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Abstract

We develop a framework for categorization in games, applicable both to multi-stage

games of complete information and static games of incomplete information. Players

use categories to form coarse beliefs about their opponents’ behavior. Players best-

respond given these beliefs, as in analogy-based expectations equilibria. Categories

are related to strategies via the requirements that categories contain a sufficient

amount of observations and exhibit sufficient within-category similarity, in line with

the bias-variance trade-off. We apply our framework to classic games including the

chainstore game and adverse selection games, thereby suggesting novel predictions

for these applications.
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1 Introduction

Human decision-makers need to make simplifications in order to navigate social reality.

We need to divide the complex web of interactions into manageable pieces to evaluate

different courses of action. We need to extrapolate from past interactions to be able to

predict what others will do. Categories serve these functions (Anderson, 1991; Laurence

and Margolis, 1999; Gärdenfors, 2000; Murphy, 2002; Xu, 2007). A categorization bundles

distinct objects or situations into groups or categories, whose members are viewed as

sufficiently similar to warrant a similar treatment. As a result, categorical reasoning

facilitates prediction: when a situation is classified as belonging to a category then by

virtue of its similarity with other members of the category we expect similar behavior.

From the perspective of statistics and machine learning, categorizations should satisfy

some properties to address the bias-variance trade-off (e.g. Geman et al., 1992). On the

one hand, if categories are too coarse, bundling together situations that are too dissimilar,

the resulting estimates are likely to be too biased. On the other hand, if categories are too

narrow, bundling together too few data points, the resulting estimates will be unreliable,

as they are plagued by high variance. Gigerenzer and Brighton (2009) discuss how simple

heuristics typically used by humans can be viewed as devices inducing some bias in order

to reduce variance. Mohlin (2014) derives properties of categorizations that solve the

bias-variance trade-off optimally for the purpose of making predictions.

In economics, a growing literature has introduced categorical thinking into game the-

ory (Samuelson, 2001; Jehiel, 2005; Jehiel and Samet, 2007; Jehiel and Koessler, 2008;

Azrieli, 2009; Mengel, 2012; Arad and Rubinstein, 2019). A significant part of this liter-

ature has worked with exogenously given categories.1 In this paper, we impose structure

on the categories taking inspiration from the insights developed in relation to the bias-

variance trade-off.

Our starting point is the analogy-based expectation equilibrium (Jehiel, 2005; Jehiel

and Koessler, 2008) in which players use categories (analogy classes) to form predictions

about opponents’ play in a game. To fix ideas we interpret our model in terms of the

following dynamic process. Time is discrete and in each period a single cohort is active.

Individuals from the active cohort are drawn to play in the different player roles. Many

different groups of individuals (consisting of one individual for each player role in the

game) play the same game at the same time.

In the first phase of a time period t, players receive some feedback about how the

game has been played by all the groups in the previous cohort. Specifically feedback

consists in the disclosure of behaviors in a subset of situations. In extensive form games,

a situation corresponds to a node, and the feedback will typically consist of behaviors

1Exceptions include Dow (1991), Fryer and Jackson (2008), Mengel (2012), and Heller and Winter
(2020), which to various extent let categories be endogenously determined.
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at on-path nodes. In Bayesian games situations represent types (product quality, in our

leading example) and feedback may disclose type conditional on some event (such as

trade) taking place.

In the second phase, individuals in a particular player role categorize the situations

in which their opponents have to make a move, using the available data from the games

played by the previous cohort. Players are endowed with exogenous similarity functions,

representing their a priori perception of how similar the various situations are to each

other.2 They form endogenous categories by bundling together situations they perceive to

be as similar as possible, while respecting the desiderata that each category should contain

enough data points, in line with the bias-variance trade-off. In particular, we formalize

the latter by requiring that each analogy class should have a mass of observations no less

than a threshold κ, unless doing so creates too high within-category dissimilarity. The

categorization is then chosen so as to maximize the within-category similarities subject

to this constraint.

In the third phase, players use the categories and the feedback to form expectations

about what their opponents will do. A player’s prediction about the play of the opponents

in a given situation (i.e. play at a given node or play for a given type) is assumed to

match the empirical distribution of the behaviors observed in the previous cohort in the

category to which the situation has been assigned.

In the fourth and final phase, players best respond given their beliefs. In the the

tradition of Selten’s trembling hand idea (Selten, 1975) we assume that in every situation

a player picks non-intended actions with probability ε.

These phases are implemented for every cohort over the various time periods gener-

ating a dynamic process which depends on the similarity functions, the specifications of

ε and κ as well as the initial conditions. Steady states of the process are referred to as

(ε, κ)-categorization equilibria. While our approach allows for any specification of κ and

ε we focus on the case in which κ and ε vanish at such a rate that ε is asymptotically

not too large relative to κ. This implies that on-path situations (defined as situations for

which feedback is obtained in the absence of trembles) can be distinguished perfectly but

off-path situations have to be bundled (according to their similarity). In one application,

instead of considering the steady states, we study the learning dynamic directly, as it

gives rise to interesting cycling phenomena.

Our first main contribution is to provide a general framework that endogenizes the

analogy partitions along the lines outlined above. Compared to the analogy-based expec-

tation equilibrium setting, our framework adds an extra channel relating the categories

or analogy classes to the strategy profile through the bias-variance trade-off principle,

as explained above. Our second main contribution is to provide a series of applications,

2These perceptions can be thought of as resulting from cultural and psychological factors, which are
external to our model.
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thereby highlighting how non-standard predictions can arise for what we believe are plau-

sible specifications of the similarity functions.

Our main applications are as follows. We first consider chainstore games (Selten,

1978), and assume (for both the monopolist and the challengers) that histories in which

there was some entry that was not immediately followed by a fight are treated as very dis-

similar from other histories (perhaps because the monopolist reveals a form of weakness

in one case but not in the other). We establish the existence of a categorization equi-

librium with no entry except in the last few periods. We next discuss adverse selection

games of the Akerlof type, modeled as a Bayesian game between an informed seller and

an uninformed buyer who values the good more than the seller. Assuming that feedback

about quality is obtained only when there is trade, we show that the learning dynamics

leads to cycles with bid prices always weakly above the Nash equilibrium price for the

natural specification that considers nearby qualities as being similar to one another.3

In the last part of the paper, we provide a general discussion. We note that even when

considering finite games, the existence of (ε, κ)-categorization equilibria may require ex-

tending our basic framework to allow for mixed distributions over analogy partitions. We

also observe that in the context of extensive form games of complete information, catego-

rization equilibria can be viewed as refinements of self-confirming equilibria (Fudenberg

and Levine, 1993, 1998) in which off-path beliefs are structured by the actual behaviors

through the endogenously determined coarse analogy classes that apply there.4

Our paper is related to different branches of the literature. Regarding the aplications,

the relevant literature will be mentioned in the respective sections. At a broader level,

our paper can be related to a growing literature on misspecifications in games, which, in

addition to the already mentioned analogy-based expectation equilibrium (Jehiel, 2005),

include the cursed equilibrium (Eyster and Rabin, 2005), the Berk-Nash equilibrium

(Esponda and Pouzo, 2016), and the Bayesian Network Equilibrium (Spiegler, 2016).

Some papers have suggested endogenizing the misspecifications based on evolutionary

arguments (in particular He and Libgober, 2020; Fudenberg and Lanzani, 2023), but to

the best of our knowledge, none of these papers have developed an approach based on

the bias-variance trade-off to endogenize misspecifications.

Finally, a contemporaneous alternative approach to categorization in the context of

the analogy-based expectation equilibrium is introduced in Jehiel and Weber (2024).

They consider distributions over normal form games in which players select their analogy

partitions so as to minimize the prediction error about opponents’ play subject to using

3In the Online Appendix S.1, we consider ultimatum games in which the responder has an outside
option, and illustrate how our approach can predict that positive rents are left to the receiver. In
the Online Appendix S.3, we consider public good games for which we derive insights related to those
obtained in the chainstore game.

4The obtained refinement should be contrasted with that proposed in Fudenberg and Levine (2006)
in which for nodes that are two steps away from the path, the beliefs can be arbitrary.
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at most k analogy classes. Their approach relates to the k-means clustering technique,

and differs sharply with the one considered here that relates to the bias-variance trade-

off with no a priori constraint on the number of categories. In particular, an important

aspect of our analysis relies on how the magnitude of trembling ε relates to the minimum

mass κ requirement, which has no counterpart in the analysis of Jehiel and Weber.

2 Framework

We present our approach within a unified setup covering both multi-stage games of com-

plete information and (static) Bayesian games. Specifically, we consider games with two

players i ∈ I = {1, 2} such that player i ∈ I faces various possible situations referred to

as xi ∈ Xi, and in situation xi player i has to choose an action ai ∈ Ai (xi). Extension to

more players is straightforward. In an extensive-form game with complete information,

Xi will represent the nodes at which player i must move. In a Bayesian game, Xi will

represent the set of types of player i. In the former case, the profile of actions chosen by

the two players at the various nodes determines which nodes are visited. In the latter

case, nature chooses the profile of types according to some probability assumed to be

known by both players. For simplicity and mostly to avoid notational complexity dealing

with densities instead of probabilities, we consider the finite case in which the set of sit-

uations and the sets of actions are all finite. In some of the applications developed next,

we will consider straightforward extensions of the definitions to the case of a continuum

of actions and situations.

A strategy for player i is defined by σi = (σi(xi))xi∈Xi
where σi(xi) ∈ ∆Ai (xi) de-

scribes the probability distribution over possible actions chosen by player i at xi. A

realized play of the game is described by the set of situations that occurred and the ac-

tions taken in those situations, as dictated by σ = (σ1, σ2) and the strategy of nature. A

realized play is denoted

(â, x̂) =
{
(âi, x̂i)i∈I : x̂i occurred and i chose âi at x̂i

}
.

Regarding the feedback, we assume that after the play of a game only a subset of

(â, x̂) is disclosed to outsiders (which will be used by new players to form expectations).

We refer to such a disclosure as the feedback given the play and denote it by ϕ (â, x̂).

In dynamic games, we assume that only the actions on the path of play are observed

(as is commonly assumed in the literature on learning in games, see Fudenberg and Levine,

1998). In Bayesian games, we will use this formulation to accommodate applications like

trades in which the actions (bid or ask price) and types (determining the quality of the

good) are disclosed only when the transaction takes place (as in Esponda, 2008).
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2.1 Analogy-Based Expectations

Player i categorizes Xj (the set of player j’s situations) into analogy classes C1
i , ..., CK

i that

constitute a partition Ci =
{
C1
i , ..., CK

i

}
of Xj. An analogy class Ck

i ∈ Ci of player i satisfies
the requirement that if xj and x′j belong to the same analogy class Ck

i , then the action

spaces of player j at xj and x′j are the same. We let βi(Ck
i ) denote the analogy-based

expectation of player i about the play of player j in Ck
i . It is a probability distribution

over the action space of player j in Ck
i meant to capture how player i views player j’s

representative behavior in Ck
i . For every xj ∈ Xj, we let Ci(xj) be the analogy class Ck

i

to which xj belongs. We refer to βi =
(
βi(Ck

i )
)K
k=1

as the analogy-based expectation of

player i.

Given βi, player i expects player j to behave according to the strategy defined by

σβi

j =
(
σβi

j (xj)
)
xj∈Xj

, with σβi

j (xj) = βi(Ci(xj)). That is, player i expects player j

in situation xj to behave according to the representative behavior in the analogy class

Ci(xj) to which xj belongs as defined by βi(Ci(xj)).
Most of the time player i plays a best-response to σβi

j (given his utility and informa-

tion) and the rest of the time player i trembles and chooses any available action. We

require that the trembles occur independently at the various xi. In other words, our treat-

ment is similar to the extensive-form version of the trembling-hand equilibrium (Selten,

1975). Formally,5,6

Definition 1 σi is an εi-perturbed best-response to βi if σi is a best-response to σβi

j

subject to the constraint that at every xi, σi(xi) assigns a probability no less than εi

to every action at xi and the probability distributions σi(xi) are independent across the

various xi.

In general, we allow for the possibility that players i and j have different probabilities

of trembles, and we denote the profile of tremble probabilities by ε = (εi, εj). This is

to allow us to accommodate applications in which we believe one player is less likely

to tremble than the other player (perhaps because the former but not the latter has

a dominant strategy). The situations that are reached with positive probability in the

absence of trembles (ε = 0) will be referred to as on-path situations. The remaining

situations, which are reached only when there are trembles (εi, εj > 0) are off-path

situations. This distinction will play a role when we endogenize the analogy partitions.

In steady state, the analogy-based expectations are required to be related to the

strategy profile and the feedback structure through a consistency requirement. Formally,

5In the definition of εi-perturbed best-response, we implicitly assume that the probability of tremble
is the same for all actions at xi, and the same at all xi. We could obviously extend this to allow for more
general trembling strategies, but this would bring no additional insight.

6The best-response is implicitly defined at the ex ante stage, but given that we consider games with
perfect recall and all situations are reached with positive probability (due to trembling), the same choice
of strategy would arise had we required an interim or sequential notion of best-response.
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a strategy profile σ together with a feedback structure ϕ and trembling behavior (as

parameterized by ε), induces a probability µσ(aj,xj) that action aj in situation xj is

disclosed.7 We assume that ϕ is such that for every ε-perturbed strategy profile σ,

and for every analogy class Ck
i , some behavior in Ck

i is disclosed with strictly positive

probability. That is,8

µσ(Ck
i ) =

∑
x′
j∈Ck

i ,a
′
j∈Aj(x′

j)

µσ(a′j,x
′
j)

is strictly positive for every Ck
i .

Definition 2 The analogy-based expectation βi is consistent with the ε-perturbed strategy

profile σ and the feedback ϕ if for every Ck
i , and every action aj in the action space of

player j at Ck
i ,

βi(Ck
i )[aj] =

1

µσ(Ck
i )

∑
xj∈Ck

i

µσ(aj,xj), (1)

where βi(Ck
i )[aj] refers to the probability assigned to action aj by βi(Ck

i ).

Combining Definition 1 and Definition 2 we propose a generalized version of analogy-

based expectation equilibrium:9

Definition 3 Given a profile of analogy partitions C = (C1, C2), and a feedback structure

ϕ, an ε-perturbed analogy-based expectation equilibrium is a strategy profile σ = (σ1, σ2)

such that there exists a profile of analogy-based expectations β = (β1, β2) satisfying for

i = 1, 2:

(a) σi is an εi-perturbed best-response to βi,

(b) βi is consistent with (σ, ϕ) as defined in (1).

We have in mind that the knowledge of βi is derived by player i through learning

(and not by introspection). To the extent that player i bases his choice of strategy solely

on βi, it makes sense to assume that player i is unaware of the payoff, information and

categorization structure of player j. Player i need not be aware of the feedback structure

ϕ either.

7We do not include a reference to ϕ in µσ since ϕ will be taken as fixed and exogenous throughout.
We also do not include reference to ε as it will be clear from the context.

8Observe that µσ(Ck
i ) is not a probability as it could be greater than 1 in some cases. This reflects

that in extensive-form games, a single play of the game typically allows one to reach more than one
situation. Also note that µ is normalized so that there is a mass 1 of games being played.

9When the feedback ϕ is complete (i.e. when it contains information about the entire profile (a, x)
for all choices of action profiles) or when it contains information only about the equilibrium path in
extensive form games of complete information, the above definition is equivalent to the one provided
in Jehiel (2005) for extensive form games or Jehiel and Koessler (2008) for Bayesian games. For more
general specifications of the feedback structure ϕ, our definition can be viewed as a natural generalization
of the analogy-based expectation equilibrium as previously defined.
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2.2 Endogenous Categorizations

Each player i is endowed with a subjective homogeneity function ζi : 2
Xj → [0, 1] defined

over subsets of Xj where for every Ck
i ⊆ Xj, ζi(Ck

i ) ∈ [0, 1] is a measure of how similar to

one another the situations in the set Ck
i are perceived by player i to be. These functions

ζi are left exogenous in our approach and should be thought of as being determined by

pyschological and cultural factors (that apply more broadly beyond the specific interaction

considered by the players). We make the natural assumption that a singleton set has

maximum homogeneity, i.e. ζi ({xj}) = 1 for all xj ∈ Xj. Observe that we allow for

homogeneity functions such that for some non-singleton subset X ⊆ Xj it holds that

ζi(X) = 0, in which case the set X is considered maximally heterogeneous (because the

situations in X are considered very dissimilar).10,11

As a key step in our proposed approach, we introduce the following definition.

Definition 4 Given σ and a threshold κ > 0, we say that C = (Ci, Cj) is κ-adjusted to σ

if for each player i, her analogy partition Ci =
{
C1
i , ..., CK

i

}
satisfies the following criteria

1. For each x ∈ Xj with µσ({x}) > κ, there exists k such that Ck
i = {x}.

2. For each X ⊆ Xj with ζi(X) = 0, there exists no k such that Ck
i = X.

3. Let X sing
j denote the set of situations put into singleton analogy classes in Ci. If

Ck
i is such that µσ(Ck

i ) < κ, then for any X ⊆ Xj \ (Ck
i ∪ X sing

j ), it holds that

ζi(Ck
i ∪X) = 0.

4. For any collection of non-singleton analogy classes
{
Ck1
i , ..., C

kM
i

}
in Ci, there is

no collection
{
X1, ..., XN

}
of pairwise disjoint sets, such that ∪N

j=1X
j = ∪M

j=1C
kj
i ,

µσ(Xj) > κ for all j, and minN
j=1 ζi(X

j) > minM
j=1 ζi(C

kj
i ).

The threshold parameter κ captures the amount of data that is considered necessary

by the players to find the estimate in a category sufficiently reliable in line with the

bias-variance trade-off. We could have considered a different threshold parameter κi for

each player i, but our applications will not make use of such an asymmetry.

Roughly, the first condition says that if a situation is encountered enough times (as

parameterized by κ), it is treated as a singleton analogy class, since there is no need to

bundle it with other situations to meet the minimum mass criterion. The second condition

requires that when a set of situations is considered to induce maximal heterogeneity, these

10If two situations xi, x
′
i ∈ Xi have different actions sets, i.e. Ai (xi) ̸= Ai (x

′
i), we assume that any

subset that contains both situations has maximal dissimilarity, which implies that an adjusted analogy
partition (see definition 4) will never bundle nodes with different action sets.

11It would be natural to impose further extra properties, such that if X ⊆ X ′ then ζi (X) > ζi (X
′),

but this will not matter for our analysis in this paper.
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situations cannot be bundled together into one analogy class.12 The third condition says

that the only reason for an analogy class not to meet the minimum mass condition is

that adding other situations to the analogy class would induce maximum heterogeneity.

The fourth condition is a kind of local optimality requirement formulated in terms of the

the minimum of homogeneities over the various analogy classes. It aims at capturing the

desire of players to increase within-category similarities.13

The reduced-form properties in Definition 4 can be related to optimality properties

obtained in simple prediction problems, as considered by Mohlin (2014).14 In a prediction

problem, one has to predict a random variable Y ∈ R associated with an observation

X = x ∈ X ⊆ Rn. Pairs (X, Y ) are independent draws generated by a continuous and

bounded joint probability density function f , such that Y = m (x) + ε (x) where m (x)

denotes the conditional mean of Y at x and ε (x) denotes an error term with variance

σ2
x assumed to be independently drawn across observations. The agent partitions X

into categories and upon observing x predicts that Y is equal to the empirical average

associated with objects in the category x belongs to given the finite observed sample. A

categorization is said to be optimal if it minimizes the expected squared prediction error.

It turns out that (asymptotically as the sample size grows large) an optimal categorization

features categories that are larger for parts of X where the variance σ2
x is high, the density

f is low, and the conditional mean is rough (in the sense that the local variations of m

are big).15 Since f is continuous in Mohlin’s approach, Euclidean distance acts as a proxy

for differences in conditional mean. When the conditional mean moves more relative to

Euclidean distance (i.e. the derivative of m is larger) there is a greater need to reduce

Euclidean distance within categories, i.e. to increase within-category homogeneity.

The comparative static results for the optimal categorizations derived in Mohlin (2014)

have analogs in the conditions of Definition 4, relating the Euclidean distance in Mohlin’s

setting to the similarity function in our setting. Indeed, the first condition incorporates

the effect of the density. The second condition relates to the effect of the roughness of

the conditional mean. The third condition relates to the interaction of density (in the

form of the minimum mass condition) and the roughness of the conditional mean (in the

12Maximal heterogeneity suggests that a player would never consider pooling data that come from
such dissimilar situations. As an elaboration, instead of employing the notion of sets with maximal
heterogeneity we could speak of sets whose homogeneity is below some threshold. For example part 2
of Definition 4 could be rephrased as follows: ’If X ⊆ Xj and ζi(X) ≤ δ, there exists no k such that
Ck
i = X.’ The threshold δ would be an extra primitive of the model in the same vein as κ. Sets with

homogeneity below the threshold would serve the same function as sets with maximal heterogeneity in
our current set-up.

13With no impact on the analysis, one could have generalized condition 4 to require that it is not

the case that when ∪N
j=1X

j = ∪M
j=1C

kj

i , we have that µσ(Xj) ≥ κ for all j, and W (ζi(X
1), ...ζi(X

n)) >

W (ζi(Ck
i ), ζi(Ck′

i )) for some given increasing and concave function W . We have chosen the infimum
criterion mostly to avoid adding an extra less central notation.

14More general results can be found in Mohlin (2018).
15One may ask why agents use categorizations rather than other statistical methods, such as kernel-

regression, to form predictions. We refer to section 5.1 of Mohlin (2014) for a discussion of this matter.
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form of the maximum heterogeneity condition).

Several notable differences between our setting and the one studied in Mohlin (2014)

are worth mentioning. In our approach, the homogeneity function used by an agent is

subjective and viewed as a primitive. This is to be contrasted with Mohlin’s setup in

which f and thus the notion of homogeneity (as induced by the Euclidean distance and the

roughness of the conditional mean) are objective. Moreover, we do not consider samples

of finite size in our approach, which allows us to eliminate estimation errors in each

category. This is to simplify matters and to focus on the non-random dimension of the

bias induced by the categorical expectation formation. It also implies that our Definition

4 cannot incorporate a role for the variance of the data-generating process (unlike in

Mohlin, 2014).16 Given the subjective character of the prediction problem to be solved

by players, we believe that our reduced-form approach as captured in Definition 4 is

preferable to an exact optimization criterion, especially taking into account the potential

difficulty players may face when solving such optimization problems.

2.3 Categorization Equilibrium

For fixed ε = (ε1, ε2) and κ, we define:

Definition 5 A profile (σ, C) is an (ε, κ)-categorization equilibrium if

(a) σ is an ε-perturbed analogy-based expectation equilibrium given C and

(b) C is κ-adjusted to σ.

Like in trembling-hand equilibrium (Selten, 1975), we focus on environments in which

trembles are rare (ε→ 0). We also focus on environments in which data on situations that

are observed without trembles are abundant enough to allow a fine-grained categorization.

This is captured by the assumption that κ is small (κ → 0). Given that trembles are

rare, it seems natural to allow for environments in which the data for off-path situations

are scarce enough to require some coarse categorization. We distinguish between (a)

cases in which κ and ε have the same order of magnitude leading to a notion of ρ-coarse

categorization equilibrium and (b) cases in which ε is much smaller than κ, leading to

the notion of coarse categorization equilibrium. Formally,

Definition 6 A profile (σ, C) is a categorization equilibrium if there are sequences (εm)m
and (κm)m converging to zero and a sequence (σm)m converging to σ, such that (σm, C) is

an (εm, κm)-categorization equilibrium for all m. If limm→∞ κm/εmi = ρi for i = 1, 2, then

(σ, C) is referred to as a (ρ1, ρ2)-coarse categorization equilibrium. If limm→∞ κm/εmi = ∞
for i = 1, 2, then (σ, C) is referred to as a coarse categorization equilibrium.

16Extending the model to allow for estimation errors as well as for the possibility that players sub-
jectively consider the presence of aggregate shocks that apply to all data of a given situation is left for
future research.
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Part 1 of Definition 4 implies that expectations about opponent’s behavior in situa-

tions that are observed without tremble are correct in a categorization equilibrium. This

is analogous to the requirement in self-confirming equilibrium (Fudenberg and Levine,

1993) developed for extensive-form games (see Section 5.2 for elaboration). In a (ρ1, ρ2)-

coarse categorization equilibrium, several off-path situations must be bundled together in

coarse categories when ρ1 and ρ2 are not too small. In the subsequent analysis, we either

consider coarse categorization equilibria or (ρ1, ρ2)-coarse categorization equilibrium with

either ρ1 or ρ2 not too small, in order to obtain new predictions as compared to the

standard ones.

2.4 Dynamics

An (ε, κ)- categorization equilibrium can be understood as a steady state of a dynamic

process of learning. Suppose the process has settled on (σ, C). When looking at the

data generated by previous matches, players would be led to choose analogy partitions

C that are κ-adjusted to the strategy profile σ used in those matches. When trying next

to form analogy-based expectations using such analogy partitions, they would be led to

have beliefs as defined in (1) given that the play is governed by σ. They would then play

as assumed in σ given that σ is an ε-perturbed analogy-based expectations equilibrium

(ABEE) for C, thereby yielding the desired steady state property.17

When a steady state does not exist or when we want to study the stability of a

steady state we use the following learning dynamic.18 In period t agents form a profile of

analogy partitions C (t) = (Ci (t) , Cj (t)) that is κ-adjusted to behavior in the preceding

period, denoted σt−1. Expectations for period t are based on σt−1 filtered through C (t).

That is, the expectation in period t about a situation assigned to Ci (t) is identified

with the aggregate distribution observed in Ci (t) given the behaviors σt−1 observed in

period t − 1. These expectations induce behavior σt in period t (assuming that players

best respond to their expectations when they do not tremble). At t + 1, agents form a

new profile of analogy partitions C (t+ 1) = (Ci (t+ 1) , Cj (t+ 1)) which is κ-adjusted

to σt. Expectations for period t + 1 are based on σt filtered through C (t+ 1), and so

on. The dynamics is parameterized by the initial choice of strategies in period 1 and the

tie-breaking rule in case of multiple best responses and/or multiple κ-adjusted partitions.

17We implicitly describe here the case in which all players assigned to the same role would end up with
the same analogy partitions (requiring all subjects to sue the same categorization algorithm). Extensions
to non-unitary versions (c.f. Fudenberg and Levine, 1993) are possible but bring no additional insights
to the applications.

18While many variants could be considered (in particular related to the consideration of older cohorts
when forming categories and expectations), we have chosen this one for its simplicity.
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3 Chainstore Game

3.1 Set-Up

3.1.1 Game

In the finitely repeated chainstore game an incumbent monopolist faces a sequence of T

challengers. Each challenger chooses to Enter (E) or to stay Out (O). If the challenger

enters then the monopolist chooses whether to Accommodate (A) or Fight (F ). The

stage game payoffs of the monopolist and a generic challenger are denoted uM and uC ,

respectively, with uC (E,A) > uC (O) > uC (E,F ) and uM (O) > uM (E,A) > uM (E,F ).

In words, the challenger prefers entering and facing an accommodating incumbent over

not entering, and prefers not entering over entering and facing a fighting incumbent. The

monopolist prefers the challenger to stay out over accommodating an entering challenger,

and prefers the latter over fighting an entering challenger. Each challenger maximizes

her payoff (in the stage at which she is present) and the monopolist maximizes the sum

of stage game payoffs.

In the unique SPNE of this game, challengers choose E in every period and this is

always followed by A, which can be verified by backward induction. This prediction has

been considered unintuitive, as the monopolist would seem to be able to deter early entry

decisions by playing F in case of entry. While this kind of behavior cannot arise in a

SPNE, we will establish that it can arise in a categorization equilibrium.

To make the chainstore game fit into our general two-player framework, we assume the

challengers at the various time periods t form a single player, the challenger.19 We also

assume that the trembling probability is the same for the monopolist and the challenger.

3.1.2 Similarity and Homogeneity

A key modeling choice concerns the similarity between histories and the homogeneity

of sets of histories. In the context of the chainstore game, we believe it is natural that

players would consider that there is an important qualitative difference between histories

in which there was a previous entry that was not immediately followed by a fight decision

and other histories (as the former but not the latter suggests a form of weakness on the

monopolist’s side). Accordingly, we will assume that subsets of histories that include both

kinds of histories have minimal homogeneity. In effect, it will force us to have analogy

classes that do not mix these two subsets of histories (according to part 2 of Definition

4). Other features can be incorporated into the homogeneity function, such as requiring

that histories in nearby stages are more similar, but this will play no role in our analysis

of coarse categorization equilibria.

19This has no effect on the analysis of SPNE.
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Formally, we first consider the nodes at which the challenger must make a decision

and refer to the set of these nodes as QC . We consider two subsets of QC :

QTough
C = {q ∈ QC : No E or all E immediately followed by F in history of q} ;

QSoft
C = {q ∈ QC : Some E immediately followed by A in history of q} .

We require that for any qTough ∈ QTough
C and qSoft ∈ QSoft

C , if qTough and qSoft belong to

X, then ξM(X) = 0. Any subset X containing only elements in QTough
C or only elements

in QSoft
C is supposed to satisfy ξM(X) > 0.

Regarding the nodes at which the monopolist must make a decision, we denote the

set of those corresponding to period t by Qt
M and we distinguish in Qt

M two subsets:

Qt,Tough
M =

{
q ∈ Qt

M : No E or all E immediately followed by F in history of q
}
;

Qt,Soft
M =

{
q ∈ Qt

M : Some E immediately followed by A in history of q
}
.

We require that if Y contains two nodes q and q′ that either, (a) correspond to two

different time periods, or (b) do not both belong to Qt,Tough
M , or (c) do not both belong to

Qt,Soft
M for some t, then ξC(Y ) = 0. Any Y not containing two such elements is supposed

to satisfy ξC(Y ) > 0.

Observe that on the challenger’s side, we do not allow histories at different calendar

times to be bundled together, which may fit better with situations in which the challenger

can be thought of as a collection of different challengers, one for each of the calendar times

t, so that the period t-challenger would naturally focus on histories corresponding to t. We

will later discuss what happens when histories with different calendar times are allowed

to be bundled together also on the challenger’s side.

3.2 Categorization Equilibrium

We will focus on coarse categorization equilibria and discuss later what (ρM , ρC)-coarse

categorization equilibria look like for finite ρM and ρC .

3.2.1 Strategy profile

We define the threshold

k∗ = min {k ∈ N such that uM(E,F ) + kuM(O) ≥ (k + 1)uM(E,A)} . (2)

Suppose that we are in the generic case where the above inequality holds strictly for

k = k∗. In this case we consider the following strategy profile σT :
20

20When the condition in 2 holds with equality for k = k∗ we need to redefine the strategy profile so
that entry and accommodation begins already in period T − k∗.
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• Challenger t ≤ T − k∗ strategy. If E was always matched with F in the past, or if

there was no E in the past, play O. Otherwise play E.

• Challenger t > T − k∗ strategy. Play E.

• Monopolist strategy. At t > T − k∗, play A. At t ≤ T − k∗; play F if E was always

matched with F in the past, or if there was no E in the past; otherwise play A.

On the path of play induced by this strategy profile, the challenger enters only in the

last k∗ periods, and the monopolist accommodates those entries (while she would fight

the challenger if entering in earlier periods).

3.2.2 Categorization profile

In a coarse categorization equilibrium, and given the strategy profile proposed above, the

analogy partition profile C is characterized as follows.

• Each on-path node is in a separate analogy class.

• The monopolist categorizes off-path challenger nodes based on whether there was

previously an act of E that was not met by F . The first analogy class bundles all

off-path nodes with a history in which E was always met by F , and the second

analogy class bundles all the remaining off-path nodes. Formally, let Qoff
C be the

set of monopolist decision nodes that are located off the equilibrium path,

C1
M =

{
q ∈ Qoff

C ∩QTough
C

}
;

C2
M =

{
q ∈ Qoff

C ∩QSoft
C

}
.

• Challengers categorize off-path monopolist nodes based on the stage of the game as

well as the distinction between QTough and QSoft.21 Formally, let Qoff
M be the set

of off-path monopolist decision nodes. For each t let

C1
Ct =

{
q ∈ Qoff

M ∩QTough
M : q is in round t

}
;

C2
Ct =

{
q ∈ Qoff

M ∩QSoft
M : q is in round t

}
.

We have:

Proposition 1 There exists a T ∗ such that if T > T ∗, then (σT , C) is a coarse catego-

rization equilibrium of the chainstore game with T periods, implying that in the absence

21We note that there are other categorizations that could be combined with σT to form a CE. For
example we could let challengers bundle all monopolist nodes from the same period in a separate category
for each time period. They would still have correct expectations.
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of trembles the challenger enters only in the last k∗ periods, and the monopolist fights the

challenger in all but the last k∗ periods.

To emphasize the logic of the proposed equilibrium, observe that the only mistaken

expectations are those of the monopolist regarding off-path nodes in QTough
C . In partic-

ular, if E occurs in period t = T − k∗ (i.e. the last period in which the challenger is

supposed to stay out) then the monopolist mistakenly expects that by playing F , the

challenger(s) will be induced to stay out (with a probability roughly equal to T−k∗−1
T−k∗+1

)

from then on, whereas in reality, no matter what the monopolist does there will be entry

in all remaining periods.22 This mistake is caused by the fact that there isn’t enough

mass of data on behavior at the subsequent challenger nodes (due to our assumption that

limm→∞ κmT /ε
m
T = ∞) so that they have to be bundled with all other nodes in QTough

C , at

which it is indeed the case that fighting after entry leads the challenger not to enter in

the next period.

We note that the same strategy profile as the one considered in Proposition 1 could

be used to support a (ρM , ρC)-coarse categorization equilibrium with ρM > N , as long

as N and T are large enough. This means that our construction only requires that κ be

sufficiently (but not necessarily infinitely) large relative to ε.23

3.3 Discussion

3.3.1 What if the challenger does not distinguish histories according to time?

Above we assumed a homogeneity function that implies that histories are distinguished

according to time for the challenger. What happens if we assume a homogeneity function

which relaxes this while still keeping the idea that histories in which a previous entry

was not immediately matched by a fight behavior are very dissimilar from others? This

would fit with applications in which it is the same challenger who acts in the different

time periods and the calendar time would not subjectively be considered by the chal-

lenger to dramatically affect the monopolist’s behavior. In the Online Appendix S.3, we

explore this alternative in detail. We demonstrate the existence of a coarse categorization

equilibrium such that in the absence of mistakes there is no entry at all, and in case there

22The reason for the expression for the probability is as follows. As mistakes become vanishingly rare,
almost all data on off-path nodes come from nodes that are reached by a single mistake. The category
C1
M can be reached in a single mistake, either by mistaken E in period t ≤ T −k∗, or following a mistaken

F after non-mistaken E in period T − k∗ + 1. When it is the challenger’s turn to act following a single
mistaken E in period t < T − k∗ the equilibrium strategy requires the challenger to play O. However,
if there is a mistaken E in period t = T − k∗ then the next time it is the challenger’s turn to act it is
period T − k∗ + 1 and according to the equilibrium strategy the challenger should then play E. The
same is true after non-mistaken E in period T − k∗ + 1.

23Indeed, in such a case, nodes in QTough
C would have to be bundled in packages of at least N nodes,

thereby leading to the belief that by playing F the challenger would stay out with probability no smaller
than N−1

N . When N is large enough, this would give the same incentive to play the equilibrium as in the
coarse categorization equilibrium considered in Proposition 1.
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is entry by mistake the monopolist fights the challenger in all but the last k∗ periods.24

In this alternative scenario, it is the challenger and not the monopolist who has mistaken

expectations in contrast with the scenario described in Proposition 1. This difference

illustrates the effect the homogeneity functions may have on the obtained categorization

equilibria.

3.3.2 Other finite horizon games

In the centipede game, a coarse categorization equilibrium would lead to immediate Take,

as in the subgame perfect Nash equilibrium. This is a corollary of a result we establish

in section 5.2 that a coarse categorization is a self-confirming equilibrium.

In the Online Appendix S.3, we study multi-stage contribution games in which in

each stage, assumed to be finitely many, agents decide whether or not to contribute to a

public good. We develop the analysis of coarse categorization equilibria in two variants,

depending on whether or not the agents can punish their peers after observing their

contributions at the end of each stage. In the latter case we assume (similarly as in the

chainstore game) that histories in which someone fails to contribute but is not punished

are very dissimilar from other histories. We observe that positive contributions can be

supported in coarse categorization equilibria when there is a punishment option but not

otherwise, in agreement with the qualitative findings reported in the experiment of Fehr

and Gächter (2000).

4 On Cycling in Adverse Selection Games

4.1 Set-Up

4.1.1 Market

Consider a market for trade of indivisible objects with random quality ω distributed on

Ω = [0, 1] according to a continuous and differentiable density function g, with cumulative

G. Sellers know the quality ω of their good. But buyers do not observe qualities; they

only know the distribution of ω. The valuation of a given seller coincides with the quality

ω of his good. The corresponding valuation of a buyer is v = ω + b, where b ∈ (0, 1)

represents gains from trade. We posit a one-to-one trading mechanism between pairs

consisting of one seller and one buyer drawn at random from their respective pools. In

each pair, the seller (he) and the buyer (she) act simultaneously. The seller quotes an

ask price a (ω) that depends on the quality ω. The buyer quotes a bid price p ∈ [0, 1].

The market mechanism is such that if p < a there is no trade, and if p ≥ a trade occurs

24Such strategies cannot arise in a coarse categorization equilibrium with the previously considered
homogeneity setting, as challengers would then find it best to enter in the last k∗ periods.

15



at price p. Hence, if there is trade the buyer obtains utility u (p) = v − p, and the seller

obtains utility p. If there is no trade, the seller gets ω and the buyer gets 0. This can be

viewed as a Bayesian game between one seller informed of the state ω and one buyer not

observing ω with action profiles and payoffs as just shown. This is the game considered

in Esponda (2008).

In this modeling of the trading mechanism, setting the ask price to be equal to the

quality a(ω) = ω is a weakly dominant strategy for the seller (just as bidding one’s own

valuation is a weakly dominant strategy in the second-price auction), and from now on we

will assume that the seller employs this strategy. We restrict attention to pure strategies

on the buyer side as well.

To make the analysis simple, we assume that b < (g (1))−1 and that G has the

monotone reversed hazard rate property. That is, for all p, d
dp

(
g(p)
G(p)

)
< 0. Moreover,

we assume the following smoothness condition: |g′ (p)| < g (p) for all p.25

In a Nash equilibrium, the buyer quotes a bid price p so as to maximize:

πNE (p) =

∫ p

ω=0

(ω + b− p) g (ω) dω = G (p) (E [ω|ω ≤ p] + b− p) .

It is readily verified (see Online Appendix) that under our assumptions there exists a

unique Nash equilibrium in which the bid price pNE of the buyer is uniquely defined by
g(pNE)
G(pNE)

= 1
b
.26

We model prices and qualities on a continuum for analytical convenience. We intend

this as an approximation of what is in reality a finite set of nearby qualities and prices.

This will motivate our treatment of categorization of qualities below. (See Jehiel and

Mohlin (2021) for a fuller discussion.)

4.1.2 The Categorization Setup

To apply the general framework introduced above we identify Ω with X , and we adopt

straightforward extensions of our definitions to deal with the case of a continuum of states

and a continuum of actions.

Feedback. Since the coarse categorization will only concern the buyer, it is enough to

specify which profiles (ω, a) of quality ω and ask prices a are disclosed to new buyers. As

seems natural in this application, and in line with Esponda (2008), we posit that (ω, a)

appears in the feedback only when there is trade, i.e. when a ≤ p. This defines the

ϕ-function for the application.

25While not essential for our main conclusion regarding the presence of price cycles, these extra as-
sumptions will simplify the analysis and ensure that there is a unique interior Nash equilibrium.

26In the case of a uniform quality distribution g this is πNE (p) = p
(
b− p

2

)
, so pNE = b.
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Trembles. We will assume that only the buyer trembles. This is motivated on the

ground that the seller, but not the buyer, has a weakly dominant strategy. Specifically,

with probability 1 − ε the buyer picks a best response to her expectations and with

probability ε she trembles. When trembling, we assume that the buyer chooses bids

according to a pdf f and cdf F with full support on [0, 1].27 The seller always chooses his

weakly dominant strategy.

Similarity and Homogeneity. Given that payoffs depend continuously on quality

ω, it is natural to assume that when categorizing Ω, the buyer employs a homogeneity

function that is decreasing in the Euclidean distances between the various qualities in

the considered set. For concreteness we let ξ(C) be equal to the difference between the

supremum and infimum ω among the qualities in C. Note that minimal homogeneity is

obtained for C = [0, 1] and maximal homogeneity is achieved for intervals that vanish

to points. This notion of homogeneity will (in line with part 4 of Definition 4) give rise

to interval analogy partitions in which the set Ω is partitioned into various consecutive

intervals.

Threshold Mass. In line with our general assumptions, we have in mind that for on-

path qualities, i.e., ω such that (ω, a) is disclosed when the buyer does not tremble, there

are enough data about the seller’s ask price so that ω can be categorized finely. Since we

are considering a setup with a continuum of ω, a strict application of part 1 of Definition 4

would not allow to categorize on-path qualities ω as singleton analogy classes, regardless

of how small κ is. As mentioned above we think of this assumption as a limit case in

which the continuum is viewed as an approximation of the fine grid case.

We consider the dynamic formulation sketched in Subsection 2.4. Denote by p∗ the bid

price chosen by non-trembling buyers in generation t−1. In generation t, all ω ≤ p∗, will

be treated as singleton analogy classes so that buyers will understand that the ask price is

a = ω for ω ≤ p∗. However, for ω > p∗, buyers will be using a coarse analogy partition of

(p∗, 1] consisting of K ≥ 1 analogy classes C1, C2, ..., CK defined by Ck = (ck−1, ck] where

p∗ = c0 < c1 < c2 < ... < cK−1 < cK = 1.

In line with part 3 of Definition 4, we will require that any Ck corresponds to a mass no

less than κ if possible (or else if κ is too large, the entire (p∗, 1] will be one analogy class).

27In line with our trembling-hand formulation described in Section 2, we could impose that f ≡ 1 but
our results apply to any f , hence our formulation.
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4.1.3 Preliminary Analysis

Mass of Observations. The density of transactions of quality ω conditional on trem-

bling is g̃ (ω) := g (ω) (1− F (ω)), and the density of transacted quality ω in the dataset

is thus given by

µσ,ε
p∗ (ω) =

{
(1− ε) g (ω) + εg̃ (ω) if ω ≤ p∗;

εg̃ (ω) if p∗ < ω.

In what follows we suppress the subscript reference to p∗, relying on the context to

indicate the relevant p∗.

Adjustment of Categorizations to Observations. As already mentioned, each type

ω ≤ p∗ is put in a singleton analogy class, because it is on path and thus disclosed, even in

the absence of trembles. For types above p∗ the number of categories depends on κ and ε

in a more complex way. Each analogy class above p∗ should satisfy κ ≤
∫ ck
ck−1

µσ,ε
p∗ (ω) (s) ds

if possible. Consequently, the number of categories above p∗ (for any p∗ < 1) is

K = max

{
1,

⌊
1

κ

∫ 1

p∗
µ (s) ds

⌋}
= max

{
1,
⌊(
G̃ (1)− G̃ (p∗)

) ε
κ

⌋}
≤ max

{
1,
ε

κ

}
.

If κ/ε → ρ for some constant ρ > 0, then in the limit an adjusted categorization will

have K analogy classes where K is bounded from above by max
{
1, 1

ρ

}
, which is finite,

but possibly larger than one. If we impose κ/ε → 0, as in the definition of coarse

categorization equilibrium, then there is a single analogy class above p∗.

Analogy-Based Expectations. Buyers predict the distribution of ask price a of a

type ω seller, knowing that trade occurs if a ≤ p. For a quality ω ≤ p∗ the buyers

understand that a (ω) = ω. Consequently, for a quality ω ≤ p∗ the buyer understands

that the probability of trade is zero conditional on ω > p and one conditional on p ≥ ω,

i.e
̂Pr (a ≤ p|ω) = Pr (a ≤ p|ω) = Pr (ω ≤ p|ω) = I{ω≤p}. (3)

For a quality ω > p∗ the buyer forms a prediction about the distribution of ask prices

associated with qualities in analogy class Ck using the data generated under trembling.

Using the fact that a (ω) = ω we can write the probability density function (pdf) of ask

prices conditional on a quality in Ck as

g̃
(
a|ω ∈ Ck

)
=

g̃ (a)∫
ω∈Ck g̃ (ω) dω

=
g̃ (a)

G̃ (ck)− G̃ (ck−1)
.
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Thus, the buyer believes that the pdf of ask prices due to sellers with quality in Ck is

hCk (a) =

{
g̃(a)

G̃(ck)−G̃(ck−1)
if a ∈ Ck;

0 otherwise.

This implies that, for a quality ω > p∗ with ω ∈ Ck, the buyer perceives the probability

of trade at price p to be

̂Pr (a ≤ p|ω ∈ Ck) =

∫ p

a=0

hCk (a) da =


1 if ck < p;

G̃(p)−G̃(ck−1)

G̃(ck)−G̃(ck−1)
if ck−1 < p ≤ ck;

0 if p < ck−1.

(4)

Using the perceived probability of trade as a function of price p, and letting k(p) be such

that p ∈ (ck(p)−1, ck(p)] for p > p∗, the following lemma derives the perceived expected

payoff as a function of p.

Lemma 1 Let v (Cj) := E [ω|ω ∈ Cj] + b. The perceived expected payoff is

πCE (p|p∗) =



G (p) (E [ω|ω ≤ p] + b− p) if p ≤ p∗

G (p∗) (E [ω|ω ≤ p∗] + b− p)

+
∑

k(p)−1

k=1 (G (ck)−G (ck−1))
(
v
(
Ck
)
− p
)

+
(
G̃ (p)− G̃

(
ck(p)−1

)) G(ck(p))−G(ck(p)−1)
G̃(ck(p))−G̃(ck(p)−1)

(
v
(
Ck(p)

)
− p
) if p > p∗.

Dynamics. Letting p∗t denote the price quoted by buyers of generation t when not

trembling, our dynamic system is completely characterized by the initial value of this

price p0 and the recursive relation

p∗t+1 = arg max
p∈[0,1]

πCE(p | p∗t ).

4.2 Results

4.2.1 Learning and Cycling

In the following, we consider the case in which κ/ε → ρ for some constant ρ possibly

equal to 0. Our main result is that the sequence of p∗t in the dynamics just described has

no rest point and must cycle over finitely many values p(1), ..., p(m), one of them being

the Nash Equilibrium price pNE as previously characterized, and the others being above
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pNE. In order to establish this, we first derive three properties related to how p∗t+1 varies

with p∗t depending on whether p∗t is below, above, or equal to pNE. These properties are

referred to as lemmata and are proven in the Appendix.

Lemma 2 If p∗t = pNE then p∗t+1 > pNE.

Lemma 3 If p∗t > pNE, then either p∗t+1 = pNE or p∗t+1 > p∗t .

Lemma 4 If p∗t < pNE, then p∗t+1 > p∗t .

Roughly, these three properties can be understood as follows. As already mentioned,

categorical reasoning induces uninformed buyers to correctly infer that the quality corre-

sponding to an ask price a below p∗ is a. On the other hand, the coarse bundling for ask

prices above p∗ leads uninformed buyers to incorrectly infer that ask prices slightly above

p∗ are associated with an average quality that lies strictly above p∗. Thus, a buyer would

choose a bid price strictly above p∗ whenever p∗ ≤ pNE as she would incorrectly perceive

a jump in quality when increasing slightly the bid price above p∗ (and any bid price

below p∗ would rightly be perceived to be suboptimal). This is in essence the content of

lemmata 4 and 2. By contrast, when p∗ > pNE, the best bid price below p∗ is rightly

perceived to be pNE and the same logic leads the uninformed buyer to either choose pNE

or a bid price strictly above p∗ with the aim of taking advantage of the jump in the

perceived quality when the ask price lies above p∗. This is the content of lemmata 3.

The above properties immediately imply that the price dynamics has no rest point,

i.e., there is no p∗t such that p∗t+1 = argmaxp∈[0,1] π
CE (p|p∗t ) = p∗t . To see this, assume

by contradiction that p∗ is a rest point. By Lemma 4, it cannot be that p∗ < pNE since

p∗t = p∗ < pNE would imply that p∗t+1 > p∗t = p∗. By Lemma 2, it cannot be that

p∗ = pNE since p∗t = p∗ would imply that p∗t+1 > pNE. Finally, by Lemma 3, it cannot

be that p∗ > pNE since p∗t = p∗ would imply either that p∗t+1 > p∗t or that p∗t+1 = pNE

and thus p∗t+1 ̸= p∗t (given that p∗t = p∗ ̸= pNE). Even though there is no rest point, we

can establish that there is a price cycle that consists of the Nash price and one or more

prices above the Nash price.

Proposition 2 There exists an increasing sequence (p(1), ..., p(τ)) with τ ≥ 2 and p(1) =

pNE such that if p∗t = p(i) for i ∈ {1, ..., τ − 1} then p∗t+1 = p(i+1), and if p∗t = p(τ) then

p∗t+1 = p(1). Moreover, the dynamic converges to the set
{
(p(1), ..., p(τ))

}
from any initial

price p0 ∈ [0, 1].

The result obtained here should be put in the perspective of the literature which

has revisited the classic adverse selection games introduced by Akerlof (1970) and stud-

ied whether relaxations of the buyer’s rationality could generate more trading activity.

These include Eyster and Rabin (2005)’s cursed equilibrium, Jehiel and Koessler (2008)’s

20



analogy-based expectation equilibrium, and Esponda (2008)’s behavioral equilibrium.28

As already mentioned, our modeling of such interactions is inspired by Esponda (2008),

in particular with respect to the feedback function. But, our derivation of categorization-

based expectations based on that feedback is different, leading to more trade than in

the rational case (in contrast to Esponda’s finding), as well as cycling (which has no

counterpart in the other approaches).29,30

5 Discussion

5.1 On the existence of categorization equilibria

When player are required to use a single analogy partition, the existence of a (ε, κ)-

categorization equilibrium is not guaranteed, even in finite environments. To see this

consider the following two-stage game. First, Player 1 chooses an action a1 ∈ {A,B,C},
and then, upon observing player 1’s choice, player 2 chooses an action a2 ∈ {L,M,R}.
The payoffs of player 1 as a function of the profile of actions are.

L M R

A 2 2 2

B 4 1 4

C 4 4 1

The payoffs of Player 2 are such that it is strictly dominant for player 2 to choose L

after A, M after B, and R after C. Suppose that the homogeneity function does not

rule out any bundling of A, B, and C. We assume that only Player 1 trembles, and does

so uniformly with probability ε.31 Moreover, we assume that κ is large relative to ε so

that if Player 1 plays a pure action then the nodes following the two remaining actions

have to be bundled together (as in the Coarse Categorization Equilibrium). Under these

circumstances the game does not have any (ε, κ)-categorization equilibrium for small ε,

or more precisely:

28See Miettinen (2009) on the relationship between these various approaches.
29We note that our predictions for this type of interactions are broadly in line with the experimental

findings reported in Fudenberg and Peysakhovich (2016). They observe more trade than predicted by
the Nash equilibrium and they suggest comparative statics with respect to the difference of valuation
between the seller and the buyer that agree with our predictions.

30A few recent papers identify cycles of beliefs in the context of misspecified models. In Esponda et al.
(2021) and Bohren and Hauser (2021) (see also Nyarko, 1991), the evidence accumulated while taking a
particular action may push beliefs in a direction that makes another action seem optimal, and once this
new action is taken the data that are being generated induce a belief that makes the previous action seem
optimal again. In Fudenberg et al. (2017) cycles may arise from the fact that the learner never ceases
to perceive an information value of experimenting with another action. None of these papers feature
endogenous categorizations.

31Player 2 does not tremble similarly to our assumption that the buyer does not tremble in the adverse
selection game (because this player has a weakly dominant strategy).
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Claim 1 There is no pure (ε, κ)-categorization equilibrium in which 1
3
> κ > 2ε.

A proof of the claim appear in the Appendix, but we now sketch the main steps.

If the strategy of player 1 were pure, then the nodes following the other two actions

would have to be bundled into one analogy class (because κ > 2ε), thereby leading to the

contradiction that player 1 would find one of the non-played actions preferable.32 Having

established that player 1 should be mixing, it follows that player 1 cannot be using the

fine analogy partition (as A would then be the pure strategy chosen by player 1). Player

1 also cannot use the coarse analogy partition that puts all decision nodes of player 2 into

a single analogy class, as it must be that at least one of player 1’s actions is played with

probability no less than κ (given that κ < 1
3
). The remaining three two-class analogy

partitions can then be ruled out using the property that player 1 must perceive that at

least two actions are equally good, as required for mixing.

The inexistence of a pure (ε, κ)-categorization equilibrium suggests allowing for mixed

partitions. In the context of the example above, this would require Player 1 to mix

between two partitions that would both be κ adjusted to the strategies. Specically, let

Player 1 mix between the two analogy partitions, (A,B,C), which is the the maximally

fine partition, and (A,BC), which bundles B and C separately from A. Under the

former partition, action A is perceived as optimal and is thus played with probability

one unless the player trembles. Under the latter partition, Player 1 plays B and C with

probability 0.5 each, unless the player trembles. This induces Player 1 to expect M and

R to be played with equal probability (each close to 0.5) following either B or C and

hence Player 1 is indifferent between B and C. Moreover, since the probability of L is

close to zero following either B or C, Player 1 strictly prefers B and C to A. Hence, it

is a best-response to mix between B and C when using partition (A,BC).

In order for (A,B,C) to be adjusted all actions need to occur with at least probability

κ. In order for (A,BC) to be adjusted, actions B and C need to occur with at most

probability κ each. Thus, actions B and C need to occur with exactly probability κ

each. Suppose partition (A,B,C) is played with probability p and partition (A,BC) is

played with probability 1 − p. The probability that action A is played is p (1− 2ε) +

(1− p) ε. The probability that action B is played is pε+(1− p)
(
1
2
− ε
)
. This is also the

probability that action C is played. Hence, for given κ and ε we need to set p such that

pε + (1− p)
(
1
2
− ε
)
= κ. Note that this requires that p vanishes to 0 as ε as κ tends to

0.

The insight from this example is general. If we allow for mixed analogy partitions then

we can ensure the existence of (ε, κ)-categorization equilibrium for any (ε, κ), at least in

finite environments. A proof of this, which is somewhat similar to the existence proof

of Jehiel and Weber (2024), can be found in the Online Appendix. From the existence

32For example, if A were the pure choice, then both B and C would be perceived to yield 4+1
2 which

is more than 2, what A would be (rightly) perceived to yield.
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of such (ε, κ)- categorization equilibria with mixed partitions, one could consider the

accumulation points of sequences of such equilibria as ε, κ→ 0 and ε
κ
→ 0 (resp. ε

κ
→ ρ)

to parallel the definitions of coarse categorization equilibria (resp. ρ-coarse categorization

equilibria) for this mixed analogy partition extension. In the context of the adverse

selection game studied in Section 4, while such equilibria could arise, we suspect they

would be unstable with respect to the learning dynamics studied there and that instead

only the cycles analyzed in Proposition 2 would emerge for generic choices of initial beliefs

in the dynamic process. The precise study of such stability considerations is left for future

research.

5.2 Relation to Other Solution Concepts

Focusing on extensive form games of complete information (i.e. allowing for simultaneous

moves but no asymmetric information), and assuming that feedback consists in disclosing

the played path, our notion of categorization equilibrium relates to self-confirming equi-

librium (Fudenberg and Levine, 1993) and subgame perfect Nash equilibrium as follows:

Proposition 3 Consider an extensive-form game of complete information and assume

that the feedback consists of observing the path of play.

(a) For any homogeneity function, if (σ, C) is a categorization equilibrium then σ is a

(unitary) self-confirming equilibrium (Fudenberg and Levine, 1993, 1998).

(b) For any homogeneity function, if σ is a subgame perfect Nash equilibrium (SPNE)

then there is a C such that (σ, C) is a categorization equilibrium.

(c) If σSPNE is a subgame perfect Nash equilibrium (SPNE) then there may be no coarse

categorization equilibrium (σ′, C ′) that supports a strategy profile that is outcome

equivalent to σSPNE.

Part (a) of Proposition 3 establishes that categorization equilibrium refines (uni-

tary) self-confirming equilibrium, and hence coarse categorization equilibrium refines self-

confirming equilibrium. This happens because categorization equilibrium (compared to

self-confirming equilibrium) puts more structure on the admissible off-path beliefs, while

perfectly distinguishing on-path nodes, thereby inducing correct on-path beliefs.

Part (b) says that subgame perfect Nash equilibrium (SPNE) is a refinement of cat-

egorization equilibrium. The reason is that with complete freedom on how to choose

sequences (εm)m and (κm)m, we can always ensure that all nodes are put in singleton

analogy classes (this requires that ε is high enough relative to κ), thereby inducing best-
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responses in all subgames.33 However part (c) tells us that this is not true for coarse

categorization equilibrium: there are SPNE that cannot be supported as a coarse catego-

rization equilibrium. The reason is that in a coarse categorization equilibrium one is not

free to choose sequences (εm)m and (κm)m such that there are enough mistakes to put all

nodes in singleton analogy classes. In general we note that if κm/ (εm)l < 1 < κm/ (εm)l+1

then any node that is at most l steps off the equilibrium path will be placed in a category

of its own under any (εm, κm)-categorization equilibrium, whereas nodes that are further

away from the equilibrium path may be bundled more coarsely.

In the Online Appendix we provide two examples in which (σ,C) is a categorization

equilibrium but σ is not a Nash equilibrium. Constructing such examples either require

that the feedback differs from the path of play (in which case a normal form game with

just two players can be used to illustrate the claim) or (if the feedback is the path of play)

that one considers games with at least three players and some asymmetric information. In

the latter case we adapt an example from Fudenberg and Levine (1993) used to illustrate

that a self-confirming equilibrium may differ from a Nash equilibrium.

6 Conclusion

Our paper has proposed a novel perspective on categorization, using the the bias-variance

trade-off to think about how analogy partitions should be chosen in the analogy-based

expectation equilibrium. In this construction, we have assumed that players are endowed

with a pre-conceived perception about the similarity of the different situations in which

the opponent is supposed to play. We have motivated this on the ground that socio-

logical and psychological factors may be driving these perceptions. A further step of

endogenization would require making progress on how the similarity perceptions should

be determined.

33The fact that the homogeneity function does not matter in part (a) is simply a consequence of the
on-path nodes being distinguished perfectly, so that homogeneity is maximal in each singleton on-path
analogy class. In part (b) the irrelevance of the homogeneity function stems from choosing sequences
(εm)m and (κm)m such that all off-path nodes are put in singleton analogy classes.
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Appendix

A.1 Chainstore Application

Proof of Proposition 1. We need to show that for T > T ∗ there is a sequence (σm
T )m

converging to σT , such that (σm
T , C) is an (εm, κm)-categorization equilibrium for all m.

We define σm
T as the strategy profile which at each node puts probability εm on the action

that σT puts zero probability on. Since there are only two actions at each node this is

enough to specify σm
T . Since the starting point of (εm, κm) is arbitrary it is sufficient to

show the following: There exists a T ∗ such that for any T > T ∗ there is exists an m∗

such that if T > T ∗ and m > m∗ then σm
T is an (εmT , κ

m
T )-categorization equilibrium of

the chainstore game with T periods.

1. First we explain why C is adjusted to σm
T for all m > m∗ (and all T ).

(a) For any T , if m is large enough, then κmT < (1− εmT )
T , ensuring that on-path

nodes have a mass exceeding the threshold κmT and thus are treated as singleton

analogy classes, by point 1 of Definition 4.

(b) For off-path nodes following histories in which there was some E not matched

with F , our homogeneity assumptions imply that nodes in QSoft
C cannot be

bundled with nodes that are not in QSoft
C , and nodes in Qt,Soft

M cannot be

bundled with nodes that are not in Qt,Soft
M , according to point 2 of Definition 4.

(The total mass of such histories would typically fall short of the κmT threshold,

but the dissimilarity with other histories would not allow further bundling.)

(c) Furthermore, all off-path nodes in QSoft
C have to be bundled together and all

off-path nodes in Qt,Soft
M have to be bundled together (but separately for each

t) according to point 3 of Definition 4. This follows from the assumption that

limm→∞ κmT /ε
m
T = ∞, which implies that the total mass of the off-path nodes

vanishes relative to the threshold κ.

(d) The situation is analogous for off-path nodes following histories in which there

was no E or any E was immediately followed by an F . The off-path nodes of

the challenger Qoff
C have to be partitioned into C1

M and C2
M , and the off-path

nodes of the monopolist have to be partitioned, for each t, into C1
Ct and C2

Ct.

2. Second we examine the analogy-based expectations

(a) Players have correct expectations at on-path nodes.

(b) Players also have correct expectations at nodes following off-path histories in

which there was some E not matched with F , i.e. at off-path nodes in QSoft
C

and Qt,Soft
M . This is so because after such histories, the challenger consistently

chooses E and the monopolist consistently chooses A after E.
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(c) Next consider off-path monopolist nodes following histories in which there was

no E or any E was immediately followed by an F , i.e. off-path nodes in

Qt,Tough
M for some t. (Such a node is only reached when the challenger plays E

before t ≤ T − k∗.) Challengers have correct expectations since they do not

bundle together nodes from different time periods. (Indeed this would be true

even if challengers did not distinguish between Qt,Tough
M and Qt,Soft

M .)

(d) It only remains to check the monopolist’s expectations at off-path nodes in

QTough
C . As εm → 0 the expectations here are determined by behavior at nodes

with histories containing a single mistake. The fraction of such nodes at which

the challenger chooses E vanishes as T → ∞. It follows that as T gets large,

the monopolist will expect that O is chosen with a probability close to 1.

3. Third and finally we verify that σm
T induces a εmT -best-responses given the analogy-

based expectations. We have found that the challengers have correct expectations

and it is easy to see that they best-responds to the monopolist’s strategy, so we

focus on the monopolist.

(a) Monopolist in period t ≤ T at an off-path node in QTough
M . By playing F , the

monopolist expects that with a probability close to 1, a string of O occur from

then on until the end of the game. By playing A, the monopolist correctly

expects a string of (E,A) until the end of the game. The former is at least as

good as the latter if uM(E,F ) + (T − t)uM(O) ≥ (T − 1 + 1)uM(E,A). For

t ≤ T −k∗ this is satisfied, but for t > T −k it is not satisfied, by the definition

of k∗.

(b) Monopolist at the on-path node in period t = T − k∗ + 1. This node is in

QTough
M , immediately preceded by the first instance of E. By deviating from

σT and playing F , the monopolist expects that with a probability close to

1, a string of O occur from the next period until the end of the game. By

complying with σT and playing A, the monopolist correctly expects a string

of (E,A) until the end of the game. Deviation is then perceived unprofitable

by the same condition as before.

(c) Monopolist at an off-path node in QSoft
M . Regardless of what happens in the

current period, the monopolist (correctly) expects E in all subsequent periods.

The best response is to play A from now until the end of the game.

(d) Monopolist at an on-path node in period t > T −k∗+1. In the history of such

a node there has been at least one instance of E that was not immediately

followed by A, i.e. the node is in QTough
M . The monopolist (correctly) expects

E in all subsequent periods. The best response is to play A until the end.
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A.2 Adverse Selection Application

A.2.1 Deriving Perceived Expected Payoff

Proof of Lemma 1. The perceived expected payoff is

πCE (p|p∗) =
∫ p∗

0

̂Pr (a ≤ p|ω) (ω + b− p) g (ω) dω

+

∫ 1

p∗

̂Pr (a ≤ p|ω ∈ Ck) (ω + b− p) g (ω) dω,

where, using (3) we obtain

∫ p∗

0

̂Pr (a ≤ p|ω) (ω + b− p) g (ω) dω =

{
G (p) (E [ω|ω ≤ p] + b− p) if p < p∗

G (p∗) (E [ω|ω ≤ p∗] + b− p) if p ≥ p∗

and, writing i(p) for the analogy class that contains ω = p, using (4) we obtain,∫ 1

p∗

̂Pr (a ≤ p|ω ∈ Ck) (ω + b− p) g (ω) dω

=

k(p)−1∑
k=1

(
(G (ck)−G (ck−1))

(
E
[
ω|ω ∈ Ck

]
+ b− p

))
+
(
G̃ (p)− G̃

(
ck(p)−1

)) G (ck(p))−G
(
ck(p)−1

)
G̃
(
ck(p)

)
− G̃

(
ck(p)−1

) (E [ω|ω ∈ Ck(p)
]
+ b− p

)

A.2.2 Preliminary Observations

Note that limp↑ck π
CE (p|p∗) = limp↓ck π

CE (p|p∗), for all i ∈ {1, ..., K − 1}, implying that

πCE (p|p∗) is continuous everywhere. Moreover, πCE (p|p∗) is piece-wise differentiable

with points of non-differentiability only at category boundaries. The first derivative at

p ∈
(
ck(p)−1, ck(p)

)
is

∂πCE (p|p∗)
∂p

= −G
(
ck(p)−1

)
−
(
G̃ (p)− G̃

(
ck(p)−1

)) G (ck(p))−G
(
ck(p)−1

)
G̃
(
ck(p)

)
− G̃

(
ck(p)−1

) (A1)

+ g̃ (p)
G
(
ck(p)

)
−G

(
ck(p)−1

)
G̃
(
ck(p)

)
− G̃

(
ck(p)−1

) (E [ω|ω ∈ Ck(p)
]
+ b− p

)
.

One can show (Online Appendix S.4.1) that

∂πCE (p|p∗)
∂p

≥ g̃ (p)

((
E
[
ω|ω ∈ C1

]
+ b− p

)
− G̃ (p)

g̃ (p)

)
. (A2)
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Letting p ↓ p∗ = ck(p)−1 we obtain

∂πCE (p|p∗)
∂p

∣∣∣∣
p↓p∗

= g̃ (p∗)
G (c1)−G (p∗)

G̃ (c1)− G̃ (p∗)

(
E
[
ω|ω ∈ C1

]
+ b− p∗

)
−G (p∗) .

One can show (Online Appendix S.4.1) that

∂πCE (p|p∗)
∂p

∣∣∣∣
p↓p∗

> g (p∗)
(
E
[
ω|ω ∈ C1

]
+ b− p∗

)
−G (p∗) . (A3)

Finally, we can find a lower bound on the second derivative of πCE (p|p∗) with respect to

p (see Online Appendix S.4.1). For p ∈ (p∗t , c1) we have

∂2πCE (p|p∗)
∂p2

≥ g̃′ (p)
(
E
[
ω|ω ∈ C1

]
+ b− p

)
− 2g̃ (p) . (A4)

A.2.3 Proof of Lemmata 2-4

Proof of Lemma 2. Since πCE
(
p|pNE

)
coincides with πNE (p) on [0, p∗] =

[
0, pNE

]
,

the constrained optimal p ∈ [0, p∗] is at p = p∗ = pNE. Differentiating πCE at p ∈ C1 =(
pNE, c1

]
, and letting p go to pNE, we obtain, using (A3),

∂πCE
(
p|pNE

)
∂p

∣∣∣∣∣
p↓pNE

> g
(
pNE

) (
E
[
ω|ω ∈ C1

]
+ b− pNE

)
−G

(
pNE

)
= G

(
pNE

)( g (pNE
)

G (pNE)

(
E
[
ω|ω ∈ C1

]
+ b− pNE

)
− 1

)

= G
(
pNE

)(1

b

(
E
[
ω|ω ∈ C1

]
+ b− pNE

)
− 1

)
=
G
(
pNE

)
b

(
E
[
ω|ω ∈ C1

]
− pNE

)
= g

(
pNE

) (
E
[
ω|ω ∈ C1

]
− pNE

)
> 0.

Here, the third and fifth equalities use the fact that g
(
pNE

)
/G
(
pNE

)
= 1/b. Since

πNE (p) is continuous, the desired result is implied.

Proof of Lemma 3. Since πCE (p|p∗t ) coincides with πNE (p) on [0, p∗t ], the con-

strained optimal p ∈ [0, p∗t ] is at p = pNE < p∗t . Suppose that argmaxp∈[p∗t ,1] π
CE (p|p∗t ) =

p∗t (requiring
∂πCE(p|p∗t )

∂p

∣∣∣
p↓p∗t

≤ 0). By continuity of πCE (p|p∗t ), we have argmaxp∈[0,1] π
CE (p|p∗t ) =

pNE < p∗t .

Proof of Lemma 4. Suppose, p∗t < pNE. Then the constrained optimal p ∈ [0, p∗t ]

is at p∗t . Differentiating π
CE at p ∈ C1 = (p∗t , c1], and letting p go to p∗t , we obtain, using
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(A3),

∂πCE (p|p∗)
∂p

∣∣∣∣
p↓p∗t

> g (p∗t )
(
E
[
ω|ω ∈ C1

]
+ b− p∗t

)
−G (p∗t )

= G (p∗t )

(
g (p∗t )

G (p∗t )

(
E
[
ω|ω ∈ C1

]
+ b− p∗t

)
− 1

)
≥ G (p∗t )

(
g
(
pNE

)
G (pNE)

(
E
[
ω|ω ∈ C1

]
+ b− p∗t

)
− 1

)

= G (p∗t )

(
1

b

(
E
[
ω|ω ∈ C1

]
+ b− p∗t

)
− 1

)
= g (p∗t )

(
E
[
ω|ω ∈ C1

]
− p∗t

)
> 0.

Hence
∂πCE(p|p∗t )

∂p

∣∣∣
p↓p∗t

> 0. By continuity of πCE note argmaxp∈[0,1] π
CE (p|p∗t ) > p∗t .

A.2.4 Proof of Convergence to Cycle in Proposition 2

Lemma A1 There is some δ > 0 such that if p∗ ≤ pNE then E [ω|ω ∈ C1] > p∗ + δ.

Proof of Lemma A1. We only sketch the proof here. For details see Online Appendix

S.4. Assume p∗ ≤ pNE. The mass in each analogy class (above p∗) is at least κ. Let

gmin = minω∈[0,1] g (ω) and gmax = maxω∈[0,1] g (ω). By the full-support assumption we

have gmin > 0. It can then be shown that c1 − p∗ ≥ κ
εgmax . Using this we can establish a

lower bound on the expected quality in analogy class C1.

E
[
ω|ω ∈ C1

]
≥ p∗ +

1

2
(c∗1 (p

∗)− p∗)2 gmin

(
1− F

(
1

2

(
pNE + 1

)))

We use Lemma A1 to establish convergence to the cycle from initial prices below pNE.

Lemma A2 Starting at p∗1 < pNE there is convergence to the set
[
pNE, 1

]
.

Proof of Lemma A2. Consider p∗t < pNE. By Lemma 4 we know that p∗t+1 > p∗t . Using

Lemma A1 in the proof of Lemma 4 we find that the first derivative of πCE (p|p∗t ) wrt to
p, is bounded above zero as p goes to p∗t (from above)

∂πCE (p|p∗t )
∂p

∣∣∣∣
p↓p∗t

> g (p∗t )
(
E
[
ω|ω ∈ C1

]
− p∗t

)
> g (p∗t ) δ > δgmin > 0. (A5)

Here gmin = minp∈[0,1] g (p) > 0 by the full support assumption. We can also find a lower
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bound for the second derivative of πCE (p|p∗t ) wrt to p. From equation (A4) we have

∂2πCE (p|p∗t )
∂p2

≥ g̃′ (p)
(
E
[
ω|ω ∈ C1

]
+ b− p

)
− 2g̃ (p)

≥
(
min
p∈[0,1]

g̃′ (p)

)
(p∗t + δ + b− p)− 2

(
min
p∈[0,1]

g̃ (p)

)
. (A6)

Note that

p∗t+1 ≥ min

{
p ∈ [p∗t , 1] :

∂πCE (p|p∗t )
∂p

≤ 0

}
(A7)

The bounds in (A5) and (A6) imply that the left hand side of (A7) is bounded above p∗t .

Proof of Proposition 2. Assume, to derive a contradiction, that the sequence p∗t is

monotonic. Lemmata 2–4 imply that p∗t+1 > p∗t for all t. Since p∗t ≤ 1 for all t, it follows

that p∗t → p̄ for some p̄ > pNE as t → ∞. (To see that there is a p̄ > pNE note that if

p∗1 ≥ pNE then p∗t ≥ pNE for all t.) This implies
∣∣p∗t+1 − p∗t

∣∣ → 0, which, by continuity

of πCE (p|p∗t ), implies
∣∣πCE

(
p∗t+1|p∗t

)
− πCE (p∗t |p∗t )

∣∣ → 0. Since πCE (p|p∗t ) = πNE (p) for

p ∈ [0, p∗t ], we have
∣∣πCE

(
p∗t+1|p∗t

)
− πNE (p∗t )

∣∣ → 0, and consequently πCE
(
p∗t+1|p∗t

)
→

πNE (p̄). Since the Nash equilibrium pNE is unique it holds that πNE
(
pNE

)
> πNE (p̄),

and since πCE (p|p∗t ) = πNE (p) for p ∈ [0, p∗t ] we get

πCE
(
p∗t+1|p∗t

)
→ πNE (p̄) < πNE

(
pNE

)
= πCE

(
pNE|p∗t

)
.

This is in contradiction to p∗t+1 = argmaxp∈[0,1] π
CE (p|p∗t ). We conclude that the sequence

p∗t is not monotonic. Lemmata 2–4 imply that it must be cyclical, consisting of cycles

with pNE and one or more price above pNE. Note that the preceding argument can be

used to show, that starting at p∗1 ≥ pNE there is convergence to the cycle, from which

there is no escape. To see this, suppose (to obtain a contradiction) that there is some

p∗1 > pNE that does not belong to the cycle (i.e., p∗1 ̸= p(1) for all i ∈ {1, ..., τ}), from
which there is no convergence to the cycle. This means that p∗t+1 > p∗t for all t and

p∗t → p̄ for some p̄ ∈
[
pNE, p(τ)

]
as t→ ∞. It remains to show that starting at p∗1 < pNE

there is convergence to the set
[
pNE, 1

]
, which is established in Lemma A2 in the Online

Appendix.

A.3 Proof of Non-Existence for Example with Pure Partitions

Proof of Claim 1. First we consider pure strategies.

(A) If A is played, then the nodes following B and C are put together in the same

analogy class BC. The belief for BC is β1 (M) = β1 (R) = 0.5, implying that B is

viewed as better than A since (4 + 1)/2 > 2.
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(B) If B is played, then the nodes following A and C are put together in the same

analogy class AC. The belief for AC is β1 (L) = β1 (R) = 0.5, implying that A is

viewed as better than B since (2 + 2)/2 > 1

(C) If C is played, then the nodes following A and B are put together in the same

analogy class AB. The belief for AB is β1 (L) = β1 (M) = 0.5, implying that B is

viewed as better than C since (4 + 1)/2 > 1.

Next we consider mixed strategies. We consider each of the different possible analogy

partitions.

1. Suppose Player 1 uses the analogy partition (A,B,C) that places each of Player

2’s nodes in a separate class. She will then have correct expectations so that her

unique best response is action A. But then the weight put on either of B and C

will not be high enough to make the analogy partition (A,B,C) adjusted, since by

assumption κ > ε.

2. Suppose Player 1 uses the analogy partition (A,BC). In order for this to be ad-

justed, Player 1 needs to play each of B and C with probability less than κ. In

order for Player 1 to be indifferent between A and B we need 2 = β1 (M |BC) +
4β1 (R|BC). Since β1 (L|BC) = 0 it must be that β1 (M |BC) = 2/3.1 The

analogy partition (A,BC) is adjusted provided that κ > 2ε. The resulting anal-

ogy based expectations satisfy β1 (M |BC) = 2/3, β1 (R|BC) = 1/3. However, if

β1 (M |BC) = 2/3 then the perceived expected payoff from C is 4 · 2
3
+1 · 1

3
= 9

3
> 2

so that action C is perceived to be optimal. Similarly in order for Player 1 to be

indifferent between A and C we need β1 (M |BC) = 1/3 but this makes action B to

be considered optimal.

3. Suppose Player 1 uses the analogy partition (AB,C). In order for this to be ad-

justed, Player 1 needs to play each of A and B with probability less than κ. In order

for her to be indifferent between C and A we need 1 = 2β1 (L|AB) + 2β1 (M |AB),

which is impossible. In order for her to be indifferent between C and B we need

1 = 4β1 (L|AB) + 1β1 (M |AB), which is also impossible.

4. Suppose Player 1 uses the analogy partition (AC,B). This case is parallel to the

previous one.

5. The analogy partition that bundles all actions is not adjusted since at least one

action receives a weight of at least κ.

1We can achieve this as follows. With probability 3ε Player 1 trembles and takes one of her actions,
each with probaiblity ε. When she does not tremble she puts probability 1 − ε

(1−3ε) on A, probability
ε

(1−3ε) on B, and probability 0 on C. Thus, total mass put on B (adding trembles and non-trembles) is

2ε, and likewise the total mass put on C is ε.
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A.4 Relation to Other Solution Concepts

Proof of Proposition 3. (a) Since κm → 0 and εm → 0 players must have correct

expectations about behaviors on the path, given criterion 1 in definition 4. The result

follows. (b) Let L be the length of the longest path of play. This is the highest number

of mistakes needed to reach any terminal node under any strategy profile. By choosing

sequences (εm)m and (κm)m such that limm→∞ κm/ (εm)L < 1 we ensure that there is some

M such that for any m > M , any (ε, κ)-categorization equilibrium will put all off-path

nodes in singleton analogy classes. This implies that all players have correct expectations

at all nodes. And since (for any finite m) all nodes are reached with positive probability

all players will play ε-best responses at all nodes, converging to exact best responses as

m → ∞. (c) Consider the following version of the centipede game where players 1 and

2 take turn choosing between Pass and Take. The unique SPNE is TP for Player 1 and

21
P

T

(2,0)

P
1

T

(0,0)

T

P
2

T

(1,1)(4,0)

(0,0)
P

PT for Player 2 (indicated by the fat arrows). Both of Player 2’s nodes are off-path and

reached by a single mistake (by Player 1 at the first node). If limm→∞ κm/εm = ∞ then

Player 1 will bundle these two nodes together (assuming Player 1 does not perceive them

as maximally dissimilar) and form the expectation that Player 2 passes with probability

1/2. Given this belief, Player 1 perceives the expected utility of passing at both of her

nodes to be 2.5 making it seem optimal to deviate from the strategy SPNE.
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ONLINE APPENDIX
Categorization in Games: A Bias-Variance Perspective

Philippe Jehiel and Erik Mohlin

S.1 Illustration: Ultimatum/Bargaining Game Application

To provide a first simple illustration of how our approach works, we consider the follow-

ing ultimatum-like environment. A proposer (first-mover) offers a share to a responder

(second-mover) which he can either accept or reject. That is, the strategy of the pro-

poser is a splitting share sP ∈ [0, 1] that offers 1 − sP to the responder, and a strategy

for the responder is an acceptance decision rule that maps the various offers onto an ac-

ceptance/rejection decision sR : [0, 1] → {R,A}. The proposer’s payoff is equal to 1− sP

if the offer is accepted and zero otherwise. The responder’s payoff is sP if the offer is

accepted and v ≥ 0 otherwise. The proposer has to predict the acceptance probability

for different offers. Thus, the set of offers can be identified with the set of situations in

the above abstract formulation. When predicting acceptance as a function of offers the

proposer may bundle several offers together.

When assessing how the responder’s acceptance probability depends on the offer sP , it

seems plausible that the the proposer would subjectively assess that the closer two offers

are, the closer are their associated acceptance probabilities. This leads us to assume that

the notion of similarity used by the proposer is based on the Euclidean distance in the

space of offers [0, 1]. More specifically, for any subset X of [0, 1], we assume that the

homogeneity function used by the proposer is

ζP (X) = 1− 1

2
(supX − infX) .

It follows that the homogeneity of a singleton analogy class is 1 and the homogeneity of

the entire set [0, 1] of all offers is 1/2.

Our ultimatum application has a continuum of actions for the proposer, but our

general construction (with finite sets of actions and situations) is easily adapted to this

case. The proposer will use a pure strategy in our proposed categorization equilibrium.

By part 1 of Definition 4, the corresponding (equilibrium) offer forms a singleton (on-

path) analogy class in the proposer’s analogy partition. By part 4 of Definition 4, if an

off-path analogy class is not an interval then the union of this analogy class and the on-

path singleton analogy class is an interval. Let Koff be the number of off-path analogy

classes. In line with our general construction, we assume that trembles are uniform on

[0, 1]. By part 3 of Definition 4 each category must have a mass of at least κ (since under

our assumptions no subset X of [0, 1] can have zero homogeneity). It follows that we
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need ε/Koff ≥ κ. Additionally, to satisfy part 4 of Definition 4, we need the condition

κ > ε/
(
Koff + 1

)
and that supX− infX should also be the same for all off-path analogy

classes.

In the next Proposition, we characterize the ρ-coarse categorization equilibria when
1
2
< ρ < 1

3
, ensuring that there are two off-path categories as informally suggested above.1

We also characterize the coarse categorization equilibrium (that can be viewed as a ρ-

coarse categorization equilibrium with ρ < 1
2
). Essential proofs not appearing in the main

text are placed in the Appendix, with less essential aspects being relegated to the Online

Appendix.

Proposition S1 There is a unique coarse categorization equilibrium. It is such that the

offer is s∗P = v, and there is a single off-path analogy class . Assuming that 1
2
< ρ < 1

3
,

ρ-coarse categorization equilibria have two off-path analogy classes. (a) If v ≥ 0.5 then

in any ρ-coarse categorization equilibrium s∗P = v. (b) If v ∈ (0.25, 0.5) then in any

ρ-coarse categorization equilibrium s∗P ∈ [v, 0.5]. (c) If v ≤ 0.25 then in any ρ-coarse

categorization equilibrium s∗P ∈ [v, 2v].

Proof of Proposition S1. Suppose that κm > εm/2 as m→ ∞ (which must hold in

a coarse categorization equilibrium). This implies that there is a single off-path analogy

class for all m. As εm → 0 the following holds. The responder rejects if sP < v and

accepts if sP > v and at sP = v she is indifferent between accepting and rejecting.

Hence, the proposer believes that the acceptance probability is 1 − v for an off-path

offer, and consequently believes that the expected utility of making an off-path offer sP is

(1− sP ) (1− v). Note that (1− sP ) (1− v) is decreasing in sP and approaches 1−v (from
below) as sP approaches 0. Thus in categorization equilibrium the proposer must get at

least 1−v, meaning that we need s∗P ≤ v. Suppose v > 0. If s∗P ∈ (0, v) then the proposer

earns 0 in categorization equilibrium meaning that a deviation to off-path sP = 0 appears

profitable. Thus, if v > 0 then s∗P = v in a categorization equilibrium. Suppose v = 0.

If s∗P > 0 then the proposer earns less than 1 in categorization equilibrium meaning that

a deviation to off-path sP = 0 appears profitable. Thus, if v = 0 then s∗P = 0 in a

categorization equilibrium.

Now suppose that εm/2 > κm > εm/3 asm→ ∞, implying that there are two off-path

analogy classes for all m. As εm → 0 the following holds.

For (a), consider the case of v ≥ 0.5. The responder rejects if sP < v and accepts

if sP > v and at sP = v she is indifferent between accepting and rejecting. Hence, the

proposer believes that the acceptance probability is 0 for an off-path offer sP < 0.5,

and believes that the acceptance probability is 2 (1− v) for an off-path offer sP > 0.5.

It follows that the proposer perceives the expected utility of offering an off-path sP <

1Here ρ refers only to the proposer, since for the responder the problem is a simple decision problem
(with no need to form expectation about the play of the opponent).
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0.5 to be 0 and perceives the expected utility of offering an off-path sP > 0.5 to be

(1− sP ) 2 (1− v). Note that (1− sP ) 2 (1− v) is decreasing in sP and approaches 1− v

(from below) as sP approaches 0.5. Thus in categorization equilibrium the proposer must

get at least 1 − v, meaning that we need s∗P ≤ v. If s∗P < v then the proposer earns 0

in categorization equilibrium meaning that a deviation to off-path sP ∈ (0.5, 1) appears

profitable.

For (b) and (c), consider the case of v ∈ (0, 0.5). The proposer believes that the

acceptance probability is 1 for an off-path offer sP > 0.5, and believes that the acceptance

probability is 2
(
1
2
− v
)
= 1−2v for an off-path offer sP < 0.5. It follows that the proposer

perceives the expected utility of offering an off-path sP > 0.5 to be 1− sP and perceives

the expected utility of offering an off-path sP < 0.5 to be (1− sP ) (1− 2v). Thus by

deviating to sP > 0.5 she perceives that she can get an amount that approaches 0.5 from

below and by deviating to sP = 0 < 0.5 she perceives that she can get exactly 1 − 2v.

Deviation to sP = 0 is perceived more profitable than deviation to sP > 0.5 if and only if

v ≤ 0.25. Naturally, in categorization equilibrium we must have sP ≥ v, as otherwise the

responder rejects and the proposer would perceive it profitable to deviate to sP > 0.5.

Combining this we see that if v > 0.25 then any sP ∈ [v, 0.5] is part of a categorization

equilibrium, and if v ≤ 0.25 then any sP ∈ [v, 2v] is part of a categorization equilibrium.

A subgame perfect Nash equilibrium would require that the proposer offers s∗P = v. In

a categorization equilibrium with κm/εm → 0 there would be arbitrarily many off-path

analogy classes and so we would recover the subgame perfect Nash equilibrium, with

s∗P = v. Interestingly, this is also the prediction in a coarse categorization equilibrium

(or more generally in a ρ-coarse categorization equilibrium with ρ < 1/2). In this case

there is a single off-path analogy class. However, when ρ > 1
2
, ρ-coarse categorization

equilibria allow for predictions away from the standard one. When 1
2
< ρ < 1

3
, there are

ρ-coarse categorization equilibria in which (for some values of v) more equal splits may

arise.2,

S.2 Chainstore Application

So far, in our analysis of the chainstore game we assumed a homogeneity function that

implies that histories are distinguished according to time. What happens if we assume a

2As an alternative to the above homogeneity function, one could assume that ζP (X) = 0 when X is
not an interval, and that ζP (X) = 1− 1

2 (supX − infX) otherwise. Such a modified notion of similarity
and homogeneity may reflect a deeper understanding of the proposer that if two offers belong to the
same analogy class, it would have to be that any intermediate offer also belongs to it. In this alternative,
analogy classes would have to be intervals (as otherwise it would violate part 2 of Definition 4). Moreover,
proposals away from the standard one could arise even in coarse categorization equilibria. Specifically,
any offer s∗P ∈ [v,

√
v] could be sustained in a coarse categorization equilibrium in contrast to the finding

of Proposition S1.
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homogeneity function which relaxes this while still keeping the idea that histories in which

a previous entry was not immediately matched by a fight behavior are very dissimilar

from other? Compared to the above setting, the only difference is that for the challenger

we now consider QTough
M = ∪tQt,Tough

M and Qsoft
M = ∪tQt,Soft

M and we require that if Y

contains two nodes q and q′ that do not both belong to QTough
M nor both belong to Qsoft

M ,

then ξ̃C(Y ) = 0 (while any set Y not having this property satisfies ξ̃C(Y ) > 0). We define

a corresponding categorization profile C̃ which only differs from C in that the challengers’

categorizations do not differentiate periods, i.e. C̃1
C = ∪tC1

Ct and C̃2
C = ∪tC2

Ct.

We now observe that in this alternative setting, there is a coarse categorization equi-

librium, this time relying on erroneous expectations of the challengers. Still defining k∗

as above, we consider the following strategy profile σ̃T :

• Challenger strategy. If E was always matched with F in the past, or if there was

no E in the past, play O. Otherwise play E.

• Monopolist strategy. At t > T − k∗, play A. At t ≤ T − k∗; play F if E was always

matched with F in the past, or if there was no E in the past; otherwise play A.

Proposition S2 There exists a T ∗ such that if T > T ∗, then
(
σ̃T , C̃

)
is a coarse catego-

rization equilibrium of the chainstore game with T periods, implying that in the absence

of mistakes there is not entry, and the monopolist fights the challenger in all but the last

k∗ periods.

On the path of play induced by this strategy profile the challenger never enters. In

case there is entry the monopolist fights the challenger in all but the last k∗ periods. In

this construction, the monopolist plays a best-response to the challenger’s strategy and

the mistaken belief concerns the challenger who refrains from entering in all periods. She

stays out at histories with no earlier (E,A) because she fears the monopolist would fight

with a large probability in case of entry. This expectation arises due the bundling of

many histories in QTough
M and the observation that according to σ̃T the monopolist would

play F at such histories in all but the last k∗ periods.3

Proof of Proposition S2. The proof is similar to that of proposition 1. We focus

on the differences.

1. Why C̃ is adjusted to σ̃m
T for all m > m∗ (and all T ). Our revised homogeneity

assumptions imply that nodes in Qt,Soft
M should be bundled with nodes in Qt′,Soft

M ,

and nodes in Qt,Tough
M should be bundled with nodes in Qt′,T ough

M for t ̸= t′.

3It should be noted that σ̃T cannot part of a categorization equilibrium when using the homogeneity
assumptions of Proposition 1, i.e. when the challenger is induced to categorize different time periods
separately. This is so because the challenger would then have to expect that in the last k∗ period histories
in QTough

M the monopolist would play A after entry, thereby leading challengers to choose E in those
events in contrast to the prescription of σ̃T . We see here the effect of the homogeneity functions in
shaping the categorization equilibria.
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2. Analogy-based expectations.

(a) Players have correct expectations at on-path nodes, as in the proof of propo-

sition 1.

(b) Players also have correct expectations at off-path nodes in QSoft
C and QSoft

M ,

as in the proof of proposition 1.

(c) Next consider off-path monopolist nodes inQTough
M . Challengers have erroneous

expectations since they bundle together nodes from different time periods.

As εm → 0 the expectations here are determined by behavior at nodes with

histories containing a single mistake with E. The fraction of such nodes at

which the monopolist chooses A vanishes as T → ∞. It follows that as T gets

large, the challenger will expect that F is chosen with a probability close to 1.

(d) It remains to check the monopolist’s expectations at off-path nodes in QTough
C .

At all such nodes the challenger plays O unless trembling. Hence the monop-

olist has correct expectations.

3. Verify that σ̃m
T induces a εmT -best-responses given the analogy-based expectations.

We have found that the challengers have correct expectations and it is easy to see

that they best-responds to the monopolist’s strategy, so we focus on the monopolist.

(a) Monopolist at an off-path node in QTough
M . By playing F , the monopolist

correctly expects that with a probability close to 1, a string of O occur from

then on until the end of the game. (Same belief as in the proof of proposition 1

but now it is a correct belief.) By playing A, the monopolist correctly expects

a string of (E,A) until the end of the game (as in the proof of proposition

1). The time period t ≤ T − k∗ where the incentive to take F is weakest is

t = T − k∗. Taking F not unprofitable if

uM(E,F ) + k∗uM(O) ≥ (k∗ + 1)uM(E,A),

which is satisfied by the definition of k∗. At later time periods taking A is

strictly profitable.

(b) Monopolist at an off-path node in QSoft
M . The monopolist (correctly) expects

the challengers to play E in all subsequent periods and best-responds by play-

ing A from now until the end of the game, as in the proof of proposition

1.

(c) Challenger at an off-path node in QTough
M . Here, the challenger will expect that

E is met by F with a probability close to 1 (as T gets large), hence plays O.
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(d) Challenger at an off-path node in QSoft
M . Here the challenger has correct ex-

pectations, hence plays E.

S.3 Public Goods Game

S.3.1 The Game With or Without Punishment

We now apply our approach to public good games. The game has more than two players.

So far we have only considered two-player games but it is straightforward to extend our

basic definitions to the multi-player case. We consider a finitely repeated n-player linear

public good game with punishment. The game is repeated T times and players maximize

the sum of payoffs. Each round consists of a contribution stage and a punishment stage

. Each player holds an endowment of e units. We focus on the simplified case where i

can either contribute her entire endowment to the public good or not contribute at all,

gi ∈ G = {0, e}. The payoff of player i from the contribution stage is

uCont
i (g) = α

n∑
j=1

gj + (e− gi),

where α, with 1
n
< α < 1, captures the marginal per capita return from contributing

to the public good. The contribution stage is followed by a punishment stage: each

player i can decide whether to punish another player or not. In particular, each player

i can subtract punishment points pij ∈ P = {0, p} from each other player j. For each

punishment point a cost of β > 0 is incurred. This gives rise to the following payoff

function,

uPun
i (g, p) = α

n∑
j=1

gj + (e− gi)−
n∑

j ̸=i

pji − β

n∑
j ̸=i

pij.

In the unique SPNE of this game no player contributes, and no player punishes, yield-

ing payoffs of e to everybody. Total payoff is maximized when everyone contributes e,

resulting in payoffs of αne.

S.3.2 Zero Contributions without Punishment Stage

We first examine the game without the punishment stage. In this game the stage game

payoff of player i is given by uCont
i . All categorization equilibria are based on the same

strategy profile, which coincides with the SPNE, implying that no one contributes. To

see why note that in the last round no player contributes, since there is no punishment

stage. Suppose there is an equilibrium with full contribution in the second to last round.

In this case players on the equilibrium path in the second to last round have a correct
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belief that no one will contribute in the next round, despite everyone contributing in the

second to last round. Thus not contributing in the second to last round is perceived to

give a higher payoff, no matter what the off-path expectations about the last round are.

Extending this reasoning, we get:

Proposition S3 Every categorization equilibrium prescribes non-contribution by all play-

ers in all rounds.

Proof. We prove this by induction using the following base case and induction step.

Base case: All categorization equilibria prescribe no-contribution by all players at all

information sets in round T .

Induction step: If a categorization equilibrium prescribes no-contribution by all play-

ers on the equilibrium path in rounds {t+ 1, ...T} then the categorization equilibrium

also prescribes non-contribution by all players on the equilibrium path in round t.

To establish the base case, consider a player i in period T at an information set at

which the her strategy prescribes contribution. Regardless of what she expects the other

players to do, no-contribution yields a higher payoff.

To establish the induction step, consider a categorization equilibrium that prescribes

no-contribution by all players on the equilibrium path in rounds {t+ 1, ...T}. Consider

player i in period t at an information set Ht on the equilibrium path (there is only

one unless non-degenerate mixed strategies are used). Suppose the strategy prescribes

contribution by player i. All on-path nodes are singleton categories. Hence, player i has a

correct belief that compliance, i.e. contribution in the current round and no-contribution

in the following round yields α
(
e+

∑
j ̸=i gj (Ht)

)
+ e (T − t). Deviation is expected to

yield at least α
(∑

j ̸=i gj (Ht)
)
+ e+ e (T − t). The latter is larger than the former.

S.3.3 Positive Contributions with Punishment Stage

Our assumption regarding similarity and homogeneity is that players distinguish sharply

between two kinds of histories: (i) histories in which all acts of non-contributions where

punished (by all those who contributed) and no act of contribution was punished, and

(ii) all other histories. A history of either kind is never bundled with a history of the

other kind. We also assume that (n− 1) p ≥ e (1− α), meaning that the cost of being

punished is high enough relative to the benefit of not contributing. Under these as-

sumptions we can show, that for sufficiently long games (sufficiently large T ) there is a

categorization equilibrium with contribution in every round, and (off-path) punishment

in a no-contribution event except in the last few periods. The construction is similar to

the one underlying Proposition S2 for the chainstore game. In the first kind of histories

(i) the strategy prescribes contribution and punishment of non-contributors (and only

non-contributors), except in the last few rounds in which non-punishment is prescribed.
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In the second kind of history (ii) the strategy prescribes non-contribution and no punish-

ment. The threat of punishment off-path would not be credible in a standard SPNE. The

reason players contribute throughout the interaction in our categorization equilibrium is

that the bundling of all off-path histories of the first kind induce players to believe that

they will be punished with probability approaching one (as T → ∞) if they fail to con-

tribute, even towards the end of the game where in reality they would not be punished.

In what follows we provide a detailed description of our construction

Similarity and Homogeneity In general it is natural to assume that if two situations

xi, x
′
i ∈ Xi have different actions sets, i.e. Ai (xi) ̸= Ai (x

′
i), then any analogy class that

contains both situations has minimal homogeneity. This implies that an adjusted analogy

partition will never bundle nodes with different action sets, as in Jehiel (2005). Since

contribution decision information sets and punishment information sets have different

actions sets any analogy class that contains both kinds of information sets have minimal

homogeneity. Let HCon denote the sets of contribution decision information sets, and

let HPun denote the set of punishment decision information sets. Since the action sets

are different any set that bundles information sets from HCon and HPun have minimal

homogeneity. For bothHCon andHPun we assume that homogeneity is mainly determined

by whether non-contributors, but not contributors, were punished. Let HFair denote the

set of information sets with a history such that in each previous round all non-contributors

were punished by all contributors, and no contributors were punished.

HFair =


In each previous round in the history of H, for all j:

gj = 0 ⇒ plj = p for all l with gl = e, and

gj = 1 ⇒ plj = 0 for all l.


Let HUnfair denote the complement, i.e. information sets with a history such that in

at least one previous round there was a non-contributor who was not punished by all

contributors, or there was a contributor who was punished. We assume if H and H ′

belong to X but H ∈ HFair and H ′ ∈ HUnfair, then ξ(X) = 0. Let

HCon−Fair = HCon ∩HFair

HCon−Unfair = HCon ∩HUnfair

HPun−Fair = HPun ∩HFair

HPun−Unfair = HPun ∩HUnfair

Any subset X containing only elements in HCon−Fair or only elements in HCon−Unfair

satisfies ξ(X) > 0. Likewise, any subset X containing only elements in HPun−Fair or only

elements in HPun−Unfair satisfies ξ(X) > 0.
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Strategy profile We assume

(n− 1) p ≥ e (1− α) . (S1)

For each n̄ ∈ {1, ..., n− 1} let

k∗n̄ = min {k ∈ N such that (αn+ 1) ek ≥ βpn̄} . (S2)

Consider the strategy profile σ̂, where each individual i plays the following strategy:

• At H ∈ HCon−Fair, contribute e.

• At H ∈ HCon−Unfair, do not contribute.

• At H ∈ HPun−Fair, where in the immediately preceding contribution stage,

– i contributed and n̄ ∈ {1, ..., n− 1} other players did not contribute: punish

if t ≤ T − k∗n̄, otherwise do not punish.

– i contributed and all other players contributed: do not punish.

– i did not contribute: do not punish.

• At H ∈ HPun−Unfair, do not punish.

On the path of play induced by this strategy profile everyone contributes in all rounds.

In case there is non-contribution all contributors punish, except the last period.

Categorization profile Under the categorization profile Ĉ, each on-path information

set is in a separate analogy class, as usual. Off-path information sets are categorized

based on the type of decision (contribution or punishment) and on whether the history

was in HFair or HUnfair. Formally, let Hoff
−i denote the off-path information sets at which

players other than i move, define

CCon−Fair
−i =

{
H ∈ Hoff

−i : H ∈ HCon−Fair
}
;

CCon−Unfair
−i =

{
H ∈ Hoff

−i : H ∈ HCon−Unfair
}
;

CPun−Fair
−i =

{
H ∈ Hoff

−i : H ∈ HPun−Fair
}
;

CPun−Unfair
−i =

{
H ∈ Hoff

−i : H ∈ HPun−Unfair
}
.

Proposition S4 If (S1) then there exists a T ∗ such that if T > T ∗, then
(
σ̂T , Ĉ

)
is a

coarse categorization equilibrium of the chainstore game with T periods, implying that in

the absence of mistakes everyone contributes in all rounds.
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Remark S1 Condition S1 requires that the cost of being punished is high enough relative

to the benefit of not contributing, and the definition of k∗n̄ in (S2) implies that in period

t ≤ T − k∗ the cost of punishing is lower that the loss from others not contributing (in

response to non-punishment), whereas in in period t ≤ T − k∗ the cost of punishing is

higher than the loss from others not contributing.

Proof of Proposition S4. We need to show that for T > T ∗ there is a sequence

(σ̂m
T )m converging to σ̂T , such that (σ̂m

T , Ĉ) is an (εm, κm)- categorization equilibrium for

all m. We define σ̂m
T as the strategy profile which at each node puts probability εm on

the action that σ̂T puts zero probability on. Since there are only two actions at each

node this is enough to specify σ̂m
T . Since the starting point of (εm, κm) is arbitrary it

is sufficient to show the following: There exists a T ∗ such that for any T > T ∗there is

exists an m∗ such that if T > T ∗ and m > m∗ then σ̂m
T is an (εmT , κ

m
T )-categorization

equilibrium of the chainstore game with T periods.

1. Why Ĉ is adjusted to σ̂m
T for all m > m∗ (and all T ).

(a) For any T , if m is large enough, then κmT < (1 − εmT )
2nT , ensuring that on-

path nodes have a mass exceeding the threshold κmT and thus are treated as

singleton analogy classes.

(b) For off-path nodes our homogeneity assumptions imply that information sets

in HFair and HUnfair have to be separated. Likewise, information sets in HCon

and HPun have to be separated. No further refinement is allowed (for m large

enough).

2. Analogy-based expectations4

(a) Players have correct expectations at on-path information sets.

(b) Players also have correct expectations at off-path information sets in HUnfair,

since after the corresponding histories no one contributes at any information

set and no one punishes at any information set.

(c) Next consider off-path information sets in HCon−Fair. At all such nodes every-

one contributes, resulting in correct expectations.

(d) Finally consider off-path information sets in HPun−Fair. As εm → 0 the ex-

pectations here are determined by behavior at information sets with histories

4In a game with more than two players there are at least two options for how to specify analogy based
expectations at off-path information sets. Players may ignore correlation across the other players’ actions
and form expectations about individual actions (here contributions), or they may form expectations
about the distribution of actions (contributions). Here we present results derived for expectations about
individual contributions. We can confirm that the results are essentially the same under expectations
about the distribution of contributions.
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containing a single act of non-contribution (due to a mistake) in the present

round. The fraction of such nodes at which not everyone punishes vanishes

as T → ∞. It follows that as T gets large, expects everyone except the

non-contributor to punish with a probability close to 1.

3. Verify that σ̂m
T induces a εmT -best-response given the analogy-based expectations.

(a) First consider player i at an information set H ∈ HCon−Fair (on-path or off-

path) in round t ≤ T . Complying with the proposed strategy profile yields for

the continuation

EUi (gi = e|t) = αne (T − t+ 1) .

The player believes that if she makes a one-shot deviation then with probability

approaching 1 (as T → ∞) everyone else punishes her, and play remains in

HCon−Fair. Hence, a one-shot deviation yields

EUi (gi = 0|t) = αne+ e (1− α) + (− (n− 1) p+ αne (T − t))

The difference is

EUi (gi = e|t)− EUi (gi = 0|t) = (n− 1) p− e (1− α) .

If (S1) holds then deviation is not profitable.

(b) Second, consider player i at information set H ∈ HCon−Unfair in round t ≤
T . Complying with the proposed strategy profile yields EUi (gi = 0|t) =

(T − t+ 1) e. A one-shot deviation yields EUi (gi = 0|t) = αe + (T − t) e.

The former is larger than the latter since α < 1.

(c) Third, consider player i at an information set H ∈ HPun−Fair (on-path or

off-path) in round t ≤ T .

i. If everyone complied in the contribution stage then (clearly) not punishing

is perceived to be optimal.

ii. If player i was the only one not to contribute, then (clearly) not punishing

is perceived to be optimal.

iii. If i contributed and n̄ other players did not contribute then i believes that

with probability approaching 1 (as T → ∞) all other contributors will

punish the non-contributors, so that punishing yields

EUi (pil = p|t) = −βpn̄+ αne (T − t) .

not punishing leads to HUnfair, hence yields EUi (pil = 0|t) = e (T − t).
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The difference is

EUi (pil = p|t)− EUi (pil = 0|t) = −βpn̄+ (αn+ 1) e (T − t) .

This is decreasing in t. For t = T − k∗n̄ the difference is

EUi (pil = p|t)− EUi (pil = 0|t) = −βpn̄+ (αn+ 1) ek∗n̄.

By the definition of k∗n̄ this non-negative, hence punishing is profitable for

t ≤ T − k∗. For t > T − k∗ it is strictly negative so punishing is not

profitable.

(d) Fourth, consider player i at information set H ∈ HPun−Unfair in round t ≤ T .

Clearly, punishing is not perceived as optimal.

S.4 Adverse Selection Application

S.4.1 Preliminary Observations

To demonstrate (A2) we rewrite (A1) as follows

∂πCE (p|p∗)
∂p

=
G̃ (p∗t )G (p∗t )

G̃ (c1)− G̃ (p∗t )

G (c1)−G (p∗t )

G (p∗t )
−

(
G̃ (c1)− G̃ (p∗t )

)
G̃ (p∗t )


+
G (c1)−G (p∗t )

G̃ (c1)− G̃ (p∗t )
g̃ (p)

((
E
[
ω|ω ∈ C1

]
+ b− p

)
− G̃ (p)

g̃ (p)

)
.

We note that(
G̃ (c1)− G̃ (p∗t )

)
G̃ (p∗t )

=

∫ c1
p∗t

(1− Fp∗ (ω)) g (ω) dω(∫ p∗t
0

(1− Fp∗ (ω)) g (ω) dω
) < (1− Fp∗ (p

∗
t ))
∫ c1
p∗t
g (ω) dω

(1− Fp∗ (p∗t ))
∫ p∗t
0
g (ω) dω

=

∫ c1
p∗t
g (ω) dω∫ p∗t

0
g (ω) dω

=
G (c1)−G (p∗t )

G (p∗t )
.

Moreover, we note that

G (c1)−G (p∗t )

G̃ (c1)− G̃ (p∗t )
=

∫ c1
p∗t
g (ω) dω∫ c1

p∗t
(1− Fp∗ (ω)) g (ω) dω

≥ 1,

12



Thus (A2) is implied. To demonstrate (A3) note that

g̃ (p∗)
G (c1)−G (p∗)

G̃ (c1)− G̃ (p∗)
=

(1− Fp∗ (p
∗)) (G (c1)−G (p∗))∫ c1

p∗
g (ω) (1− Fp∗ (ω)) dω

g (p∗)

=
(1− Fp∗ (p

∗))
∫ c1
p∗
g (ω) dω∫ c1

p∗
(1− Fp∗ (ω)) g (ω) dω

g (p∗) > g (p∗) .

Finally, to demonstrate (A4) we note that for p ∈ (p∗t , c1)

∂2πCE (p|p∗)
∂p2

= g̃′ (p)

((
E
[
ω|ω ∈ C1

]
+ b− p

)
− 2

g̃ (p)

g̃′ (p)

)
G (c1)−G (p∗t )

G̃ (c1)− G̃ (p∗t )
.

Using (S.4.1) we obtain (A4)

S.4.2 Nash equilibrium

Proposition S5 There exists a unique Nash equilibrium in which the bid price pNE of

uninformed buyers is uniquely defined by

g
(
pNE

)
G (pNE)

=
1

b
.

Proof of Proposition S5. Note that

∂

∂p
(E [ω|ω ≤ p]) =

1

G (p)
pg (p)−

(∫ p

ω=0

ωg (ω) dω

)
g (p)

G (p)2

=
g (p)

G (p)

(
p−

∫ p

ω=0

ω
g (ω)

G (p)
dω

)
=

g (p)

G (p)
(p− E [ω|ω ≤ p]) .

Thus

∂

∂p
πNE (p) = g (p) (E [ω|ω ≤ p] + b− p) +G (p)

(
∂

∂p
(E [ω|ω ≤ p])− 1

)
= g (p) (E [ω|ω ≤ p] + b− p) +G (p)

(
g (p)

G (p)
(p− E [ω|ω ≤ p])− 1

)
= g (p) (E [ω|ω ≤ p] + b− p) + g (p) (p− E [ω|ω ≤ p])−G (p)

= g (p) b−G (p) ,

and so the first-order condition of maxp π
NE(p) is

g (p)

G (p)
=

1

b
,

13



and the second-order condition is satisfied in virtue of the assumption that |g′ (p)| < g (p).

Notice that limp→0
g(p)
G(p)

= ∞ and g(1)
G(1)

= g (1). Hence, by the assumption that g (1) < 1/b

and ∂
∂p

(
g(p)
G(p)

)
< 0, the first-order condition has a unique solution that is interior.

S.4.3 Lemma for Proof of Convergence to Cycle

Proof of Lemma A1. Assume p∗ ≤ pNE. The mass in each analogy class (above

p∗) is at least κ. We establish a lower bound on the width of analogy class C1. Let

gmin = minω∈[0,1] g (ω) and gmax = maxω∈[0,1] g (ω). By the full-support assumption we

have gmin > 0. Note that∫
ω∈C1

µ (ω) dω = ε

∫
ω∈C1

g̃ (ω) dω ≤ ε

∫
ω∈C1

gmaxdω = ε (c1 − p∗) gmax ⇒ c1 − p∗ ≥ κ

εgmax
.

Using this we can establish a lower bound on the expected quality in analogy class C1.

Define

c∗1 (p
∗) = min

{
p∗ +

κ

εgmax
,
1

2

(
pNE + 1

)}
≤ c1,

implying that

c∗1 (p
∗)− p∗ ≥ min

min
{
κ, ε

(
G̃ (1)− G̃

(
pNE

))}
εgmax

,
1− pNE

2

 :=M1.

Note that

E
[
ω|ω ∈ C1

]
≥

(
1− 1

µ (C1)

∫ c∗1(p
∗)

ω=p∗
gmin (1− F (c∗1 (p

∗))) dω

)
· p∗

+
1

µ (C1)

∫ c∗1(p
∗)

ω=p∗
gmin (1− F (c∗1 (p

∗))) dω ·
(
p∗ +

c∗1 (p
∗)− p∗

2

)
.

Moreover,∫ c∗1(p
∗)

ω=p∗
gmin (1− F (c∗1 (p

∗))) dω ≥ (c∗1 (p
∗)− p∗) gmin

(
1− F

(
1

2

(
pNE + 1

)))
≥M1 · gmin

(
1− F

(
1

2

(
pNE + 1

)))
:=M2.

Thus we have

E
[
ω|ω ∈ C1

]
≥
(
1− M2

µ (C1)

)
p∗ +

M2

µ (C1)

(
p∗ +

c∗1 (p
∗)− p∗

2

)
= p∗ +

M2

µ (C1)

(
c∗1 (p

∗)− p∗

2

)
≥ p∗ +

M2

2
M1,
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or

E
[
ω|ω ∈ C1

]
≥ p∗ +

1

2
(c∗1 (p

∗)− p∗)2 gmin

(
1− F

(
1

2

(
pNE + 1

)))

S.5 Categorization Equilibrium and Nash Equilibrium

Here we present examples demonstrating that, CE may not be not outcome equivalent

to any NE, for the reason that this would require inconsistent beliefs, as mentioned in

Section 5.2.

S.5.1 Example where Feedback Differs from the Path of Play

Consider the following game. Player 1 (row) and Player 2 (column) simultaneously choose

between actions A and B, with the following outcomes.

A B

A 0, 1 1, 0

B 1, 1 0, 0

The unique Nash equilibrium is (B,A). Note that B is dominated for Player 2 so we can

ignore her belief formation. Suppose that the feedback is such that the outcome of the

game is reported if and only if it is (B,B). This means that an entering cohort will see

a record consisting entirely of (B,B) outcomes, and those acting as Player 1 will form

the belief that Player 2 plays action B with probability 1. The best response is action A.

Thus the unique Categorization equilibrium outcome is (A,A).

S.5.2 Example where Feedback Coincides with the Path of Play

We now turn to an example where the feedback is the path of play. We need to assume

that there are three players so that two of them can disagree about what the remaining

player does off the path. Consider the following game.

There is a categorization equilibrium involving the strategy profile (C,E, FG), ac-

cording to which Player 1 plays C, Player 2 plays E, and Player 3 plays F at the node

following A and plays G at the information set following B and D. Only the root node

and the node following C are on the path of play. Suppose that Player 1 deems all

of Player 3’s nodes sufficiently similar to be bundled together in a single analogy class,

whereas Player 1 perceives them sufficiently dissimilar to put each of them in a separate

category.

To see that this constitutes a categorization equilibrium note that F is dominant for

Player 3 at the node following A, and G is dominant for Player 3 at the information set

following B and D. Since Player 2 has correct beliefs about the behavior of Player 3 it
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3

2

GF

E

1

C

D

A

3
GF

3
GF

B

(1,3,0)(0,4,1)(0,0,0)(0,0,1)(5,0,0)(0,0,0)(0,0,1)

follows that E is optimal for Player 2. All of Player 3’s nodes are reached by a single

mistake. Hence Player 1 believes that Player 3 plays F with probability 1/3 at all of

Player 3’s nodes (since Player 1 bundles them all together). Player 1 has a correct belief

about Player 2’s behavior at the on-path node following C. Under these beliefs Player 1

optimally plays C.

In order for Player 2 to take action E she needs to believe that player 3 plays F with

at least probability 1/4 at the information set following B and D. Hence, in a Nash

equilibrium implementing the outcome (C,E) Player 3 must follow a strategy that puts

at least probability 1/4 on F at the information set following B andD. In order for Player

1 to take action C rather than action B she needs to believe that player 3 plays F with at

most probability 1/5 at the node following B. Hence in a Nash equilibrium implementing

the outcome (C,E) Player 3 must follow a strategy that puts at most probability 1/5 on

F at the information set following B and D. Thus the beliefs required for Players 1 and

2 are inconsistent.

S.6 Proof of Existence

Fix positive ε = (ε1, ε2) and κ. Let Pi denote the set of partitions of Xi and let Πi denote

the set of mixed partitions of player i (i.e. the set of probability distributions on Pi).

Let P = P1 × P2 denote the set of pure partition profiles and let Π = Π1 × Π2 denote

the set of mixed partition profiles. A mixed partition of player i is denoted πi ∈ Πi and

a mixed partition profile is denoted π ∈ Π. As before, a pure partition profile is denoted

C. Let Σi denote the mixed strategy set of player i and let Σ = Σ1×Σ2 denote the set of

mixed strategy profiles with a typical element denoted σ. A function from the set of pure

partition profiles will be called a partition-dependent strategy.5 Let Λ := Σ|P| denote the

set of partition-dependent strategy profiles, with a typical element denoted λ.

5This construction is similar to that of Jehiel and Weber (2024).
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Let λ (C) denote the strategy profile induced by the partition-dependent strategy

profile λ under the partition profile C. A mixed partition profile π and a partition-

dependent strategy profile λ induces behavior, in the form of a mixed strategy, µ (λ, π) :=∑
C′∈P π (C ′)λ (C), thereby defining a function

µ : Λ× Π → Σ,

which is continous in both arguments.

In line with Definition 2 let

βi : Σ× Pi → Σ,

denote the analogy-based expectations function which for a player i and any pure partition

Ci assigns the analogy based expectation βi (σ, Ci). This function is well-defined since ε

and κ are kept positive throughout. Moreover, it is continuous in both arguments. In

line with Definition 1 let

ξi : Σ ↠ Σi

be an ε-perturbed best-response strategy scorrespondence for player i, so that ξi (σ) is

the set of player i’s ε-perturbed best-responses to σ−i. We use β and ξ to define an

ε-best-response partition-dependent strategy correspondence

φ : Σ ↠ Λ,

which for each player i and each mixed strategy profile σ assigns a partition-dependent

strategy as follow

φi (σ) := {ξi (βi (σ, Ci))}Ci∈Pi
.

In line with Definition 4 we define a κ-adjusted-pure-partition correspondence

ψP : Σ ↠ P ,

which for each profile of mixed strategies σ assigns the set of profiles of κ-adjusted pure

partitions ψP (σ). That is, for each player i the partition ψP
i (σ) of player i is adjusted

to σ−i. Based on this we define a κ-adjusted-mixed-partition correspondence

ψ : Σ ↠ Π,

which for each profile of mixed strategies σ assigns the set of profiles of mixed partitions

such that each pure partition is κ-adjusted to σ, i.e. ψ (σ) ⊆ ∆
(
ψP (σ)

)
.

We combine all of the above to a (ε, κ)-best-response-and-adjusted-partition correspon-

dence

η : Λ× Π ↠ Λ× Π,
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defined by

η (λ, π) :=
{(
λ̃, π̃

)
∈ Λ× Π : π̃ ∈ ψ (µ (λ, π)) ∧ λ̃ ∈ φ (µ (λ, π) , π̃)

}
.

The set Λ×Π is non-empty, compact and convex. Note that ψ (σ) and is non-empty,

closed, and convex (being a probability distribution over a positive and finite number of

adjusted analogy partitions). Moreover, for standard reasons φ (σ, π) is also non-empty,

closed, and convex for all σ. It follow that η (λ, π) is non-empty, closed, and convex,

for all (λ, π). It remains to show that η (λ, π) is upper hemi-continuous (u.h.c.) in

(λ, π) ∈ Λ×Π. Since Λ×Π is compact and η is closed for all (λ, π) this is equivalent to

showing that η has the closed graph property, i.e. that

graph (η) =
{(

(λ, π) ,
(
λ̃, π̃

))
∈ (Λ× Π)× (Λ× Π) :

(
λ̃, π̃

)
∈ η (λ, π)

}
is closed. Consider a sequence

(
(λt, πt) ,

(
λ̃t, π̃t

))
with

(
λ̃t, π̃t

)
∈ η (λt, πt) for all t. We

need to show that if
(
(λt, πt) ,

(
λ̃t, π̃t

))
converges to

(
(λ∗, π∗) ,

(
λ̃∗, π̃∗

))
then

(
λ̃∗, π̃∗

)
∈

η (λ∗, π∗). If ψ and φ are u.h.c. then this is satisfied. It follows from standards arguments

that φ is u.h.c. It remains to show that ψ is u.h.c.

Note that the image of ψi is a simplex, hence compact and and convex for all σ.

Thus, to demonstrate that ψ is u.h.c. we only need to show that ψ has the closed graph

property. Consider a sequence (σt, π̃t) with π̃t ∈ ψ (σt) for all t. Suppose that (σt, π̃t)

converges to (σ∗, π̃∗). We need to show that π̃∗ ∈ ψΠ (σ∗). To obtain a contradiction

suppose there is some i such that π̃∗
i /∈ ψi (σ

∗), meaning that there is some C∗
i in the

support of π̃∗
i which is not κ-adjusted to σ∗

−i. This means that at least one of the

following four statements must be true. (i) There is x ∈ Xj with µσ∗
({x}) > κ which

is not in a singleton analogy class in C∗
i . (ii) There is an analogy class C∗k

i = X with

ζi(X) = 0. (iii) There is an analogy class C∗k
i and a set X ⊆ Xj \ (C∗k

i ∪X sing
j ) such that

µσ∗
(C∗k

i ) < κ and ζi(C∗k
i ∪ X) > 0. (iv) There is a collection of non-singleton analogy

classes
{
C∗k1
i , ..., C∗kM

i

}
in C∗

i , and a collection
{
X1, ..., XN

}
of pairwise disjoint sets, such

that ∪N
j=1X

j = ∪M
j=1C

∗kj
i , µσ∗

(Xj) > κ for all j, and minN
j=1 ζi(X

j) > minM
j=1 ζi(C

∗kj
i ). Now

we show that each of these statements imply a contradiction. If (i) holds then there is

a neighborhood B of σ∗ such that µσt
({x}) > κ for all σt ∈ B, and hence it cannot be

that σ∗ is a limit point of σt. If (ii) holds so that ζi(X) = 0 then regardless of behavior

no κ-adjusted categorization Ct contains a category Ctk
i = X and hence C∗

i cannot be in

the support of a limit point π̃∗
i . If (iii) holds then there is a neighborhood B of σ∗ such

that µσt
((C∗k

i )) < κ for all σt ∈ B. Together with the fact ζi(C∗k
i ∪ X) > 0 this implies

that for any σt ∈ B no κ-adjusted analogy partition can have C∗k
i as an analogy class.

Hence it cannot be that C∗
i is in the support of a limit point π̃∗

i . If (iv) holds then there

is a neighborhood B of σ∗ such that for all σt ∈ B it holds that µσt
(Xj) > κ for all
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j. Together with the fact ∪N
j=1X

j = ∪M
j=1C

∗kj
i and minN

j=1 ζi(X
j) > minM

j=1 ζi(C
∗kj
i ) this

implies that C∗
i cannot be in the support of a limit point π̃∗

i . We conclude that π̃∗ ∈ ψ (σ∗)

and hence that ψ is u.h.c.

The above argument establishes that for given εn = (εn1 , ε
n
2 ) and κn there exists an

(εn, κn)-categorization equilibrium for any n. Since Λ × Π is compact any sequence

(εn, κn)n∈N has a convergent sub-sequence with limit in Λ × Σ. Hence a categorization

equilibrium exists.
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