s=ti

δs−tiA CP{φi,s|ai = 1, σP , σA, hti}ds < ε

when λP < λP .
Now recall from Assumption 1 that N is the number of agents who must choose a = 1 in order to

make it worthwhile (in the absence of a Principal) for some agent i to choose a = 1. Thus when λP < λP ,
agent N will have positive expected marginal payoff of choosing a = 1 when the N − 1 previous agents
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have also chosen action a = 1, since ∆v(N − 1)− κ > 0:

E[∆πN,tN (~a−N ,~aP )|σP , σA, htN ] =

∫ ∞
s=tN

δs−tNA

(
E[∆v(

∑
j

aj,s)|σP , σA, htN ]−κ−CP{φN,s|aN = 1, σP , σA, htN }
)
ds > 0,

where htN is a history in which the N − 1 previous agents have also chosen action a = 1.
Finally, let t1 be the first time at which an agent acts and call this agent i = 1. Note that if λA is

high enough, then agent 1 will have positive expected marginal benefit of choosing action a = 1, since
then, with high probability, he precipates a subgame in which all agents will choose a = 1.

Consider agent i = 1. Let λA(δA, N) be such that, given a fixed profile of actions ~a−1 = ~1 for the
other agents, then∫ ∞

s=t1

δs−t1A

(
E[∆v(

∑
j

aj,s)|σP , σA, ht1 ]− κ
)
ds > 0, ∀λA > λA(δA, N).

A high enough λA indeed garantees that, in expectation, sufficiently many other agents (i.e. more than
N − 1) will get the chance to act (and take action aj = 1) in the not-too-distant future (which depends
on the discount factor δA) in order to make it worthwhile for agent i = 1 to take action ai = 1.

Specifically, if N = 2 and λA > λA(δA, 2), then by choosing a1 = 1, agent 1 precipitates a subgame in
which it becomes strictly dominant for agent 2 (and all subsequent agents) to choose a2 = 1. Thus, agent
1 will never choose a1 = 0 and thus ai = 1 for all i is part of any subgame perfect Nash equilibrium.

Likewise, if N = 3 and λA > λA(δA, 3), then by choosing a1 = 1, agent 1 precipitates a subgame in
which when agent 2 chooses a2 = 1, then it becomes strictly dominant for agent 3 (and all subsequent
agents) to choose a3 = 1. Thus, in such a case, agent 2 will choose a2 = 1 and it follows that agent 1

will never choose a1 = 0. Therefore ai = 1 for all i is part of any subgame perfect Nash equilibrium.
Thus, by induction, we have that for any N , when λA > λA(δA, N), then ai = 1 for all i is part

of any subgame perfect Nash equilibrium. It is trivial to show that λA(δA, N) is increasing in N and
decreasing in δA.

Proof of Proposition 2. Let τI be the first event time at which the Principal observes at least one
agent who chose action a = 1. Call this earliest cohort of offending agents AI . From Eq. (3), the
Principal gets the same benefit from punishing any offending agent. Thus let σP be some strategy by
which the Principal punishes some member of AI .

Let us now examine an agent i’s marginal benefit from choosing action ai = 1.
If λA − λP is sufficiently negative, then the first agent will get punished with very high probability

after he chooses a1 = 1, since the Principal tends to react very quickly (before a next agent has the
chance to choose a2 = 1). Then as long as B > 0, no agent will dare take the action a = 1 and thus
ai = 0, for all i, will be part of any equilibrium.

To formalize this, call τki the first time the Principal has the opportunity to act after ti. Then,
τki = ti + s where s ∼ exp(1/λP ) is exponentially distributed with mean 1/λP . Thus, ∀ε > 0, ∃ η such
that P{τki < ti+1} > 1− ε when λA − λP < η and for any B > 0.

Now consider any history hti , where aj = 0 for all tj < ti (i.e. no agent before agent i has chosen
action a = 1). In agent i’s expected marginal payoff, note that the first term of the integral in Eq. (7)
can be expressed as∫ ∞

s=ti

δs−tiA E[∆v(
∑
j

aj,s)− κ|σP , σA, hti ]ds <

∫ ∞
s=ti

δs−tiA ·
(

lim
n→∞

∆v(n)− κ
)
ds

= − 1

ln(δA)
·
(

lim
n→∞

∆v(n)− κ
)
,
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where the inequality follows from Assumption 1.
Second, note that as said earlier, ∀ε > 0, ∃ η such that P{τki < ti+1} > 1− ε when λA − λP < η and

for any B > 0. Thus, the second term of the integral in Eq. (7) can be expressed as∫ ∞
s=ti

δs−tiA CP{φi,s|ai = 1, σP , σA, hti}ds = E[C

∫ ∞
s=τki

δs−tiA P{φi,s|ai = 1, σP , σA, hti}ds]

=

∫ ∞
τki=ti

(
C

∫ ∞
s=τki

δs−tiA P{φi,s|ai = 1, σP , σA, hti}ds
)
f(τki)dτki

≥
∫ ∞
τki=ti

(
C

∫ ∞
s=τki

δs−tiA P{τki < ti+1}ds
)
f(τki)dτki

>

∫ ∞
τki=ti

(
C

∫ ∞
s=τki

δs−tiA (1− ε)ds
)
f(τki)dτki

=

∫ ∞
τki=ti

(
− C(1− ε)

δ
τki−ti
A

ln(δA)

)
f(τki)dτki .

The first equalities follow from the fact that P{φi,s|ai = 1, σP , σA, hti} = 0 for s < τki , since agent
i cannot be punished before the Principal has had a chance to act at time τki . The first (weak) in-
equality follow from the fact that, with some Principal’s strategy σP as described above, P{φi,s|ai =

1, σP , σA, hti} ≥ P{τki < ti+1}. Indeed, P{φi,s|ai = 1, σP , σA, hti} = 1 for τki < s < ti+1, as then agent
i is punished with certainty if he chose ai = 1, while P{φi,s|ai = 1, σP , σA, hti} ≥ 0 for ti+1 < τki < s

as then agent i may still be punished with some probability. The second (strict) inequality follows

when λA − λP < η, as previously mentioned. Finally, noting that
∫∞
τki=ti

δ
τki
−ti

A

ln(δA) f(τki)dτki ↑ −1
ln(δA) as

(λA − λP )→ −∞, then it follows that ∀ε > 0, there exists η such that when λA − λP < η, then

∫ ∞
s=ti

δs−tiA CP{φi,s|ai = 1, σP , σA, hti}ds >

∫ ∞
τki=ti

(
− C(1− ε)

δ
τki−ti
A

ln(δA)

)
f(τki)dτki

> −C(1− ε) 1− ε
ln(δA)

.

From these observations and from Assumption 1, it then follows that when λA − λP < η,

E[∆πi,ti(~a−i,~aP )|σP , σA, hti ] < 0.

Thus, agent i never takes action ai = 1 and thus no agent ever takes action a = 1. It follows that in any
equilibrium, a∗i = 0 for all i.

Proof of Proposition 3.
Let σP be such that the Principal uses an ordered punishment strategy.
Part (I):
Given some agent i’s action time ti, the Principal gets a first chance to punish agent i at some random

time τ = ti + s, where s ∼ exp(1/λP ). Given any history hti such that all previous agents j < i choose
aj = 0, then similarly as in the proof of Proposition 2, we can write the last term on the righthand side
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of Eq. (7) as∫ ∞
s=ti

δs−tiA CP{φi,s|ai = 1, σP , σA, hti}ds =

∫ ∞
τki=ti

(
C

∫ ∞
s=τki

δs−tiA P{φi,s|ai = 1, σP , σA, hti}ds
)
f(τki)dτki

=

∫ ∞
τki=ti

(
C

∫ ∞
s=τki

δs−tiA ds
)
f(τki)dτki

=

∫ ∞
τki=ti

(
− C

δ
τki−ti
A

ln δA

)
f(τki)dτki . (10)

The first equality follows from the fact that P{φi,s|ai = 1, σP , σA, hti} = 0 for s < τki , while the
second equality follows from the fact that P{φi,s|ai = 1, σP , σA, hti} = 1 for s ≥ τki under an ordered
punishment strategy, as i will surely be punished at time τki .

As
∫∞
τki=ti

δ
τki
−ti

A

ln(δA) f(τki)dτki ↑ −1
ln(δA) when λP →∞, then ∀δA ∈ (0, 1) and ε > 0, there exists λ

c

P such

that when λP > λ
c

P , ∫ ∞
s=ti

δs−tiA CP{φi,s|ai = 1, σP , σA, hti}ds > −
1

ln δA
C(1− ε).

Moreover, as in the proof of Proposition 2, since∫ ∞
s=ti

δs−tiA E[∆v(
∑
j

aj,s)− κ|σP , σA, hti ]ds < −
1

ln(δA)
·
(

lim
n→∞

∆v(n)− κ
)
,

it then follows from Assumption 1 that

E[∆πi,ti(~a−i,~aP )|σP , σA, hti ] < 0

when λP > λ
c

P .
Hence no agent i wants to be the first to choose ai = 1 and σA(hti) = 0 with probability 1 is an

optimal strategy after any such history hti . Applying this reasoning by induction to all i′ > i yields that
the unique equilibrium involves a∗i = 0 for al i. We have thus established Part (I).

Part (II):
It is immediate from the above that here, and in contrast to the proof of Proposition 2, the bound

λ
c

P is independent of λA.
To show that λ

c

P is decreasing in δA, first note that as

E[∆πi,ti(~a−i,~aP )|σP , σA, hti ] < −
( 1

ln(δA)
·
(

lim
n→∞

∆v(n)− κ
)
− C

∫ ∞
τki=ti

δ
τki−ti
A

ln(δA)
f(τki)dτki

)
,

a sufficient condition for E[∆πi,ti(~a−i,~aP )|σP , σA, hti ] < 0 is that

(
lim
n→∞

∆v(n)− κ
)
− C

∫ ∞
τki=ti

δ
τki−ti
A f(τki)dτki < 0. (11)

Eq. (11) still holds for δ̃A > δA, as
∫∞
τki=ti

δ̃
τki−ti
A f(τki)dτki >

∫∞
τki=ti

δ
τki−ti
A f(τki)dτki . Moreover,

by continuity in λP , we can say that ∃ξ > 0 such that for all λ′P ∈ (λP − ξ, λP ], we have that∫∞
τki=ti

δ̃
τki−ti
A f ′(τki)dτki >

∫∞
τki=ti

δ
τki−ti
A f ′(τki)dτki , where f ′(τki) denote the pdf of τki under the inten-

sity parameter λ′P . It therefore follows that Eq. (11) holds for δ̃A > δA and λ′P ∈ (λP − ξ, λP ] and thus
that λ

c

P is decreasing in δA.

Proof of Proposition 4.
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Part (I):
In the absence of the Principal, a∗i = 0,∀i, is a pure strategy equilibrium. Indeed, ∆πi(~a−i) =

v(1, 0)− κ− v(0, 0) < 0 by assumption when ~a−i = ~0 and hence no agent i would want to deviate from
a∗i = 0.

Likewise a∗i = 1,∀i, is a pure strategy equilibrium. Indeed ∆πi(~a−i) = v(1,M−1)−κ−v(0,M−1) > 0

by assumption when ~a−i = ~1 and hence no agent i would want to deviate from a∗i = 1.
Now call σA ∈ (0, 1) ⊂ ∆({0, 1}) a symmetric (mixed) strategy followed by the agents. σ∗A is an

equilibrium strategy when it satisfies

E[∆πi(~a−i)|σA] = E[v(1,
∑
j 6=i

aj)− κ− v(0,
∑
j 6=i

aj)|σA] = 0.

Such a σ∗A exists since E[∆πi(~a−i)|σA] is continuous in σA and since by assumption E[∆πi(~a−i)|σA =

0] < 0 and E[∆πi(~a−i)|σA = 1] > 0.
Part (II):
Call Ω = {1, 2, ...,M}. Recall that a Principal strategy is defined as σP : {0, 1}M → ∆(2Ω), where

2Ω denotes the power set (the set of all subsets aP of agents), with the restriction that σP (aP ) = 0 when
|aP | > B. That is, σP is a probability measure that assigns a probability to each (possibly empty) subset
aP of Ω, with subsets of size |aP | > B necessarily having probability 0 since the principal cannot punish
more than B agents.

The Principal will direct punishment only at agents who have chosen action a = 1, since she gets
no utility from punishing agents who chose a = 0. Punishing any selection of agents who have chosen
a = 1 will give her the same utility. As she cannot condition punishment on an agent’s label, she will
choose a uniformly random punishment strategy σP , by which P{φi|σP } = min( B∑

j aj
, 1) for an agent

who has chosen ai = 1. We will show that under such a strategy, the situation where a∗i = 1 for all i in
equilibrium cannot be ruled out when B/M (her budget relative to the number of agents) is low enough.

Let 1 ≤ B < M . Consider a profile of agents’ actions ai = 1, ∀i. Consider the strategy σP

under which the Principal punishes with equal probability agents who have chosen a = 1, so that
P{φi|σP } = B/M . There exists β ∈ (0, 1) such that, when B/M < β, then ∆v(M − 1) > κ (by
Assumption 1) and P{φi|σP } = B/M < β for all i. Thus with the action profile ~a = ~1,

E[∆πj(~a−i)|σP ] = ∆v(M − 1)− κ− C · E[1φi |σP ]

= ∆v(M − 1)− κ− C · P{φi|σP }

> 0

for all i when B/M < β and hence all agents playing a∗i = 1 is an equilibrium.
This implies that a∗i = 0 cannot be the only agent behavior that can occur in equilibrium when B/M

is small enough (i.e. when the Principal’s budget is positive, but small relative the number of agents).
We see that β is simply equal to ∆v(M−1)−κ

C .
By a similar argument, there exists γ ∈ (0, 1), with γ ≥ β, such that when B/M > γ, then the only

equilibrium involves a∗i = 0 for all agents, since then each agent has a large enough probability P{φi|σP }
of being punished. Here, such a γ also corresponds to ∆v(M−1)−κ

C . Indeed, in such a case

E[∆πj(~a−i)|σP ] = ∆v(M − 1)− κ− C · P{φi|σP }

= ∆v(M − 1)− κ− C · B
M

< 0,
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which rules out an equilibrium where ai = 1 for all i, but also rules out any equilibrium where some
agents choose ai = 1. Indeed, ∆v(M−1)−κ

C < B
M implies that ∆v(n−1)−κ

C < B
n for any n < M and thus

E[∆πj(~a−i)|σP ] < 0 under any agents’ actions profile.
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6 Supplementary Online Appendix

6.1 Extensions

6.1.1 Effect of the information structure available to the Principal

Suppose now that the actual times tj at which agents acted are not publicly observed, but their actions
are. Thus, the Principal cannot perfectly deduce the order in which agents took action a = 1. This fits
well with situations like political demonstrations or riots, where the Principal (e.g. the government) can
observed which agents (e.g. demonstrators) participated in a demonstration, but not the exact timing
at which they joined the protest (and thus the order in which they joined it).

For that purpose, let Ak = {j|aj = 1 and tj ≤ τk} be the set of agents who chose aj = 1 before time
τk. Here the identities j, j′ of such agents reveal no information about the relative timing of their actions
(j, j′ are just unordered labels or names). Let the Principal observe the information (Ak \Ak−1, τk, aP,k)

at each time τk when she gets to act. With τ1 being the first time she gets to act, denote the observed
history of play by

h̃τk = h̃τk−1

⋃
(Ak \ Ak−1, τk, aP,k), (12)

with h̃τ0 = ∅ and A0 = ∅.
With this information structure, the best the Principal can do is to split the agents who took action

a = 1 into ordered cohorts of offenders A1, A2 \A1, ..., reflecting the imperfect information that she has
about the timing of the agents’ actions.

As the Principal cannot do better than punishing a randomly chosen agent in a given cohort each
time τk she gets to act, the probability that an agent gets punished will depend not only on the actions
chosen by other agents, but also on the intensities λA and λP governing the action opportunities of the
agents and of the Principal. It is important to note that this is true both without and with commitment.
Thus, the benefits of being able to announce and commit to a punishment strategy—which, as stated in
Proposition 3, allowed the Principal to deter collective action irrespectively of the intensity of the agents’
activity λA—disappear.

If the Principal’s policing is fast enough relative to the agents’ activity, then it has the same effect
as knowing the order in which agents took action a = 1, since the ordered cohorts of offending agents
contain at most a single agent with arbitrarily high probability. Note again that here the size of the
budget B is not important to deter the agents (just like in Proposition 2).

Thus, commitment is useful when information about the timing of the agents’ actions allows the
Principal to announce and design an ordered punishment strategy (cf. Definition 1). Without such
information, commitment loses its advantage and the Principal must rely on his reaction speed to deter
agents.

6.1.2 Presence of fearless agents

Suppose there are two types of agents: rational and fearless, i.e. θi ∈ {R,F} and let the probability that
an agent is fearless be q ∈ (0, 1). The fearless agents have flow payoff

π̃Fi,t(ai,t,~a−i,t,~aP,t) = v(ai,t,
∑
j

aj,t)− κ · ai,t (13)

and thus do not fear punishment, just like in a pure coordination game. The rational players have the
payoff function as in Eq. (1), as before.

If the intensity λA of the agents’ activity is sufficiently high and if there is a sufficiently high fraction
q > q(λA) of all agents who are fearless (with q(λA) decreasing in λA), then the fearless agents will
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find it worthwhile to choose action a = 1, just like in a standard dynamic coordination game without a
Principal. Indeed, they can always expect sufficiently many other fearless agents to choose action a = 1

after them, thus selecting (by subgame perfection) an equilibrium in which fearless agent always choose
action a = 1.

Suppose an agent’s type θi is private and thus not publicly observable. Then, when agents’ action
times are perfectly observable and if the Principal can announce and commit to a punishment strategy,
she can choose an ordered punishment strategy as in Definition 1. She will then have to punish the agent
who chose a = 1 first. On the equilibrium path, this will surely be a fearless agent, but if the Principal
did not punish him, this would incentivize other rational agents to choose a = 1 in the future (trying to
be considered as fearless agents and thereby avoiding punishment). Thus the Principal will punish the
fearless agents and deplete her budget. The second agent choosing a = 1 will also be a fearless agent,
but the Principal will also have to punish him. This will go on until her budget is completely depleted,
at which point all agents will start choosing a = 1 since the Principal is no longer effectively active and
the game becomes a standard dynamic coordination game. Thus, the presence of fearless agents can
ultimately allow later rational agents to coordinate on action a = 1. The only way for the Principal to
deter rational agents from choosing action a = 1 in this setting would be to have an infinite budget B,
irrespectively of her reaction speed. In a variant of this model, we could also suppose that there is only
a finite number NF ∈ N of fearless agents. In this case, the principal would need to have a budget larger
than the number of fearless agents (i.e. B > NF ) in order to deter the rational agents from coordinating
on action a = 1, once again illustrating the importance of the budget size when the agents’ types are
undetectable.

If θi is publicly observable, then a strategy by which only rational types can be punished can allow
the Principal to preserve her budget and keep as much control over the agents as she can. Under such a
strategy, the fearless agents are allowed to take action a = 1, but not the rational agents, and this would
imply the coexistence of fearless agents choosing action a = 1 with rational agents choosing a = 0. Such
a strategy would be implementable with any budget B > 0.

The same insights apply when the Principal cannot publicly announce and commit to a punishment
strategy. Indeed, then if θi is private, she would choose a strategy that punishes all offenders, irrespec-
tively of their types, and inevitably exhaust her budget at some point. If θi is publicly observable, and
if she can react quickly enough to the agents’ actions (i.e. if λA − λP is sufficiently negative), then she
could choose a strategy by which she punishes the first B−1 agents, since she enjoys punishing offenders
(recall that ε ∈ (0, 1) is positive in her payoff function (cf. Eq. (3))). Perpetually keeping a budget
of size B = 1 thereafter would then be optimal, since she would credibly dissuade the rational agents
from taking action a = 1—as she enjoys punishing offenders—and she maximizes her expected payoff by
minimizing the expected remaining number of offenders—which is precisely achieved by dissuading the
rational types. Under such a strategy, all fearless agents thus take action a = 1 and all rational agents
take action a = 0, allowing for the coexistence of both offenders and non-offenders as before.

It is interesting to note that in this setting with fearless agents, the Principal would therefore benefit
more from an improvement in the detection technology, which allows her to differentiate fearless from
rational agents, than from an increase in her budget B. This again illustrates the greater importance
of factors such as information and reaction speed in allowing the Principal to deter collective actions on
the part of the agents.

6.2 Microfoundation for parameter ε

To give a microfoundation for the parameter ε in Eq.(3), which makes the principal enjoy punishing
a faulty agent, we could assume that, with some probability ξ, the agent’s action is “cancelled” or

16



overturned upon punishment. For instance, if the lobby (or interest group) is not only able to make
the policymaker suffer a reputational cost (i.e. C) for posting something on social media, but also to
have the post removed from the social media platform. For that purpose, we could slightly rewrite the
flow payoff in Eq. (3) as π̃P,t(~aP,t,~at) = −

∑
j aj,t +

∑
j 1ψj,t

· aj,t, where ψj,t = {∃τk ≤ t : {aP,k =

j}
⋂
{aP,s 6= j,∀τs ≤ t such that τs 6= τk}

⋂
{aj cancelled}} is now the event ψj together with the agent’s

action being cancelled. We could then slightly rewrite an agent’s flow payoff (Eq. (1)) with the first term
replaced by v(ãi,t,

∑
j ãj,t), where ãk,t = ak,t · (1 − 1ωk,t) with ωk,t = {φk,t

⋂
{ak cancelled}} being the

event that agent k is punished and his action is cancelled. The results presented throughout the paper
would be unaffected by such a modification. We thus kept the payoffs as defined in equations Eq. (1)
and Eq. (3), as they are notationally simpler.

6.3 Further comments on Proposition 3 and the case with commitment

The Principal can achieve the same outcome as in Proposition 3 if she only recalls the identity of the
first offender. To see this, let ht = hmin(tl,t), where tl is the first time an agent chooses a = 1. We call ht
the truncated history of play at time t, by this we mean the history that contains only the information
of ht up to and including the first time an agent chooses a = 1. This is stated in the following corollary.

Corollary 1 (Equilibrium when only the identity of the first offender is observable) Let the
Principal observe only the truncated history of play ht at any time t. Moreover, let her commit to a
strategy σ∗P under which she punishes only the first agent who chose action a = 1. For any budget size
B > 0, if λP > λ

c

P , then the equilibrium involves a∗i = 0 for all i.

Proof of Corollary 1. Let σ∗P be such that the Principal punishes only the first agent who chose
action a = 1. That is σP (hτ1) = i, where i is such that ai = 1 for ti < τ1 and aj = 0 for all tj < ti.
Then, by the same argument as in the proof of Proposition 3, no agent ever takes action a = 1 since no
agent wants to be the first to take it. It follows that the equilibrium involves ai = 0 for all i.

It is interesting to note that in Proposition 2 (the non-commitment case), if the lobby reacts quickly
enough (i.e. if λA− λP is low enough), then it has the same effect as being able to commit to a strategy
in which it promises to punish offenders in the order in which they took action a = 1. Indeed, with
arbitrarily high probability, at most one agent will have had the chance to act between any two times τk−1

and τk at which the Principal gets to take policing actions. Then any strategy by which she punishes,
at time τk, some offending agent who acted in the previous time interval will correspond, with high
probability, to punishing agents in the order in which they took action a = 1.

Finally, also note that when the Principal has commitment ability, we are free to set ε = 0 in Eq. (3).
In other words, she no longer even needs to enjoy punishing a faulty agent: the term

∑
j ε1ψj,t ·aj,t is no

longer needed and her flow payoff at time t can be simply written as π̃P,t(~aP,t,~at) = −
∑
j aj,t. While in

the case without commitment, the only way for punishment to be credible was for the Principal to enjoy
some utility from it, here her ability to credibly commit to a strategy removes any such need.
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