
Online Appendix: Coarse Payoff-Assessment Learning Model

1 Algorithm for transforming T into T ′

We extend the state-dependent payoff function to the set of similarity classes. Using the same

notation as before, we define µψ : Sψ → R, meaning that Alice derives an expected payoff of

µψ(s) for picking an alternative from the similarity class s ∈ Sψ in state ψ. If a similarity class s

contains a single alternative c ∈ s available at state ψ, then µψ(s) = µψ(c). However, if multiple

alternatives (n > 1) from within a similarity class s are available in state ψ, the expected payoff

for the class s in that state is simply the average of the payoffs of all alternatives in s available

at ψ, i.e., µψ(s) =
1
n

∑
c∈s µψ(c). This is because we assume that Alice cannot distinguish between

alternatives within the same similarity class, leading her to randomize uniformly among them when

multiple such alternatives are available at a given node.1 We notice that applying the similarity

transformation may result in several nodes presenting indistinguishable choice problems over iden-

tical subsets of similarity classes from Alice’s perspective. This can include nodes offering trivial

unary choice problems, where Alice can only choose among alternatives within a single similarity

class. Naturally, Alice would collapse all such nodes into a single representative node. In light of

this observation, we construct a new decision tree T ′, that modifies the original decision tree T
without altering Alice’s underlying choice incentives but crucially eliminates redundant nodes. In

T ′, as usual, nature moves at the root r′ and randomly draws a node ω ∈ Ω according to a fixed

probability mass function p(ω). We provide an algorithm for constructing T ′(Ω,p, π) from T .

Condition 1 (No choice-redundancy). For a node ψ ∈ Ψ, ∄ χ ∈ Ψ s.t. ψ ̸= χ ∧ Sψ = Sχ.

We initialize T ′ with an empty set of nodes denoted by Ω. We draw a node ν in Ψ from T without

replacement. ν either satisfies or violates Condition 1.

Case I ν ∈ Ψ satisfies Condition 1. Then, ν ∈ Ω. Also, p(ν) = f(ν), ST ′
ν = ST

ν , and πν = µν .

Any node in Ψ that satisfies Condition 1 is immediately added to Ω. Such a node in T is one that

presents Alice with a distinct choice problem. It’s essentially duplicated onto T ′ with the same

probability of being reached by nature as in T . The set of options (similarity classes) available to

Alice at such a node in T ′ is the same as in T . Also, the payoff that Alice receives by choosing an

alternative in a similarity class that is available at node ν in T ′ is equal to the payoff she receives

by choosing the same alternative at node ν in T . Finally, we remove ν from Ψ, i.e., ν /∈ Ψ.

1For e.g., consider an agent, Ted, who must choose between driving a car and taking a blue bus to work. Initially
indifferent between the two options, he assigns equal valuations to both and chooses each with a 50% probability.
Now, if a red bus is introduced on the same route, Ted perceives the blue and red buses (that differ only in color)
as similar based on average commute times, grouping them into a single similarity class — bus. In this case, Ted
remains equally likely to choose either the car or the bus. Within the bus category, he is indifferent between the
blue and red buses, choosing each with equal probability whenever he opts for the bus. This example highlights
that our model is more aligned with nested logit models in econometrics, rather than multinomial logit models, by
accommodating existing similarities among alternatives.
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Case II ν ∈ Ψ violates Condition 1. That is, ∃ χ ∈ Ψ s.t. ν ̸= χ ∧ Sν = Sχ. Given such a node

ν, we find all possible nodes χ ∈ Ψ that are likewise choice-equivalent to ν according to Condition

1 and add them to the set I along with ν. We know that |I| is an integer greater than 1. We

consolidate the nodes in I into one terminal node ω ∈ Ω in the decision tree T ′ such that ST ′
ω = ST

ν

and p(ω) =
∑

i∈I f(i).

πω(s) =

∑
i∈I f(i)µi(s)∑

i∈I f(i)
,

represents the expected payoff that Alice receives by choosing an alternative in a similarity class

s ∈ Sω at node ω in tree T ′. Finally, we remove the set I from Ψ, i.e., I ̸⊆ Ψ.

The procedure described above is repeated for every remaining node in Ψ until Ψ = ∅. Thus, nodes
in Ψ satisfying Condition 1 are mapped one-to-one from T to T ′ while nodes violating Condition

1 in T are aggregated into a representative node that is then added to T ′. It’s easy to see that for

a given node ω ∈ Ω in T ′, ∄ χ ∈ Ω s.t. ω ̸= χ ∧ Sω = Sχ. In the remainder of this paper, we will

work directly with the similarity-transformed decision tree T ′. Finally, S = ∪ω∈ΩSω denotes the

grand set of similarity classes available to Alice in the decision tree T ′.
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2 Proof of Proposition 1

Proof. We’ve already established the existence and the global asymptotic stability of the unique

smooth valuation equilibrium that arises in the neighborhood of a mixed valuation for a sufficiently

large sensitivity parameter in the proof of Theorem 4. We’re left with having to show that the

mixed valuation equilibrium is in fact a fully-mixed VE and not a partially-mixed VE.

Recall that, in any partially-mixed VE, at least one of the following two conditions must hold:

there exists a class k such that either v∗k < v∗i = v∗j or v∗k > v∗i = v∗j , in equilibrium. Now, following

the same reasoning as in the proof of Theorem 4, a sufficiently large constant z added to the trivial

choice payoffs can also rule out the set of partially-mixed valuation equilibria in a decision tree

that satisfies Assumption 5.1. The underlying logic remains the same: the higher the equilibrium

valuation of a similarity class, the more choice nodes it is selected at, resulting in a smaller weight

on z in the consistency calculation. By making z sufficiently large, one can reverse the order relation

among the equilibrium valuations leading to a contradiction.

To begin, let’s assume v∗k < v∗i = v∗j . In the consistency calculation, the weight on z in v∗k would

be larger than the weight on z in v∗i and v∗j . This is because, at the very least, k would be chosen

with probability 0 at the binary choice nodes {i, k} and {j, k}, as well as at the tertiary choice node

{i, j, k}. By making z sufficiently large, one can ensure v∗k ≥ v∗i = v∗j , arriving at a contradiction.

Conversely, let’s assume v∗k > v∗i = v∗j . In the consistency calculation, the weight on z in v∗k would

be smaller than the weight on z in v∗i and v∗j . This is because, at the very least, k would be chosen

with probability 1 at the binary choice nodes {i, k} and {j, k}, as well as at the tertiary choice

node {i, j, k}. Again, by making z sufficiently large, one can ensure v∗k ≤ v∗i = v∗j , leading to a

contradiction. Thus, we’ve ruled out both strict pure VE and partially-mixed VE implying the

existence of a fully-mixed VE.

Therefore, invoking Lemma 2.1, there exist a ẑ > 0 and a β̂ > 0 such that ∀ z > ẑ and ∀ β > β̂, the

unique SVE lies in the neighborhood of a fully-mixed VE where the valuations of all the similarity

classes in S are identical in the high-sensitivity limit.2

2We note that this result stands in stark contrast with the fact that when an agent has n > 2 similarity classes
available to her, the set of fully-mixed valuation equilibria in a decision tree with generic payoffs lies on a manifold.
For e.g., with just 3 similarity classes, the set of fully-mixed VE is characterized by a polynomial system with
2 equations (indifference conditions) and 5 unknowns (mixing probabilities at the non-trivial choice nodes). The
existence of VE result in ? establishes that there exists at least 1 mixed VE (once we’ve ruled out the strict pure VE
and the partially-mixed VE) implying that there are infinite solutions. Thus, the set of mixed VE lies on a manifold
of dimension at least 3 while the CPAL dynamics converge to a unique mixed SVE even in the high-sensitivity limit.
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3 Additional Illustrations

3.1 Example: The Good, the Bad, and the Unsteady

Figure 1: Good/Bad Decisions

The decision tree is depicted by the solid lines in Figure 1. At the root r, nature chooses one of

three nodes x, y, and z with equal probability. At each of these nodes, the decision maker can

choose between a good alternative and a bad alternative, where the former has a higher payoff.

The payoffs are written next to these alternatives. The three dotted lines connect similar nodes.

Thus, the set of alternatives is partitioned into the similarity classes i = {gx, gz}, j = {bx, by}
and k = {gy, bz}. We find this example interesting because it illustrates a counter-intuitive case

where as a result of the similarity grouping, making the worst decision at every node is a valuation

equilibrium (VE) while making the best one is not. The unique valuation that is consistent with

the strategy that selects the bad alternative at every node is (vi, vj , vk) = (3, 5, 4).

It turns out, however, that the worst-decision VE does not correspond to a rest-point of the CPAL

model in this decision tree even in the high-sensitivity limit. To show this, we derive the RHS of

the CPAL dynamics (Eq. 6) given the primitives of this decision tree, evaluate it at the valuation

(3, 5, 4) for an arbitrary, finite β and then compute the limit of the expression as β ↑ ∞. For the

sake of brevity, we choose not to include the calculations here but it can be verified that the solution

to our exercise above is (2, 0, 0). At steady-state, we’d expect the RHS to be (0, 0, 0). Evidently, the

worst-decision VE is not a steady-state of the CPAL model. Specifically, at the worst-decision VE,

it is the valuation of the similarity class i = {gx, gz} that has not yet reached stationarity.

We conclude that while the worst-decision VE manages to meet the optimality condition of valuation

equilibrium, it fails to do so in the smoother CPAL model even in the exact best-response limit.

Therefore, while a sequence of β-dependent steady-states of the CPAL model converges to a VE as

β ↑ ∞, the converse is not true. That is, there exist VE that cannot be characterized as the limit

points of the steady-states of CPAL dynamics. In fact, the set of Smooth Valuation Equilibria in the

high sensitivity limit characterizes a refinement (subset) of the set of Valuation Equilibria.
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Figure 2: CPAL dynamics with initial valuation (3, 5, 4) & β = 50

We also run numerical simulations to confirm our claim. Indeed, starting with an initial valuation

of (3, 5, 4) and using a large sensitivity parameter, we observe in Figure 2 that the valuation system

rapidly moves on to a different point before coming to rest. In fact, it is vi that does not stay at rest

at vi = 3 while vj and vk seem to be at rest at 5 and 4 respectively, thereby reinforcing our insight

from the theoretical exercise above. We repeat the simulations a large number of times each time

varying the initial conditions while using a large enough β. We observe convergence to two distinct

rest-points in the long-run: one at (vi ≈ 5, vj = 5, vk ≈ 4) that corresponds to a partially-mixed

VE as seen in Figure 2 and the other at (vi = 1, vj = 0, vk = 8) that corresponds to a strict pure

VE as seen in Figure 3.

Figure 3: CPAL dynamics with initial valuation (0, 2, 9) & β = 50

We linearize Equation 6 around a given steady-state valuation and compute the eigenvalues of the

corresponding Jacobian matrix for an arbitrary β and evaluate their limits as β ↑ ∞. We conduct

this exercise for both the steady-state valuation systems characterized above. We find that the

eigenvalues of the Jacobian matrix are negative for both the rest-points, as β ↑ ∞, confirming their

local asymptotic stability as observed in the numerical simulations.
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3.2 Example: The Road Not Taken

The decision tree is depicted by the solid lines in Fig. 4. At the root r, nature chooses one of two

nodes x and y with equal probability. At node x, the decision-maker can choose between alternatives

mx and lx, and at node y, between my and ry. The dotted line connects similar alternatives. The

set of alternatives is partitioned into three similarity classes, L = {lx}, M = {mx,my} and R =

{ry}. There are a total of three valuation equilibria - two pure and one partially-mixed.

Figure 4: The Road Not Taken

• The strategy that selects the alternative in M at each of the nodes x and y is a strict pure VE.

The corresponding valuation vector is (vL = 1, vM = 3.5, vR = 3) and the strategy is clearly

optimal for this valuation. We verify, by direct computation, that the valuation (1, 3.5, 3)

is a steady-state of the CPAL model as β ↑ ∞. The numerical simulation seen in Fig. 5

points to the same. Also, with a large enough sensitivity parameter, we see strong evidence

of convergence to the steady-state starting from a nearby initial valuation system.

• The strategy that selects the alternatives in M at node x and R at y is also a strict pure

VE. The corresponding valuation is (vL = 1, vM = 2, vR = 3) and the strategy is clearly

optimal for this valuation. We verify, by direct computation, that the valuation (1, 2, 3) is a

steady-state of the CPAL model as β ↑ ∞. The numerical simulation seen in Fig. 6 points

to the same. Also, with a large sensitivity parameter, we see evidence of convergence to the

steady-state starting from a nearby initial valuation system.

• The strategy that always selects the alternative in M at node x and uniformly randomizes

between the alternatives inM and R at y is a partially-mixed VE. The corresponding valuation

is (vL = 1, vM = 3, vR = 3) and the strategy is clearly optimal for this valuation. We verify, by

direct computation, that the valuation (1, 3, 3) is a steady-state of the CPAL model as β ↑ ∞.

However, from the numerical simulation presented in Fig. 7, it seems that the steady-state

is unstable. A small perturbation to an initial valuation around (1, 3, 3) causes the valuation

system to move away and eventually come to rest at one of the strict pure VE. Indeed, when

we linearize the system around (1, 3, 3) and compute the eigenvalues of the corresponding

Jacobian matrix in the β ↑ ∞ limit, we find that one of the eigenvalues is positive. Thus, this
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Figure 5: strict pure VE at (1, 3.5, 3); β = 50 Figure 6: strict pure VE at (1, 2, 3); β = 50

partially-mixed VE is an asymptotically unstable rest-point of the CPAL model.

Figure 7: Asymptotically Unstable Partially-Mixed VE at (1, 3, 3); β = 50

This example is fascinating for two key reasons. First, it demonstrates the possibility of multiple

equilibria in a decision problem. Second, it allows us to characterize at least one asymptotically

unstable equilibrium of the CPAL model.

4 Supplementary Material

4.1 Linearization Theorem

Consider an autonomous non-linear dynamical system:

ẋ = f(x)
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with f : Rn → Rn being continuously differentiable, and suppose x∗ is an equilibrium point, i.e.,

f(x∗) = 0. The system can be linearized around the equilibrium point x∗ as:

˙δx = Aδx

where δx = x− x∗ and A is the Jacobian matrix of f evaluated at x∗:

A =
∂f

∂x

∣∣∣∣
x=x∗

The Linearization Theorem (or (Hartman-Grobman Theorem) states:

1. If all eigenvalues of A have negative real parts, then the equilibrium x∗ of the non-linear

system is locally asymptotically stable.

2. If any eigenvalue of A has a positive real part, then the equilibrium x∗ of the non-linear

system is unstable.

3. If A has eigenvalues with zero real parts and no eigenvalues with positive real parts, the

theorem does not provide any conclusion about the stability of the non-hyperbolic equilibrium

x∗ in the non-linear system. In these cases, higher-order terms or other methods such as

Lyapunov functions might be needed to determine stability.

While the Linearization Theorem is powerful, it has its limitations in the sense that it only provides

information about local behavior around a hyperbolic equilibrium. It says nothing about the global

behavior of the system.

Asymptotic Stability

Let D be an open set in Rn containing the origin, and let x∗ = 0 be an equilibrium point for the

dynamical system

ẋ = f(x)

where f : D → Rn is a continuous vector field. The equilibrium x∗ = 0 is said to be locally

asymptotically stable if it satisfies both of the following conditions:

1. Lyapunov Stability: For every ε > 0, there exists a δ(ε) > 0 such that, if the initial

condition x(0) satisfies ∥x(0)∥ < δ, then for all t ≥ 0, ∥x(t)∥ < ε.

2. Convergence: There exists δ > 0 such that, if the initial condition x(0) satisfies ∥x(0)∥ < δ,

then limt→∞ x(t) = 0.

Additionally, if this property holds for all initial conditions x(0) ∈ Rn, then the equilibrium x∗ is

said to be globally asymptotically stable.
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4.2 Gershgorin Circle Theorem

Let A be an n × n matrix with complex entries aij . For each i ∈ {1, 2, . . . , n}, define the ith

Gershgorin circle Ci in the complex plane as:

Ci =

z ∈ C : |z − aii| ≤
n∑
j=1
j ̸=i

|aij |


Then, every eigenvalue of A lies within at least one of the Gershgorin circles Ci.

Proof. Let β be an eigenvalue of A and x be a corresponding eigenvector, where x ̸= 0. Without

loss of generality, assume that among the entries of x, xk has the largest magnitude, i.e., |xk| =
max{|x1|, |x2|, . . . , |xn|}, and |xk| > 0 since x is not the zero vector.

Since Ax = βx, we have for the kth entry:

n∑
j=1

akjxj = βxk

Rearranging terms gives:

akkxk +
n∑
j=1
j ̸=k

akjxj = βxk

Subtracting akkxk from both sides and then dividing by xk (which is nonzero) yields:

β − akk =
n∑
j=1
j ̸=k

akj
xj
xk

Taking the absolute value of both sides, we obtain:

|β − akk| =

∣∣∣∣∣∣∣∣
n∑
j=1
j ̸=k

akj
xj
xk

∣∣∣∣∣∣∣∣ ≤
n∑
j=1
j ̸=k

|akj |
∣∣∣∣xjxk

∣∣∣∣
Since |xk| ≥ |xj | for all j, we have

∣∣∣ xjxk ∣∣∣ ≤ 1, and therefore:

|β − akk| ≤
n∑
j=1
j ̸=k

|akj |

β lies within the circle Ck, as |z − akk| ≤
∑

j ̸=k |akj | defines the circle in the complex plane where

z = β. Thus, every eigenvalue of A must lie within at least one of the Gershgorin circles Ci.
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